留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 10
Oct.  2023

图(6)

数据统计

分享

计量
  • 文章访问数:  719
  • HTML全文浏览量:  224
  • PDF下载量:  24
  • 被引次数: 0
Xinzhuo Hu, Zhe Liu, Yi Feng, Yongfeng Zhang, Zhe Li, Zhennan Chen, Jing Mao, Jing Yang, Hui Liu, Pengfei Yin, Lei Cui,  and Xiwen Du, Mechanically mixing copper and silver into self-supporting electrocatalyst for hydrogen evolution, Int. J. Miner. Metall. Mater., 30(2023), No. 10, pp. 1906-1913. https://doi.org/10.1007/s12613-023-2695-5
Cite this article as:
Xinzhuo Hu, Zhe Liu, Yi Feng, Yongfeng Zhang, Zhe Li, Zhennan Chen, Jing Mao, Jing Yang, Hui Liu, Pengfei Yin, Lei Cui,  and Xiwen Du, Mechanically mixing copper and silver into self-supporting electrocatalyst for hydrogen evolution, Int. J. Miner. Metall. Mater., 30(2023), No. 10, pp. 1906-1913. https://doi.org/10.1007/s12613-023-2695-5
引用本文 PDF XML SpringerLink
研究论文

将铜和银机械混合成自支撑电催化剂用于析氢



  • 通讯作者:

    尹鹏飞    E-mail: pengfeiyin@tju.edu.cn

    崔雷    E-mail: leicui@tju.edu.cn

    杜希文    E-mail: xwdu@tju.edu.cn

文章亮点

  • (1) 首次证明搅拌摩擦处理在制造高催化性能的不混溶合金方面具有强大的功能。
  • (2) 开发了析氢性能优异的CuAg电极并研究了其中的催化机理。
  • (3) 分析了具有高Ag溶解度的自支撑Cu电极的微观结构。
  • 到目前为止,合成具有高Ag溶解度的自支撑Cu电极仍然是一个巨大的挑战,而且难互溶合金对酸性介质中析氢反应(HER)的影响尚未阐明。在这项工作中,我们采用搅拌摩擦处理(FSP)将铜条和银条混合成自支撑电极,其中银原子均匀分布在铜基体中。在酸性溶液中,自支撑CuAg电极表现出优异的催化活性,其周转频率(TOF)是FSP纯铜的12倍。此外,CuAg电极具有良好的稳定性,连续测试180 h后,初始电流密度(−0.835 V,可逆氢电极电位下)仅降低了1.57%。X射线衍射(XRD)和透射电子显微镜(TEM)分析表明Cu基体存在拉伸应变,X光电子能谱(XPS)结果表明从Cu向Ag的电子转移,两个因素共同导致d带上移,并改善氢吸附。密度泛函理论(DFT)计算表明在CuAg合金中的Cu位点上的氢吸附能得到优化,证实了拉伸应变和电子转移共同增强了CuAg合金的d带中心,提高了氢的吸附性,最终促进了催化活性。综上,难互溶金属的合金化是优化催化活性的可行途径。FSP在制备具有高催化性能的难互溶合金自支撑催化剂方面具有明显优势。
  • Research Article

    Mechanically mixing copper and silver into self-supporting electrocatalyst for hydrogen evolution

    + Author Affiliations
    • Commercial hydrogen production involves the development of efficient hydrogen evolution reaction catalysts. Herein, we adopted a friction stir processing (FSP) technique to mix immiscible metals homogenously and obtain a self-supporting copper–silver (CuAg) catalyst. The gust of Ag atoms with larger atomic sizes caused a tensile strain in the Cu matrix. Meanwhile, the chemical-potential difference induced electron transfer from Cu to Ag, and the two factors jointly led to the upshift of Cu d-band and improved the catalytic activity. Consequently, the CuAg electrode exhibited a high turnover frequency (12 times that of pure Cu), a low overpotential at high current density (superior to platinum foil), and high durability (1.57% decay over 180 h). Our work demonstrates that FSP is a powerful method for preparing self-supporting catalysts of immiscible alloys with high catalytic performance.
    • loading
    • Supplementary Information-10.1007s12613-023-2695-5-0.docx
    • [1]
      Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Nørskov, and T.F. Jaramillo, Combining theory and experiment in electrocatalysis: Insights into materials design, Science, 355(2017), No. 6321, art. No. eaad4998. doi: 10.1126/science.aad4998
      [2]
      J. Wang, T. Liao, Z.Z. Wei, J.T. Sun, J.J. Guo, and Z.Q. Sun, Heteroatom-doping of non-noble metal-based catalysts for electrocatalytic hydrogen evolution: An electronic structure tuning strategy, Small Methods, 5(2021), No. 4, art. No. 2000988. doi: 10.1002/smtd.202000988
      [3]
      Q.Q. Zhang and J.Q. Guan, Single-atom catalysts for electrocatalytic applications, Adv. Funct. Mater., 30(2020), No. 31, art. No. 2000768. doi: 10.1002/adfm.202000768
      [4]
      X.H. Wu, S. Zhou, Z.Y. Wang, et al., Engineering multifunctional collaborative catalytic interface enabling efficient hydrogen evolution in all pH range and seawater, Adv. Energy Mater., 9(2019), No. 34, art. No. 1901333. doi: 10.1002/aenm.201901333
      [5]
      H.B. Liao, C. Wei, J.X. Wang, et al., A multisite strategy for enhancing the hydrogen evolution reaction on a nano-Pd surface in alkaline media, Adv. Energy Mater., 7(2017), No. 21, art. No. 1701129. doi: 10.1002/aenm.201701129
      [6]
      J. Zhao, P.D. Tran, Y. Chen, J.S.C. Loo, J. Barber, and Z.J. Xu, Achieving high electrocatalytic efficiency on copper: A low-cost alternative to platinum for hydrogen generation in water, ACS Catal., 5(2015), No. 7, p. 4115. doi: 10.1021/acscatal.5b00556
      [7]
      H.N. Sun, X.M. Xu, H. Kim, W. Jung, W. Zhou, and Z.P. Shao, Electrochemical water splitting: Bridging the gaps between fundamental research and industrial applications, Energy Environ. Mater., (2023), art. No. e12441. https://doi.org/10.1002/eem2.12441.
      [8]
      X.D. He, X. Han, X.Y. Zhou, et al., Electronic modulation with Pt-incorporated NiFe layered double hydroxide for ultrastable overall water splitting at 1000 mA cm−2, Appl. Catal. B, 331(2023), art. No. 122683. doi: 10.1016/j.apcatb.2023.122683
      [9]
      Z.Y. Zhou, X.R. Li, Q. Li, Y. Zhao, and H. Pang, Copper-based materials as highly active electrocatalysts for the oxygen evolution reaction, Mater. Today Chem., 11(2019), p. 169. doi: 10.1016/j.mtchem.2018.10.008
      [10]
      D. Lukács, Ł. Szyrwiel, and J.S. Pap, Copper containing molecular systems in electrocatalytic water oxidation—Trends and perspectives, Catalysts, 9(2019), No. 1, art. No. 83. doi: 10.3390/catal9010083
      [11]
      S. Nitopi, E. Bertheussen, S.B. Scott, et al., Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte, Chem. Rev., 119(2019), No. 12, p. 7610. doi: 10.1021/acs.chemrev.8b00705
      [12]
      J.W. Vickers, D. Alfonso, and D.R. Kauffman, Electrochemical carbon dioxide reduction at nanostructured gold, copper, and alloy materials, Energy Technol., 5(2017), No. 6, p. 775. doi: 10.1002/ente.201600580
      [13]
      J.K. Nørskov, T. Bligaard, A. Logadottir, et al., Trends in the exchange current for hydrogen evolution, J. Electrochem. Soc., 152(2005), No. 3, art. No. J23. doi: 10.1149/1.1856988
      [14]
      P.F.B.D. Martins, P.P. Lopes, E.A. Ticianelli, V.R. Stamenkovic, N.M. Markovic, and D. Strmcnik, Hydrogen evolution reaction on copper: Promoting water dissociation by tuning the surface oxophilicity, Electrochem. Commun., 100(2019), p. 30. doi: 10.1016/j.elecom.2019.01.006
      [15]
      S.R. Zhang, L. Nguyen, J.X. Liang, et al., Catalysis on singly dispersed bimetallic sites, Nat. Commun., 6(2015), art. No. 7938. doi: 10.1038/ncomms8938
      [16]
      Q. Lu, G.S. Hutchings, W.T. Yu, et al., Highly porous non-precious bimetallic electrocatalysts for efficient hydrogen evolution, Nat. Commun., 6(2015), art. No. 6567. doi: 10.1038/ncomms7567
      [17]
      B. Liu, H.Q. Peng, J.Y. Cheng, et al., Nitrogen-doped graphene-encapsulated nickel–copper alloy nanoflower for highly efficient electrochemical hydrogen evolution reaction, Small, 15(2019), No. 48, art. No. 1901545. doi: 10.1002/smll.201901545
      [18]
      W.C. Sheng, H.A. Gasteiger, and Y. Shao-Horn, Hydrogen oxidation and evolution reaction kinetics on platinum: Acid vs alkaline electrolytes, J. Electrochem. Soc., 157(2010), No. 11, art. No. B1529. doi: 10.1149/1.3483106
      [19]
      Z. Li, J.Y. Fu, Y. Feng, C.K. Dong, H. Liu, and X.W. Du, A silver catalyst activated by stacking faults for the hydrogen evolution reaction, Nat. Catal., 2(2019), No. 12, p. 1107. doi: 10.1038/s41929-019-0365-9
      [20]
      M.C. Luo and S.J. Guo, Strain-controlled electrocatalysis on multimetallic nanomaterials, Nat. Rev. Mater., 2(2017), art. No. 17059. doi: 10.1038/natrevmats.2017.59
      [21]
      A. Khorshidi, J. Violet, J. Hashemi, and A.A. Peterson, How strain can break the scaling relations of catalysis, Nat. Catal., 1(2018), No. 4, p. 263. doi: 10.1038/s41929-018-0054-0
      [22]
      W.J. Kang, Y. Feng, Z. Li, et al., Strain‐activated copper catalyst for pH‐universal hydrogen evolution reaction, Adv. Funct. Mater., 32(2022), No. 18, art. No. 2112367. doi: 10.1002/adfm.202112367
      [23]
      Q.L. Wu, M. Luo, J.H. Han, et al., Identifying electrocatalytic sites of the nanoporous copper–ruthenium alloy for hydrogen evolution reaction in alkaline electrolyte, ACS Energy Lett., 5(2020), No. 1, p. 192. doi: 10.1021/acsenergylett.9b02374
      [24]
      M.Y. Yang, L. Jiao, H.L. Dong, et al., Conversion of bimetallic MOF to Ru-doped Cu electrocatalysts for efficient hydrogen evolution in alkaline media, Sci. Bull., 66(2021), No. 3, p. 257. doi: 10.1016/j.scib.2020.06.036
      [25]
      J.S. Tian, Y.C. Hu, W.F. Lu, et al., Dealloying of an amorphous TiCuRu alloy results in a nanostructured electrocatalyst for hydrogen evolution reaction, Carbon Energy, (2023), art. No. e322. https://doi.org/10.1002/cey2.322.
      [26]
      R.F. Zhang, X.F. Kong, H.T. Wang, et al., An informatics guided classification of miscible and immiscible binary alloy systems, Sci. Rep., 7(2017), art. No. 9577. doi: 10.1038/s41598-017-09704-1
      [27]
      S.L. Guo, S.P. Liu, J.C. Liu, Z.S. Gao, D.F. Li, and Z.G. Liu, Investigation on strength, ductility and electrical conductivity of Cu–4Ag alloy prepared by cryorolling and subsequent annealing process, J. Mater. Eng. Perform., 28(2019), No. 11, p. 6809. doi: 10.1007/s11665-019-04448-7
      [28]
      C.C. Zhao, R.M. Niu, Y. Xin, et al., Improvement of properties in Cu–Ag composites by doping induced microstructural refinement, Mater. Sci. Eng. A, 799(2021), art. No. 140091. doi: 10.1016/j.msea.2020.140091
      [29]
      Y.Z. Tian, S.D. Wu, Z.F. Zhang, R.B. Figueiredo, N. Gao, and T.G. Langdon, Comparison of microstructures and mechanical properties of a Cu–Ag alloy processed using different severe plastic deformation modes, Mater. Sci. Eng. A, 528(2011), No. 13-14, p. 4331. doi: 10.1016/j.msea.2011.01.057
      [30]
      H. Li, C.Y. Guo, and C.L. Xu, A highly sensitive non-enzymatic glucose sensor based on bimetallic Cu–Ag superstructures, Biosens. Bioelectron., 63(2015), p. 339. doi: 10.1016/j.bios.2014.07.061
      [31]
      H.M. Sun, Z.H. Yan, F.M. Liu, W.C. Xu, F.Y. Cheng, and J. Chen, Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution, Adv. Mater., 32(2020), No. 3, art. No. 1806326. doi: 10.1002/adma.201806326
      [32]
      S. Sultan, J.N. Tiwari, A.N. Singh, et al., Single atoms and clusters based nanomaterials for hydrogen evolution, oxygen evolution reactions, and full water splitting, Adv. Energy Mater., 9(2019), No. 22, art. No. 1900624. doi: 10.1002/aenm.201900624
      [33]
      J. Li, J. Zhang, J.K. Shen, et al., Self-supported electrocatalysts for the hydrogen evolution reaction, Mater. Chem. Front., 7(2023), No. 4, p. 567. doi: 10.1039/D2QM00931E
      [34]
      C.H. Zhang, Z. Xu, N.N. Han, et al., Superaerophilic/superaerophobic cooperative electrode for efficient hydrogen evolution reaction via enhanced mass transfer, Sci. Adv., 9(2023), No. 3, art. No. eadd6978. doi: 10.1126/sciadv.add6978
      [35]
      M. Miličić, P. Gladović, R. Bojanić, T. Savković, and N. Stojić, Friction stir welding (FSW) process of copper alloys, Metalurgija, 55(2016), No. 1, p. 107.
      [36]
      L. Cui, C. Zhang, Y.C. Liu, X.G. Liu, D.P. Wang, and H.J. Li, Recent progress in friction stir welding tools used for steels, J. Iron Steel Res. Int., 25(2018), No. 5, p. 477. doi: 10.1007/s42243-018-0066-7
      [37]
      Y. Huang, J.L. Du, and Z.M. Wang, Progress in research on the alloying of binary immiscible metals, Acta Metall. Sin., 56(2020), No. 6, p. 801.
      [38]
      P. Xue, Z.Y. Huang, B.B. Wang, et al., Intrinsic high cycle fatigue behavior of ultrafine grained pure Cu with stable structure, Sci. China Mater., 59(2016), No. 7, p. 531. doi: 10.1007/s40843-016-5068-6
      [39]
      M. Komarasamy, R.S. Mishra, S. Mukherjee, and M.L. Young, Friction stir-processed thermally stable immiscible nanostructured alloys, JOM, 67(2015), No. 12, p. 2820. doi: 10.1007/s11837-015-1641-z
      [40]
      M. Komarasamy, R. Tharp, S. Sinha, S. Thapliyal, and R. Mishra, Achieving forced mixing in Cu-based immiscible alloys via friction stir processing, [in] Y. Hovanski, R. Mishra, Y. Sato, P. Upadhyay, and D. Yan, eds., Friction Stir Welding and Processing X, Springer, Cham, 2019, p. 199.
      [41]
      Y. Feng, Z. Li, S. Kang, et al., Mechanically processing copper plate into active catalyst for electrochemical hydrogen production, Acta Mater., 237(2022), art. No. 118164. doi: 10.1016/j.actamat.2022.118164
      [42]
      T.T. Yang, C.Q. Cheng, L.Y. Xiao, et al., A descriptor of IB alloy catalysts for hydrogen evolution reaction, SmartMat, (2023), art. No. e1204. https://doi.org/10.1002/smm2.1204.
      [43]
      N. Behrooz, A. Ghaffarinejad, and N. Sadeghi, Ag/Cu nano alloy as an electrocatalyst for hydrogen production, J. Electroanal. Chem., 782(2016), p. 1. doi: 10.1016/j.jelechem.2016.09.051
      [44]
      E. Rafiee, M. Farzam, M.A. Golozar, and A. Ashrafi, An investigation on dislocation density in cold-rolled copper using electrochemical impedance spectroscopy, ISRN Corros., 2013(2013), art. No. 921825.
      [45]
      M.H. Xie, S.Q. Ai, J. Yang, Y.D. Yang, Y.H. Chen, and Y. Jin, In-situ generation of oxide nanowire arrays from AgCuZn alloy sulfide with enhanced electrochemical oxygen-evolving performance, ACS Appl. Mater. Interfaces, 7(2015), No. 31, p. 17112. doi: 10.1021/acsami.5b03805

    Catalog


    • /

      返回文章
      返回