留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 10
Oct.  2023

图(13)

数据统计

分享

计量
  • 文章访问数:  370
  • HTML全文浏览量:  160
  • PDF下载量:  27
  • 被引次数: 0
Yun Fan, Cheng Chen, Siyao Zhang, Suoying Zhang, Fengwei Huo, and Weina Zhang, Crystalline framework nanosheets as platforms for functional materials, Int. J. Miner. Metall. Mater., 30(2023), No. 10, pp. 1986-2005. https://doi.org/10.1007/s12613-023-2696-4
Cite this article as:
Yun Fan, Cheng Chen, Siyao Zhang, Suoying Zhang, Fengwei Huo, and Weina Zhang, Crystalline framework nanosheets as platforms for functional materials, Int. J. Miner. Metall. Mater., 30(2023), No. 10, pp. 1986-2005. https://doi.org/10.1007/s12613-023-2696-4
引用本文 PDF XML SpringerLink
特约综述

作为功能材料平台的晶体骨架纳米片


  • 通讯作者:

    张伟娜    E-mail: iamwnzhang@njtech.edu.cn

文章亮点

  • (1)介绍了功能晶体骨架纳米片的种类、性质和优势。
  • (2)总结了目前功能晶体骨架纳米片的制备方法包括原位合成法和合成后修饰以及在催化、分离、传感和能源存储领域的应用。
  • (3)对功能晶体骨架纳米片的制备方法的探索、种类的扩展、稳定性的提高以及应用前景提出了展望。
  • 通过整合具有独特性能的有机和无机材料而产生的新兴功能纳米材料已被广泛应用于诸多领域。近年来,由于功能晶体骨架纳米片兼具功能物种和晶体骨架纳米片材料的优点及具有协同效应,其得到了广泛的探索和研究。晶体骨架纳米片是一种由单体通过配位或共价键组装而成的多孔晶体材料,优势包括高度可接近的活性位点、大的横向尺寸、超薄的厚度和柔性,在诸多应用中表现出优异的性能。将晶体骨架纳米片与功能物种如手性分子、荧光分子、酶、聚合物和纳米颗粒等结合制备功能晶体骨架纳米片,可提高晶体骨架纳米片的性能和扩大其应用范围。因此,本文重点介绍了功能晶体骨架纳米片的制备方法和应用。首先,我们介绍了晶体骨架纳米片的优点和性质,并讨论了将功能物种与纳米片结合以形成功能晶体骨架纳米片的重要性。然后,从原位合成和合成后修饰两个方面综述了功能晶体骨架纳米片的制备方法。随后,讨论了与各种功能物种结合赋予晶体骨架纳米片的性质,并总结了它们在催化、分离、传感和能源存储方面的应用。最后,我们对目前功能晶体骨架纳米片研究领域存在的挑战提出了自己的见解,希望为优化制备方法、扩大类别、提高稳定性和探索潜在应用提供启示。
  • Invited Review

    Crystalline framework nanosheets as platforms for functional materials

    + Author Affiliations
    • The integration of organic and inorganic materials has been widely used in various applications to generate novel functional nanomaterials characterized by unique properties. Functional crystalline framework nanosheets and their synergistic effects have been studied recently for possessing the advantages of functional species as well as crystalline framework nanosheets. Hence, we have focused on the preparation methods and applications of functional crystalline framework nanosheets in this review. We introduced crystalline framework nanosheets and discussed the importance of integrating functional species with nanosheets to form functional crystalline framework nanosheets. Then, two aspects of the preparation methods of functional crystalline framework nanosheets were reviewed: in situ synthesis and post-synthesis modification. Subsequently, we discussed the properties of the crystalline framework nanosheets combined with various functional species and summarized their applications in catalysis, sensing, separation, and energy storage. Finally, we have shared our insights on the challenges of functional crystalline framework nanosheets, hoping to contribute to the knowledge base for optimizing the preparation methods, expanding categories, improving stability, and exploring potential applications.
    • loading
    • [1]
      K.S. Novoselov, A.K. Geim, S.V. Morozov, et al., Electric field effect in atomically thin carbon films, Science, 306(2004), No. 5696, p. 666. doi: 10.1126/science.1102896
      [2]
      L. Song, L.J. Ci, H. Lu, et al., Large scale growth and characterization of atomic hexagonal boron nitride layers, Nano Lett., 10(2010), No. 8, p. 3209. doi: 10.1021/nl1022139
      [3]
      M.Y. Li, Y.M. Shi, C.C. Cheng, et al., Epitaxial growth of a monolayer WSe2–MoS2 lateral p–n junction with an atomically sharp interface, Science, 349(2015), No. 6247, p. 524. doi: 10.1126/science.aab4097
      [4]
      Nikhil, G. Ji and R. Prakash, Hydrothermal synthesis of Zn–Mg-based layered double hydroxide coatings for the corrosion protection of copper in chloride and hydroxide media, Int. J. Miner. Metall. Mater., 28(2021), No. 12, p. 1991. doi: 10.1007/s12613-020-2122-0
      [5]
      L. Li, Y. Yu, G.J. Ye, et al., Black phosphorus field-effect transistors, Nat. Nanotechnol., 9(2014), No. 5, p. 372. doi: 10.1038/nnano.2014.35
      [6]
      C.L. Tan, X.H. Cao, X.J. Wu, et al., Recent advances in ultrathin two-dimensional nanomaterials, Chem. Rev., 117(2017), No. 9, p. 6225. doi: 10.1021/acs.chemrev.6b00558
      [7]
      H. Furukawa, K.E. Cordova, M. O’eeffe, and O.M. Yaghi, The chemistry and applications of metal–organic frameworks, Science, 341(2013), No. 6149, art. No. 1230444. doi: 10.1126/science.1230444
      [8]
      T. Wei, Z.H. Zhang, Q. Zhang, J.H. Lu, Q.M. Xiong, F.Y. Wang, X.P. Zhou, W.J. Zhao, and X.Y. Qiu, Anion-immobilized solid composite electrolytes based on metal–organic frameworks and superacid ZrO2 fillers for high-performance all solid-state lithium metal batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1636. doi: 10.1007/s12613-021-2289-z
      [9]
      F.G. Cirujano, N. Martin, and L.H. Wee, Design of hierarchical architectures in metal–oganic frameworks for catalysis and adsorption, Chem. Mater., 32(2020), No. 24, p. 10268. doi: 10.1021/acs.chemmater.0c02973
      [10]
      J.J. Zhong, L. Qin, J.L. Li, Z. Yang, K. Yang, and M.J. Zhang, MOF-derived molybdenum selenide on Ti3C2Tx with superior capacitive performance for lithium-ion capacitors, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 1061. doi: 10.1007/s12613-022-2469-5
      [11]
      S.Y. Ding and W. Wang, Covalent organic frameworks (COFs): From design to applications, Chem. Soc. Rev., 42(2013), No. 2, p. 548. doi: 10.1039/C2CS35072F
      [12]
      M.T. Zhao, Y.X. Wang, Q.L. Ma, et al., Ultrathin 2D metal–organic framework nanosheets, Adv. Mater., 27(2015), No. 45, p. 7372. doi: 10.1002/adma.201503648
      [13]
      Y.Z. Li, Z.H. Fu, and G. Xu, Metal–organic framework nanosheets: Preparation and applications, Coord. Chem. Rev., 388(2019), p. 79. doi: 10.1016/j.ccr.2019.02.033
      [14]
      D. Rodríguez-San-Miguel, C. Montoro, and F. Zamora, Covalent organic framework nanosheets: Preparation, properties and applications, Chem. Soc. Rev., 49(2020), No. 8, p. 2291. doi: 10.1039/C9CS00890J
      [15]
      Y.J. Ding, Y.P. Chen, X.L. Zhang, et al., Controlled intercalation and chemical exfoliation of layered metal–organic frameworks using a chemically labile intercalating agent, J. Am. Chem. Soc., 139(2017), No. 27, p. 9136. doi: 10.1021/jacs.7b04829
      [16]
      H.L. Song, Y.A. Peng, C.L. Wang, L. Shu, C.Y. Zhu, Y.L. Wang, H.Y. He, and W.S. Yang, Structure regulation of MOF nanosheet membrane for accurate H2/CO2 separation, Angew. Chem. Int. Ed., 62(2023), art. No. e202218472. doi: 10.1002/anie.202218472
      [17]
      F.N. Dai, X.Y. Cui, Y.W. Luo, et al., Ultrathin MOF nanosheet-based resistive sensors for highly sensitive detection of methanol, Chem. Commun., 58(2022), No. 82, p. 11543.
      [18]
      S.L. Zhao, Y. Wang, J.C. Dong, et al., Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution, Nat. Energy, 1(2016), No. 12, art. No. 16184. doi: 10.1038/nenergy.2016.184
      [19]
      W.B. Liu, X.K. Li, C.M. Wang, et al., A scalable general synthetic approach toward ultrathin imine-linked two-dimensional covalent organic framework nanosheets for photocatalytic CO2 reduction, J. Am. Chem. Soc., 141(2019), No. 43, p. 17431. doi: 10.1021/jacs.9b09502
      [20]
      S. Biswas, A. Dey, F.A. Rahimi, S. Barman, and T.K. Maji, Metal-free highly stable and crystalline covalent organic nanosheet for visible-light-driven selective solar fuel production in aqueous medium, ACS Catal., 13(2023), No. 9, p. 5926. doi: 10.1021/acscatal.2c05203
      [21]
      C. Zeng, W. Weng, T. Lv, and W. Xiao, Low-temperature assembly of ultrathin amorphous MnO2 nanosheets over Fe2O3 spindles for enhanced lithium storage, ACS Appl. Mater. Interfaces, 10(2018), No. 36, p. 30470. doi: 10.1021/acsami.8b11794
      [22]
      Q.H. Li, X.Q. Qiao, Y.L. Jia, D.F. Hou, and D.S. Li, Amorphous CoMoS4 nanostructure for photocatalytic H2 generation, nitrophenol reduction, and methylene blue adsorption, ACS Appl. Nano Mater., 3(2020), No. 1, p. 68. doi: 10.1021/acsanm.9b01582
      [23]
      G. Wu, X.S. Zheng, P.X. Cui, et al., A general synthesis approach for amorphous noble metal nanosheets, Nat. Commun., 10(2019), art. No. 4855. doi: 10.1038/s41467-019-12859-2
      [24]
      S.S. Hu, J.J. Yan, X.M. Huang, et al., A sensing platform for hypoxanthine detection based on amino-functionalized metal organic framework nanosheet with peroxidase mimic and fluorescence properties, Sens. Actuators B, 267(2018), p. 312. doi: 10.1016/j.snb.2018.04.055
      [25]
      X.P. Liu, Z.Q. Yan, Y. Zhang, et al., Two-dimensional metal–organic framework/enzyme hybrid nanocatalyst as a benign and self-activated cascade reagent for in vivo wound healing, ACS Nano, 13(2019), No. 5, p. 5222. doi: 10.1021/acsnano.8b09501
      [26]
      G.L. Li, J.R. Ye, Y. Shen, Q.L. Fang, and F. Liu, Covalent triazine frameworks composite membrane (CdS/CTF-1) with enhanced photocatalytic in-situ cleaning and disinfection properties for sustainable separation, Chem. Eng. J., 421(2021), art. No. 127784. doi: 10.1016/j.cej.2020.127784
      [27]
      X.Y. Zhang, R.J. Lin, X.M. Meng, W. Li, F.S. Chen, and J.W. Hou, Iron phthalocyanine/two-dimensional metal–organic framework composite nanosheets for enhanced alkaline hydrogen evolution, Inorg. Chem., 60(2021), No. 13, p. 9987. doi: 10.1021/acs.inorgchem.1c01259
      [28]
      Y.T. Qin, Y. Wan, J. Guo, and M.T. Zhao, Two-dimensional metal–organic framework nanosheet composites: Preparations and applications, Chin. Chem. Lett., 33(2022), No. 2, p. 693. doi: 10.1016/j.cclet.2021.07.013
      [29]
      H.Q. Shen, D.D. Shang, L.H. Li, D. Li, and W.D. Shi, Rational design of 2D/2D covalent-organic framework/TiO2 nanosheet heterojunction with boosted photocatalytic H2 evolution, Appl. Surf. Sci., 578(2022), art. No. 152024. doi: 10.1016/j.apsusc.2021.152024
      [30]
      F. Guo, G.H. Tian, C.B. Fan, Z.A. Zong, J.L. Wang, and J.K. Xu, A zirconium–organic framework nanosheet-based aptasensor with outstanding electrochemical sensing performance, Inorg. Chem. Commun., 145(2022), art. No. 109970. doi: 10.1016/j.inoche.2022.109970
      [31]
      Y. Li, M.W. Xie, X.P. Zhang, et al., Co-MOF nanosheet array: A high-performance electrochemical sensor for non-enzymatic glucose detection, Sens. Actuators B, 278(2019), p. 126. doi: 10.1016/j.snb.2018.09.076
      [32]
      A. Kondo, C.C. Tiew, F. Moriguchi, and K. Maeda, Fabrication of metal–organic framework nanosheets and nanorolls with N-donor type bridging ligands, Dalton Trans., 42(2013), No. 43, p. 15267. doi: 10.1039/c3dt52130c
      [33]
      P. Cai, M. Xu, S.-S. Meng, et al., Precise spatial-designed metal–organic-framework nanosheets for efficient energy transfer and photocatalysis, Angew. Chem. Int. Ed., 60(2021), No. 52, p. 27258. doi: 10.1002/anie.202111594
      [34]
      M.J. Wang, Y. Xu, C.K. Peng, et al., Site-specified two-dimensional heterojunction of Pt nanoparticles/metal–organic frameworks for enhanced hydrogen evolution, J. Am. Chem. Soc., 143(2021), No. 40, p. 16512. doi: 10.1021/jacs.1c06006
      [35]
      J.L. Ren, Z.L. Xia, B.F. Luo, D. Li, and W.D. Shi, Fabrication of 2D/2D COF/SnNb2O6 nanosheets and their enhanced solar hydrogen production, Inorg. Chem. Front., 8(2021), No. 7, p. 1686. doi: 10.1039/D0QI01443E
      [36]
      H.W. Chen, H.Y. Tu, C.J. Hu, et al., Cationic covalent organic framework nanosheets for fast Li-ion conduction, J. Am. Chem. Soc., 140(2018), No. 3, p. 896. doi: 10.1021/jacs.7b12292
      [37]
      H.A. Yang, Y. Duan, H.L. Gu, et al., In-situ synthesis strategy of S-doped hierarchical Ni-MOF nanosheet supercapacitor electrodes via nickle foam etching, ACS Appl. Energy Mater., 6(2023), No. 7, p. 3789. doi: 10.1021/acsaem.2c04024
      [38]
      Y.H. Liu, L.M. Liu, X. Chen, Y. Liu, Y. Han, and Y. Cui, Single-crystalline ultrathin 2D porous nanosheets of chiral metal–organic frameworks, J. Am. Chem. Soc., 143(2021), No. 9, p. 3509. doi: 10.1021/jacs.0c13005
      [39]
      W. Zhu, C.F. Zhang, Q. Li, et al., Selective reduction of CO2 by conductive MOF nanosheets as an efficient co-catalyst under visible light illumination, Appl. Catal., B, 238(2018), p. 339. doi: 10.1016/j.apcatb.2018.07.024
      [40]
      S. Mitra, H.S. Sasmal, T. Kundu, et al., Targeted drug delivery in covalent organic nanosheets (CONs) via sequential postsynthetic modification, J. Am. Chem. Soc., 139(2017), No. 12, p. 4513. doi: 10.1021/jacs.7b00925
      [41]
      Y.W. Zhao, L.E. Guo, F.Q. Zhang, J. Yao, and X.M. Zhang, Turn-on fluorescence enantioselective sensing of hydroxyl carboxylic enantiomers by metal–organic framework nanosheets with a homochiral tetracarboxylate of cyclohexane diamide, ACS Appl. Mater. Interfaces, 13(2021), No. 17, p. 20821. doi: 10.1021/acsami.1c02897
      [42]
      J.P. Tang, Z.X. Liang, M.Y. Huang, et al., A combined bottom-up and top-down strategy to fabricate lanthanide hydrate@2D MOF composite nanosheets for direct white light emission, J. Mater. Chem. C, 9(2021), No. 41, p. 14628. doi: 10.1039/D1TC04239D
      [43]
      X.W. Wu, X. Han, Q.S. Xu, et al., Chiral BINOL-based covalent organic frameworks for enantioselective sensing, J. Am. Chem. Soc., 141(2019), No. 17, p. 7081. doi: 10.1021/jacs.9b02153
      [44]
      W. Jia, B.H. Wu, S.T. Sun, and P.Y. Wu, Interfacially stable MOF nanosheet membrane with tailored nanochannels for ultrafast and thermo-responsive nanofiltration, Nano Res., 13(2020), No. 11, p. 2973. doi: 10.1007/s12274-020-2959-6
      [45]
      J. Guo, Y. Zhang, Y.F. Zhu, et al., Ultrathin chiral metal–organic-framework nanosheets for efficient enantioselective separation, Angew. Chem. Int. Ed., 57(2018), No. 23, p. 6873. doi: 10.1002/anie.201803125
      [46]
      M.L. Luo, Q. Yang, W.B. Yang, et al., Defects engineering leads to enhanced photocatalytic H2 evolution on graphitic carbon nitride–covalent organic framework nanosheet composite, Small, 16(2020), No. 20, art. No. 2001100. doi: 10.1002/smll.202001100
      [47]
      J. Lu, S. Wang, Y. Zhao, et al., Photocatalytic reduction of CO2 by two-dimensional Zn-MOF-NH2/Cu heterojunctions, Catal. Commun., 175(2023), art. No. 106613. doi: 10.1016/j.catcom.2023.106613
      [48]
      D.Y. Liu, Z.F. Zhao, Z.K. Xu, L. Li, and S.Y. Lin, Anchoring Ce-modified Ni(OH)2 nanoparticles on Ni-MOF nanosheets to enhances the oxygen evolution performance, Dalton Trans., 51(2022), No. 34, p. 12839. doi: 10.1039/D2DT02182J
      [49]
      S.X. Xiong, F.Y. Lv, N.N. Yang, et al., Solvothermal synthesis of donor-acceptor covalent organic framework/coal-based polyaniline composites for three-state electrochromic materials, Sol. Energy Mater. Sol. Cells, 247(2022), art. No. 111969. doi: 10.1016/j.solmat.2022.111969
      [50]
      D. Guo, F.W. Ming, D.B. Shinde, et al., Covalent assembly of two-dimensional COF-on-MXene heterostructures enables fast charging lithium hosts, Adv. Funct. Mater., 31(2021), No. 25, art. No. 2101194. doi: 10.1002/adfm.202101194
      [51]
      C. Wang, W.Z. Li, Y.H. Jin, J.B. Liu, H. Wang, and Q.Q. Zhang, Functional separator enabled by covalent organic frameworks for high-performance Li metal batteries, Small, 19(2023), art. No. 2300023. doi: 10.1002/smll.202300023
      [52]
      Z. Deng, H.J. Yu, L. Wang, J.Y. Liu, and K.J. Shea, Ferrocene-based metal–organic framework nanosheets loaded with palladium as a super-high active hydrogenation catalyst, J. Mater. Chem. A, 7(2019), No. 26, p. 15975. doi: 10.1039/C9TA03403J
      [53]
      H. Zhang, Q.Y. Li, B. Weng, et al., Edge engineering of platinum nanoparticles via porphyrin-based ultrathin 2D metal–organic frameworks for enhanced photocatalytic hydrogen generation, Chem. Eng. J., 442(2022), art. No. 136144. doi: 10.1016/j.cej.2022.136144
      [54]
      T.T. Zhang, Y. Song, Y. Xing, et al., The synergistic effect of Au-COF nanosheets and artificial peroxidase Au@ZIF-8(NiPd) rhombic dodecahedra for signal amplification for biomarker detection, Nanoscale, 11(2019), No. 42, p. 20221. doi: 10.1039/C9NR07190C
      [55]
      Y. Huang, M.T. Zhao, S.K. Han, et al., Growth of Au nanoparticles on 2D metalloporphyrinic metal–organic framework nanosheets used as biomimetic catalysts for cascade reactions, Adv. Mater., 29(2017), No. 32, art. No. 1700102. doi: 10.1002/adma.201700102
      [56]
      Y.Y. Tian, Q.P. Lu, X.X. Guo, S.Y. Wang, Y. Gao, and L.H. Wang, Au nanoparticles deposited on ultrathin two-dimensional covalent organic framework nanosheets for in vitro and intracellular sensing, Nanoscale, 12(2020), No. 14, p. 7776. doi: 10.1039/C9NR08220D
      [57]
      K. Rui, G.Q. Zhao, Y.P. Chen, et al., Hybrid 2D dual-metal–organic frameworks for enhanced water oxidation catalysis, Adv. Funct. Mater., 28(2018), No. 26, art. No. 1801554. doi: 10.1002/adfm.201801554
      [58]
      Y.J. Li, H.O. Liu, H.T. Wang, J.S. Qiu, and X.F. Zhang, GO-guided direct growth of highly oriented metal–organic framework nanosheet membranes for H2/CO2 separation, Chem. Sci., 9(2018), No. 17, p. 4132. doi: 10.1039/C7SC04815G
      [59]
      F.F. Yang, M.A. Wu, Y.C. Wang, S. Ashtiani, and H.Q. Jiang, A GO-induced assembly strategy to repair MOF nanosheet-based membrane for efficient H2/CO2 separation, ACS Appl. Mater. Interfaces, 11(2019), No. 1, p. 990. doi: 10.1021/acsami.8b19480
      [60]
      N. Ali Khan, J.Q. Yuan, H. Wu, et al., Mixed nanosheet membranes assembled from chemically grafted graphene oxide and covalent organic frameworks for ultra-high water flux, ACS Appl. Mater. Interfaces, 11(2019), No. 32, p. 28978. doi: 10.1021/acsami.9b09945
      [61]
      K. Jayaramulu, D.P. Dubal, A. Schneemann, et al., Shape-assisted 2D MOF/graphene derived hybrids as exceptional lithium-ion battery electrodes, Adv. Funct. Mater., 29(2019), No. 38, art. No. 1902539. doi: 10.1002/adfm.201902539
      [62]
      F.C. Tan, L. Zha, and Q. Zhou, Assembly of AIEgen-based fluorescent metal–organic framework nanosheets and seaweed cellulose nanofibrils for humidity sensing and UV-shielding, Adv. Mater., 34(2022), No. 28, art. No. 2201470. doi: 10.1002/adma.202201470
      [63]
      Z.M. Man, J. Safaei, Z. Zhang, et al., Serosa-mimetic nanoarchitecture membranes for highly efficient osmotic energy generation, J. Am. Chem. Soc., 143(2021), No. 39, p. 16206. doi: 10.1021/jacs.1c07392
      [64]
      P.H. Ling, C.H. Qian, F. Gao, and J.P. Lei, Enzyme-immobilized metal–organic framework nanosheets as tandem catalysts for the generation of nitric oxide, Chem. Commun., 54(2018), No. 79, p. 11176. doi: 10.1039/C8CC05068F
      [65]
      X.Y. Bi, Y.A. Zhang, F. Zhang, S.X. Zhang, Z.G. Wang, and J.A. Jin, MOF nanosheet-based mixed matrix membranes with metal–organic coordination interfacial interaction for gas separation, ACS Appl. Mater. Interfaces, 12(2020), No. 43, p. 49101. doi: 10.1021/acsami.0c14639
      [66]
      P. Li, B. He, X.A. Li, Y.F. Lin, and S.K. Tang, Chitosan-linked dual-sulfonate COF nanosheet proton exchange membrane with high robustness and conductivity, Small, 19(2023), No. 35, art. No. 2302060.
      [67]
      H. Yao, F. Zhang, G.W. Zhang, et al., A novel two-dimensional coordination polymer-polypyrrole hybrid material as a high-performance electrode for flexible supercapacitor, Chem. Eng. J., 334(2018), p. 2547. doi: 10.1016/j.cej.2017.12.013
      [68]
      S.Q. Han, W.H. You, S.H. Lv, et al., Ionic liquid modified COF nanosheet interlayered polyamide membranes for elevated nanofiltration performance, Desalination, 548(2023), art. No. 116300. doi: 10.1016/j.desal.2022.116300
      [69]
      L.H. Xu, S.H. Li, H. Mao, et al., Highly flexible and superhydrophobic MOF nanosheet membrane for ultrafast alcohol–water separation, Science, 378(2022), No. 6617, p. 308. doi: 10.1126/science.abo5680
      [70]
      Y. Peng, Y.S. Li, Y.J. Ban, and W.S. Yang, Two-dimensional metal–organic framework nanosheets for membrane-based gas separation, Angew. Chem. Int. Ed., 56(2017), No. 33, p. 9757. doi: 10.1002/anie.201703959
      [71]
      Q. Liu, Z.Q. Guo, C. Wang, et al., A cobalt-based metal–organic framework nanosheet as the electrode for high-performance asymmetric supercapacitor, Adv. Sci., 10(2023), No. 18, art. No. e2207545. doi: 10.1002/advs.202207545
      [72]
      X.D. Chen, Y.S. Li, L.A. Wang, et al., High-lithium-affinity chemically exfoliated 2D covalent organic frameworks, Adv. Mater., 31(2019), No. 29, art. No. 1901640. doi: 10.1002/adma.201901640
      [73]
      N. Yao, H.N. Jia, Z.Y. Fan, et al., Nitridation-induced metal–organic framework nanosheet for enhanced water oxidation electrocatalysis, J. Energy Chem., 64(2022), p. 531. doi: 10.1016/j.jechem.2021.05.024
      [74]
      F.J. Li, M.H. Jiang, C.G. Lai, H.F. Xu, K.Y. Zhang, and Z. Jin, Yttrium- and cerium-codoped ultrathin metal–organic framework nanosheet arrays for high-efficiency electrocatalytic overall water splitting, Nano Lett., 22(2022), No. 17, p. 7238. doi: 10.1021/acs.nanolett.2c02755
      [75]
      B.W. Yang, H.L. Yao, J.C. Yang, C. Chen, and J.L. Shi, Construction of a two-dimensional artificial antioxidase for nanocatalytic rheumatoid arthritis treatment, Nat. Commun., 13(2022), art. No. 1988. doi: 10.1038/s41467-022-29735-1
      [76]
      C.C. Zou, Q.Q. Li, Y.Y. Hua, B.H. Zhou, J.G. Duan, and W.Q. Jin, Mechanical synthesis of COF nanosheet cluster and its mixed matrix membrane for efficient CO2 removal, ACS Appl. Mater. Interfaces, 9(2017), No. 34, p. 29093. doi: 10.1021/acsami.7b08032
      [77]
      C.X. Tan, K.W. Yang, J.Q. Dong, et al., Boosting enantioselectivity of chiral organocatalysts with ultrathin two-dimensional metal–organic framework nanosheets, J. Am. Chem. Soc., 141(2019), No. 44, p. 17685. doi: 10.1021/jacs.9b07633
      [78]
      M.H. Wang, M.Y. Hu, J.M. Liu, et al., Covalent organic framework-based electrochemical aptasensors for the ultrasensitive detection of antibiotics, Biosens. Bioelectron., 132(2019), p. 8. doi: 10.1016/j.bios.2019.02.040
      [79]
      F.T. Ran, X.Q. Xu, D. Pan, Y.Y. Liu, Y.P. Bai, and L. Shao, Ultrathin 2D metal–organic framework nanosheets in situ interpenetrated by functional CNTs for hybrid energy storage device, Nano Micro Lett., 12(2020), No. 1, p. 1. doi: 10.1007/s40820-019-0337-2
      [80]
      Y. Wang, L.A. Feng, J.D. Pang, et al., Metal–organic frameworks: Photosensitizer-anchored 2D MOF nanosheets as highly stable and accessible catalysts toward artemisinin production, Adv. Sci., 6(2019), No. 11, art. No. 1802059. doi: 10.1002/advs.201802059
      [81]
      M.J. Wang, N. Zhang, Y.G. Feng, Z.W. Hu, Q. Shao, and X.Q. Huang, Partially pyrolyzed binary metal–organic framework nanosheets for efficient electrochemical hydrogen peroxide synthesis, Angew. Chem. Int. Ed., 59(2020), No. 34, p. 14373. doi: 10.1002/anie.202006422
      [82]
      R.J. Wei, P.Y. You, H.Y. Duan, et al., Ultrathin metal–organic framework nanosheets exhibiting exceptional catalytic activity, J. Am. Chem. Soc., 144(2022), No. 38, p. 17487. doi: 10.1021/jacs.2c06312
      [83]
      R. Yan, Y. Zhao, H. Yang, et al., Ultrasmall Au nanoparticles embedded in 2D mixed-ligand metal–organic framework nanosheets exhibiting highly efficient and size-selective catalysis, Adv. Funct. Mater., 28(2018), No. 34, art. No. 1802021. doi: 10.1002/adfm.201802021
      [84]
      J. Lv, W. Li, J. Li, et al., A triptycene-based 2D MOF with vertically extended structure for improving the electrocatalytic performance of CO2 to methane, Angew. Chem. Int. Ed., 62(2023), art. No. e202217958. doi: 10.1002/anie.202217958
      [85]
      Y.R. Wang, H.M. Ding, X.Y. Ma, et al., Imparting CO2 electroreduction auxiliary for integrated morphology tuning and performance boosting in a porphyrin-based covalent organic framework, Angew. Chem. Int. Ed., 61(2022), No. 5, art. No. e202114648. doi: 10.1002/anie.202114648
      [86]
      L. Jiao, J.X. Wang, and H.L. Jiang, Microenvironment modulation in metal–organic framework-based catalysis, Acc. Mater. Res., 2(2021), No. 5, p. 327. doi: 10.1021/accountsmr.1c00009
      [87]
      T. He, B. Ni, S.M. Zhang, et al., Ultrathin 2D zirconium metal–organic framework nanosheets: Preparation and application in photocatalysis, Small, 14(2018), No. 16, art. No. 1703929. doi: 10.1002/smll.201703929
      [88]
      K. Rui, G.Q. Zhao, M.M. Lao, et al., Direct hybridization of noble metal nanostructures on 2D metal–organic framework nanosheets to catalyze hydrogen evolution, Nano Lett., 19(2019), No. 12, p. 8447. doi: 10.1021/acs.nanolett.9b02729
      [89]
      C. Wang, C. He, Y.H. Luo, et al., Efficient mercury chloride capture by ultrathin 2D metal–organic framework nanosheets, Chem. Eng. J., 379(2020), art. No. 122337. doi: 10.1016/j.cej.2019.122337
      [90]
      Y.X. Wang, M.T. Zhao, J.F. Ping, et al., Bioinspired design of ultrathin 2D bimetallic metal–organic-framework nanosheets used as biomimetic enzymes, Adv. Mater., 28(2016), No. 21, p. 4149. doi: 10.1002/adma.201600108
      [91]
      M. Gutiérrez, A.F. Möslein, and J.C. Tan, Facile and fast transformation of nonluminescent to highly luminescent metal–organic frameworks: Acetone sensing for diabetes diagnosis and lead capture from polluted water, ACS Appl. Mater. Interfaces, 13(2021), No. 6, p. 7801. doi: 10.1021/acsami.0c22307
      [92]
      Y.X. Qiao, R. Zhang, F.Y. He, et al., A comparative study of electrocatalytic oxidation of glucose on conductive Ni-MOF nanosheet arrays with different ligands, New J. Chem., 44(2020), No. 41, p. 17849. doi: 10.1039/D0NJ04150E
      [93]
      S.S. Wang, M.M. Wang, C.P. Li, et al., A highly sensitive and stable electrochemiluminescence immunosensor for alpha-fetoprotein detection based on luminol-AgNPs@Co/Ni-MOF nanosheet microflowers, Sens. Actuators B, 311(2020), art. No. 127919. doi: 10.1016/j.snb.2020.127919
      [94]
      Y. Shu, T. Su, Q. Lu, et al., Paper-based electrochemical immunosensor device via Ni–Co MOF nanosheet as a peroxidase mimic for the label-free detection of alpha-fetoprotein, Sens. Actuators B, 373(2022), art. No. 132736. doi: 10.1016/j.snb.2022.132736
      [95]
      F.F. Su, S.A. Zhang, H.F. Ji, et al., Two-dimensional zirconium-based metal–organic framework nanosheet composites embedded with Au nanoclusters: A highly sensitive electrochemical aptasensor toward detecting cocaine, ACS Sens., 2(2017), No. 7, p. 998. doi: 10.1021/acssensors.7b00268
      [96]
      J.Q. Chen, Q.Q. Zheng, S.J. Xiao, et al., Construction of two-dimensional fluorescent covalent organic framework nanosheets for the detection and removal of nitrophenols, Anal. Chem., 94(2022), No. 5, p. 2517. doi: 10.1021/acs.analchem.1c04406
      [97]
      Y.W. Peng, Y. Huang, Y.H. Zhu, et al., Ultrathin two-dimensional covalent organic framework nanosheets: Preparation and application in highly sensitive and selective DNA detection, J. Am. Chem. Soc., 139(2017), No. 25, p. 8698. doi: 10.1021/jacs.7b04096
      [98]
      G.Y. Zhang, Y.X. Ma, H.N. Chai, et al., Porphyrinic metal–organic framework@alumina nanocomposite fluorescent probe: Two-stage stimuli-responsive behavior and phosphate sensing, Sens. Actuators, B, 370(2022), art. No. 132395. doi: 10.1016/j.snb.2022.132395
      [99]
      H. Xu, J.K. Gao, X.F. Qian, et al., Metal–organic framework nanosheets for fast-response and highly sensitive luminescent sensing of Fe3+, J. Mater. Chem. A, 4(2016), No. 28, p. 10900. doi: 10.1039/C6TA03065C
      [100]
      Y.Z. Liu, J.X. Ren, Y.J. Wang, et al., A stable luminescent covalent organic framework nanosheet for sensitive molecular recognition, CCS Chem., 5(2023), No. 9, p. 2033.
      [101]
      H.S. Wang, J. Li, J.Y. Li, K. Wang, Y. Ding, and X.H. Xia, Lanthanide-based metal–organic framework nanosheets with unique fluorescence quenching properties for two-color intracellular adenosine imaging in living cells, NPG Asia Mater., 9(2017), No. 3, art. No. e354. doi: 10.1038/am.2017.7
      [102]
      X. Yan, Y.P. Song, J.M. Liu, et al., Two-dimensional porphyrin-based covalent organic framework: A novel platform for sensitive epidermal growth factor receptor and living cancer cell detection, Biosens. Bioelectron., 126(2019), p. 734. doi: 10.1016/j.bios.2018.11.047
      [103]
      G.S. Wang, Z.X. Yan, N.H. Wang, M. Xiang, Z.H. Xu, and H.L. Zhu, Bulk doping nickel–cobalt metal organic framework nanosheet arrays for performance-boosted hybrid supercapacitors, J. Mater. Res., 37(2022), No. 10, p. 1714. doi: 10.1557/s43578-022-00567-5
      [104]
      J.P. Li, H.Y. Zhao, J.W. Wang, et al., Interplanar space-controllable carboxylate pillared metal organic framework ultrathin nanosheet for superhigh capacity rechargeable alkaline battery, Nano Energy, 62(2019), p. 876. doi: 10.1016/j.nanoen.2019.06.009
      [105]
      T.X. Zheng, X.M. Kang, and Z.L. Liu, Effective enhancement of capacitive performance by the facile exfoliation of bulk metal–organic frameworks into 2D-functionalized nanosheets, Nanoscale, 13(2021), No. 31, p. 13273. doi: 10.1039/D1NR02164H
      [106]
      J.S. Yuan, C.J. Zhang, T. Liu, Y.H. Zhen, Z.Z. Pan, and Y.D. Li, Two-dimensional metal–organic framework nanosheets-modified porous separator for non-aqueous redox flow batteries, J. Membr. Sci., 612(2020), art. No. 118463. doi: 10.1016/j.memsci.2020.118463
      [107]
      Q. Li, J.J. Zhou, R. Liu, and L. Han, An amino-functionalized metal–organic framework nanosheet array as a battery-type electrode for an advanced supercapattery, Dalton Trans., 48(2019), No. 46, p. 17163. doi: 10.1039/C9DT03821C
      [108]
      J.W. Zhang, Y. Li, M.S. Han, Q.S. Xia, Q.G. Chen, and M.H. Chen, Constructing ultra-thin Ni-MOF@NiS2 nanosheets arrays derived from metal organic frameworks for advanced all-solid-state asymmetric supercapacitor, Mater. Res. Bull., 137(2021), art. No. 111186. doi: 10.1016/j.materresbull.2020.111186
      [109]
      X.H. Hu, J.H. Jian, Z.S. Fang, et al., Hierarchical assemblies of conjugated ultrathin COF nanosheets for high-sulfur-loading and long-lifespan lithium–sulfur batteries: Fully-exposed porphyrin matters, Energy Storage Mater., 22(2019), p. 40. doi: 10.1016/j.ensm.2018.12.021
      [110]
      J.H. Wang, S. Li, Y.F. Chen, et al., Phthalocyanine based metal–organic framework ultrathin nanosheet for efficient photocathode toward light-assisted Li–CO2 battery, Adv. Funct. Mater., 32(2022), No. 49, art. No. 2210259. doi: 10.1002/adfm.202210259
      [111]
      X.L. Liu, Y.C. Jin, H.L. Wang, et al., In situ growth of covalent organic framework nanosheets on graphene as the cathode for long-life high-capacity lithium-ion batteries, Adv. Mater., 34(2022), No. 37, art. No. 2203605. doi: 10.1002/adma.202203605
      [112]
      C.X. Li, J. Yang, P. Pachfule, et al., Ultralight covalent organic framework/graphene aerogels with hierarchical porosity, Nat. Commun., 11(2020), art. No. 4712. doi: 10.1038/s41467-020-18427-3

    Catalog


    • /

      返回文章
      返回