留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 6
Jun.  2024

图(11)  / 表(8)

数据统计

分享

计量
  • 文章访问数:  1402
  • HTML全文浏览量:  148
  • PDF下载量:  38
  • 被引次数: 0
Qianqian Lu, Haisheng Han, Wenjuan Sun, Xingfei Zhang, Weiwei Wang, Bilan Zhang, Wensheng Chen, and Qin Zou, Preparation of high-purity fluorite and nanoscale calcium carbonate from low-grade fluorite, Int. J. Miner. Metall. Mater., 31(2024), No. 6, pp. 1198-1207. https://doi.org/10.1007/s12613-023-2697-3
Cite this article as:
Qianqian Lu, Haisheng Han, Wenjuan Sun, Xingfei Zhang, Weiwei Wang, Bilan Zhang, Wensheng Chen, and Qin Zou, Preparation of high-purity fluorite and nanoscale calcium carbonate from low-grade fluorite, Int. J. Miner. Metall. Mater., 31(2024), No. 6, pp. 1198-1207. https://doi.org/10.1007/s12613-023-2697-3
引用本文 PDF XML SpringerLink
研究论文

低品位萤石制备高纯萤石及纳米级碳酸钙


  • 通讯作者:

    韩海生    E-mail: hanhai5086@csu.edu.cn

    王维维    E-mail: viviw91@163.com

文章亮点

  • (1) 利用酸浸–浮选工艺高效分离方解石制备高品位萤石
  • (2) 利用萤石浸出液制备高附加值的纳米碳酸钠,实现方解石的回收和高值化利用
  • (3) 系统的研究浸出液制备纳米碳酸钙的影响规律,制备性状优良的纳米碳酸钙产品
  • 方解石与萤石的分离是限制低品位萤石浮选提质的关键因素,严重影响萤石精矿的品位和回收率。本文提出了一种新的萤石酸浸–浮选工艺,以难选低品位萤石为原料制备高纯萤石,萤石精矿品位提升至97.26%,同时利用含Ca2+的萤石酸浸液制备纳米碳酸钙产品。系统研究浓度、温度及滴定速度对浸出液制备纳米碳酸钙的影响,通过改变工艺条件、添加晶型调控剂,制备得粒径为1.823 μm及1.511 μm的方解石型碳酸钙和无定形碳酸钙。与氯化钙溶液相比,萤石浸出液由于Mn2+、Mg2+及Fe3+的影响可制备出晶型可控且粒径更低的纳米级碳酸钙。本研究将酸浸浮选工艺与纳米级碳酸钙制备工艺相结合,在提高萤石品位的同时回收利用方解石,为细粒嵌布的低品位萤石资源清洁高效利用提供了新思路。
  • Research Article

    Preparation of high-purity fluorite and nanoscale calcium carbonate from low-grade fluorite

    + Author Affiliations
    • Flotation separation of calcite from fluorite is a challenge on low-grade fluorite flotation that limits the recovery and purity of fluorite concentrate. A new acid leaching–flotation process for fluorite is proposed in this work. This innovative process raised the fluorite’s grade to 97.26wt% while producing nanoscale calcium carbonate from its leachate, which contained plenty of calcium ions. On the production of nanoscale calcium carbonate, the impacts of concentration, temperature, and titration rate were examined. By modifying the process conditions and utilizing crystal conditioning agents, calcite-type and amorphous calcium carbonates with corresponding particle sizes of 1.823 and 1.511 μm were produced. The influence of the impurity ions Mn2+, Mg2+, and Fe3+ was demonstrated to reduce the particle size of nanoscale calcium carbonate and make crystal shape easier to manage in the fluorite leach solution system compared with the calcium chloride solution. The combination of the acid leaching–flotation process and the nanoscale calcium carbonate preparation method improved the grade of fluorite while recovering calcite resources, thus presenting a novel idea for the effective and clean usage of low-quality fluorite resources with embedded microfine particles.
    • loading
    • [1]
      T.T. Basiev, M.E. Doroshenko, V.A. Konyushkin, et al., Fluoride optical nanoceramics, Russ. Chem. Bull., 57(2008), No. 5, p. 877. doi: 10.1007/s11172-008-0125-5
      [2]
      W.H. Kan and V. Thangadurai, Challenges and prospects of anodes for solid oxide fuel cells (SOFCs), Ionics, 21(2015), No. 2, p. 301. doi: 10.1007/s11581-014-1334-6
      [3]
      F.A. Shah, Fluoride-containing bioactive glasses: Glass design, structure, bioactivity, cellular interactions, and recent developments, Mater. Sci. Eng. C, 58(2016), p. 1279. doi: 10.1016/j.msec.2015.08.064
      [4]
      D. Němec, Fluorine in lamprophyre and lamproid rocks, Geochim. Cosmochim. Acta, 32(1968), No. 5, p. 523. doi: 10.1016/0016-7037(68)90043-4
      [5]
      V.A. Sadykov, M.N. Simonov, Y.N. Bespalko, et al., Design and characterization of nanocomposite catalysts for biofuel conversion into syngas and hydrogen in structured reactors and membranes, Kinet. Catal., 60(2019), No. 5, p. 582. doi: 10.1134/S0023158419050082
      [6]
      C.B. Shi, J.W. Cho, D.L. Zheng, and J. Li, Fluoride evaporation and crystallization behavior of CaF2–CaO–Al2O3–(TiO2) slag for electroslag remelting of Ti-containing steels, Int. J. Miner. Metall. Mater., 23(2016), No. 6, p. 627. doi: 10.1007/s12613-016-1275-3
      [7]
      R.F. Sun, Effect and Mechanism of Metal Ions on Calcite Inhibitors in Fluorite Flotation System [Dissertation], Kunming University of Science and Technology, Kunming, 2022, p. 12.
      [8]
      Z.Y. Gao, C. Wang, W. Sun, Y.S. Gao, and P.B. Kowalczuk, Froth flotation of fluorite: A review, Adv. Colloid Interface Sci., 290(2021), art. No. 102382. doi: 10.1016/j.cis.2021.102382
      [9]
      H.P. Zhou, Z.Z. Yang, Y.B. Zhang, F.X. Xie, and X.P. Luo, Flotation separation of smithsonite from calcite by using flaxseed gum as depressant, Miner. Eng., 167(2021), art. No. 106904. doi: 10.1016/j.mineng.2021.106904
      [10]
      J.W. Huang, Q.W. Zhang, H.C. Li, and C. Wang, Difficulties and recent achievements in flotation separation of fluorite from calcite—An overview, Minerals, 12(2022), No. 8, art. No. 957. doi: 10.3390/min12080957
      [11]
      R.L. Wang, H.S. Han, W. Sun, A.V. Nguyen, W.J. Sun, and Z. Wei, Hydrophobic behavior of fluorite surface in strongly alkaline solution and its application in flotation, Colloids Surf. A: Physicochem. Eng. Aspects, 609(2021), art. No. 125661. doi: 10.1016/j.colsurfa.2020.125661
      [12]
      D.Q. Wang, D. Liu, Y.B. Mao, R.F. Sun, R.T. Liu, and S.M. Wen, Effect of fluoride ion on the separation of fluorite from calcite using flotation with acidified water glass, Minerals, 11(2021), No. 11, art. No. 1203. doi: 10.3390/min11111203
      [13]
      Q.Q. Lin, G.H. Gu, H. Wang, R.F. Zhu, Y.C. Liu, and J.G. Fu, Preparation of manganese sulfate from low-grade manganese carbonate ores by sulfuric acid leaching, Int. J. Miner. Metall. Mater., 23(2016), No. 5, p. 491. doi: 10.1007/s12613-016-1260-x
      [14]
      S.M. El-Sheikh and M.A. Rabah, Optical properties of calcium chromate 1D-nanorods synthesized at low temperature from secondary resources, Opt. Mater., 37(2014), p. 235. doi: 10.1016/j.optmat.2014.05.034
      [15]
      X.P. Luo, X.W. Song, Y.W. Cao, L. Song, and X.Z. Bu, Investigation of calcium carbonate synthesized by steamed ammonia liquid waste without use of additives, RSC Adv., 10(2020), No. 13, p. 7976. doi: 10.1039/C9RA10460G
      [16]
      I. Korkut, A. Civas, and M. Bayramoglu, Effects of ultrasound and process parameters on the precipitation of CaCO3 polymorphs from synthetic soda ash industry liquid waste, Chem. Eng. Process., 168(2021), art. No. 108584. doi: 10.1016/j.cep.2021.108584
      [17]
      J.S. Han, S.Y. Jung, D.S. Kang, and Y.B. Seo, Development of flexible calcium carbonate for papermaking filler, ACS Sustainable Chem. Eng., 8(2020), No. 24, p. 8994. doi: 10.1021/acssuschemeng.0c01593
      [18]
      W. Wu, X.Q. Zhang, J.F. Chen, and S.L. Shen, Synthesis of nano-CaCO3 composite particles and their application, J. Univ. Sci. Technol. Beijing, 15(2008), No. 1, p. 67. doi: 10.1016/S1005-8850(08)60014-6
      [19]
      M.L. Cao, X. Ming, K.Y. He, L. Li, and S. Shen, Effect of macro-, micro- and nano-calcium carbonate on properties of cementitious composites—A review, Materials, 12(2019), No. 5, p. 781. doi: https://doi.org/10.3390/ma12050781
      [20]
      H. Lin, Y.B. Dong, and L.Y. Jiang, Preparation of calcium carbonate particles coated with titanium dioxide, Int. J. Miner. Metall. Mater., 16(2009), No. 5, p. 592. doi: 10.1016/S1674-4799(09)60102-3
      [21]
      X.Y. Zhou, R. Yu, J.H. Jiang, et al., PEEK composite resin with enhanced intumescent flame retardancy loaded with Octaphenylsilsesquioxane and nano calcium carbonate and its application in fibers, Polym. Degrad. Stab., 202(2022), art. No. 110042. doi: 10.1016/j.polymdegradstab.2022.110042
      [22]
      C.C. Zeng, H.M. Hu, X.H. Feng, K. Wang, and Q.W. Zhang, Activating CaCO3 to enhance lead removal from lead-zinc solution to serve as green technology for the purification of mine tailings, Chemosphere, 249(2020), art. No. 126227. doi: 10.1016/j.chemosphere.2020.126227
      [23]
      Y. Chang, H.J. Han, T.T. Liu, et al., Cell-tailored calcium carbonate particles with different crystal forms from nanoparticle to nano/microsphere, RSC Adv., 10(2020), No. 70, p. 43233. doi: 10.1039/D0RA07393H
      [24]
      L.T. Kang, M.W. Cui, F.Y. Jiang, et al., Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries, Adv. Energy Mater., 8(2018), No. 25, art. No. 1801090. doi: 10.1002/aenm.201801090
      [25]
      A.S.A. Mohammed, A. Carino, A. Testino, M.R. Andalibi, and A. Cervellino, In situ liquid SAXS studies on the early stage of calcium carbonate formation, Part. Part. Syst. Char., 36(2019), No. 6, art. No. 1800482. doi: 10.1002/ppsc.201800482
      [26]
      B. Wang, Z.H. Pan, H.G. Cheng, Z.E. Zhang, and F.Q. Cheng, A review of carbon dioxide sequestration by mineral carbonation of industrial byproduct gypsum, J. Cleaner Prod., 302(2021), art. No. 126930. doi: 10.1016/j.jclepro.2021.126930
      [27]
      Y. Wei, H. Xu, S.M. Xu, et al., Synthesis and characterization of calcium carbonate on three kinds of microbial cells templates, J. Cryst. Growth, 547(2020), art. No. 125755. doi: 10.1016/j.jcrysgro.2020.125755
      [28]
      A. Katsman, I. Polishchuk, and B. Pokroy, On the mechanism of calcium carbonate polymorph selection via confinement, Faraday Discuss., 235(2022), p. 433. doi: 10.1039/D1FD00111F
      [29]
      M. Ma, Y.H. Wang, X.F. Cao, W.P. Lu, and Y.C. Guo, Temperature and supersaturation as key parameters controlling the spontaneous precipitation of calcium carbonate with distinct physicochemical properties from pure aqueous solutions, Cryst. Growth Des., 19(2019), No. 12, p. 6972. doi: 10.1021/acs.cgd.9b00758
      [30]
      J. Wang, J.Z. Song, Z.Y. Ji, et al., The preparation of calcium carbonate with different morphologies under the effect of alkanolamide 6502, Colloids Surf., A, 588(2020), art. No. 124392. doi: 10.1016/j.colsurfa.2019.124392
      [31]
      X.H. Mei, Q. Zhao, Y.M. Li, et al., Phase transition and morphology evolution of precipitated calcium carbonate (PCC) in the CO2 mineralization process, Fuel, 328(2022), art. No. 125259. doi: 10.1016/j.fuel.2022.125259
      [32]
      A. Korchef and M. Touaibi, Effect of pH and temperature on calcium carbonate precipitation by CO2 removal from iron-rich water, Water Environ. J., 34(2020), No. 3, p. 331. doi: 10.1111/wej.12467
      [33]
      A. Korchef, Effect of iron ions on the crystal growth kinetics and microstructure of calcium carbonate, Cryst. Growth Des., 19(2019), No. 12, p. 6893. doi: 10.1021/acs.cgd.9b00503
      [34]
      F. Konrad, B. Purgstaller, F. Gallien, V. Mavromatis, P. Gane, and M. Dietzel, Influence of aqueous Mg concentration on the transformation of amorphous calcium carbonate, J. Cryst. Growth, 498(2018), p. 381. doi: 10.1016/j.jcrysgro.2018.07.018
      [35]
      V.V. Goncharuk, V.A. Bagrii, S.Y. Bashtan, R.D. Chebotareva, and A.V. Nanieva, Crystalization of calcium carbonate in magnetized water in the presence of ions of iron and manganese, J. Water Chem. Technol., 33(2011), No. 3, p. 160. doi: 10.3103/S1063455X11030052
      [36]
      C.G. Kontoyannis and N.V. Vagenas, Calcium carbonate phase analysis using XRD and FT-Raman spectroscopy, Analyst, 125(2000), No. 2, p. 251. doi: 10.1039/a908609i
      [37]
      A. Gomez-Flores, G.W. Heyes, S. Ilyas, and H. Kim, Prediction of grade and recovery in flotation from physicochemical and operational aspects using machine learning models, Miner. Eng., 183(2022), art. No. 107627. doi: 10.1016/j.mineng.2022.107627
      [38]
      R. Ševčík, M. Pérez-Estébanez, A. Viani, P. Šašek, and P. Mácová, Characterization of vaterite synthesized at various temperatures and stirring velocities without use of additives, Powder Technol., 284(2015), p. 265. doi: 10.1016/j.powtec.2015.06.064
      [39]
      X. Xia, J.W. Chen, J. Shen, D. Huang, P.Z. Duan, and G.H. Zou, Synthesis of hollow structural hydroxyapatite with different morphologies using calcium carbonate as hard template, Adv. Powder Technol., 29(2018), No. 7, p. 1562. doi: 10.1016/j.apt.2018.03.021
      [40]
      N. Mehta, J. Gaëtan, P. Giura, T. Azaïs, and K. Benzerara, Detection of biogenic amorphous calcium carbonate (ACC) formed by bacteria using FTIR spectroscopy, Spectrochim. Acta, Part A, 278(2022), art. No. 121262. doi: 10.1016/j.saa.2022.121262
      [41]
      J.T. Avaro, C. Ruiz-Agudo, E. Landwehr, K. Hauser, and D. Gebauer, Impurity-free amorphous calcium carbonate, a preferential material for pharmaceutical and medical applications, Eur. J. Mineral., 31(2019), No. 2, p. 231. doi: 10.1127/ejm/2019/0031-2831
      [42]
      J.R. Goldsmith and H.C. Heard, Subsolidus phase relations in the system CaCO3–MgCO3, J. Geol., 69(1961), No. 1, p. 45. doi: 10.1086/626715
      [43]
      T.Y. Chen, S. Honarparvar, D. Reible, and C.C. Chen, Thermodynamic modeling of calcium carbonate scale precipitation: Aqueous Na+–Ca2+–Cl–HC ${\mathrm{O}}_3^- $–C ${\mathrm{O}}_3^{2-} $–CO2 system, Fluid Phase Equilib., 552(2022), art. No. 113263. doi: 10.1016/j.fluid.2021.113263
      [44]
      P. Bénézeth, J.L. Dandurand, and J.C. Harrichoury, Solubility product of siderite (FeCO3) as a function of temperature (25–250°C), Chem. Geol., 265(2009), No. 1-2, p. 3. doi: 10.1016/j.chemgeo.2009.03.015
      [45]
      K.S. Johnson, Solubility of rhodochrosite (MnCO3) in water and seawater, Geochim. Cosmochim. Acta, 46(1982), No. 10, p. 1805. doi: 10.1016/0016-7037(82)90119-3
      [46]
      J.A. Dean, Lange's Handbook of Chemistry, McGraw-Hill Professional Publishing, New York, 1985.
      [47]
      J.V. Mills, H.A. Barnhart, D.J. DePaolo, and L.N. Lammers, New insights into Mn2+ and Mg2+ inhibition of calcite growth, Geochim. Cosmochim. Acta, 334(2022), p. 338. doi: 10.1016/j.gca.2022.06.015
      [48]
      E.J. Zeller and J.L. Wray, Factors influencing precipitation of calcium carbonate, AAPG Bull., 40(1956), No. 1, p. 140. doi: 10.1306/5CEAE30A-16BB-11D7-8645000102C1865D

    Catalog


    • /

      返回文章
      返回