留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 2
Feb.  2024

图(8)

数据统计

分享

计量
  • 文章访问数:  263
  • HTML全文浏览量:  106
  • PDF下载量:  27
  • 被引次数: 0
Daixiang Wei, Wei Wang, Longjin Jiang, Zhidong Chang, Hualei Zhou, Bin Dong, Dekun Gao, Minghui Zhang, and Chaofan Wu, Preferentially selective extraction of lithium from spent LiCoO2 cathodes by medium-temperature carbon reduction roasting, Int. J. Miner. Metall. Mater., 31(2024), No. 2, pp. 315-322. https://doi.org/10.1007/s12613-023-2698-2
Cite this article as:
Daixiang Wei, Wei Wang, Longjin Jiang, Zhidong Chang, Hualei Zhou, Bin Dong, Dekun Gao, Minghui Zhang, and Chaofan Wu, Preferentially selective extraction of lithium from spent LiCoO2 cathodes by medium-temperature carbon reduction roasting, Int. J. Miner. Metall. Mater., 31(2024), No. 2, pp. 315-322. https://doi.org/10.1007/s12613-023-2698-2
引用本文 PDF XML SpringerLink
研究论文

中温碳还原焙烧从废LiCoO2正极中优先选择性提锂



  • 通讯作者:

    王威    E-mail: weiwang@ipe.ac.cn

    常志东    E-mail: zdchang@ustb.edu.cn

文章亮点

  • (1) 中温碳还原焙烧破坏了LiCoO2的层状结构,释放层状结构中的Li
  • (2) 通过湿法研磨和超声波破碎焙烧产物中形成的Co金属团聚结构,释放被夹带的Li,以提高Li的回收率
  • (3) 最终Li的回收率为99.10%,得到纯度为99.55%的Li2CO3
  • 由于锂的价格骤增,从废锂离子电池(LIB)中回收Li变得越来越重要。本工作报道了一种中温碳还原焙烧方法,旨在从废LiCoO2(LCO)正极材料中优先选择性提Li以克服回收过程中Li的不完全回收和损失问题。在合适的温度下,控制氧化钴还原状态以破坏LCO的层状结构,Li被完全转化为水溶性的Li2CO3,Co被转化成水不溶性的CoO/Co。中温焙烧过程中形成Co易聚集形成Co金属团聚体而夹杂部分Li,湿法研磨和超声波可以将其破碎以释放被夹带的Li从而提高Li的回收率。结果表明,99.10%的Li以Li2CO3的形式回收,纯度为99.55%。这项研究为从废锂离子电池正极中优先选择性提取锂提供了一个新的视角。
  • Research Article

    Preferentially selective extraction of lithium from spent LiCoO2 cathodes by medium-temperature carbon reduction roasting

    + Author Affiliations
    • Lithium recovery from spent lithium-ion batteries (LIBs) have attracted extensive attention due to the skyrocketing price of lithium. The medium-temperature carbon reduction roasting was proposed to preferential selective extraction of lithium from spent LiCoO2 (LCO) cathodes to overcome the incomplete recovery and loss of lithium during the recycling process. The LCO layered structure was destroyed and lithium was completely converted into water-soluble Li2CO3 under a suitable temperature to control the reduced state of the cobalt oxide. The Co metal agglomerates generated during medium-temperature carbon reduction roasting were broken by wet grinding and ultrasonic crushing to release the entrained lithium. The results showed that 99.10% of the whole lithium could be recovered as Li2CO3 with a purity of 99.55%. This work provided a new perspective on the preferentially selective extraction of lithium from spent lithium batteries.
    • loading
    • Supplementary Information-s12613-023-2698-2.docx
    • [1]
      Y.C. Lyu, X. Wu, K. Wang, et al., An overview on the advances of LiCoO2 cathodes for lithium-ion batteries, Adv. Energy Mater., 11(2021), No. 2, art. No. 2000982. doi: 10.1002/aenm.202000982
      [2]
      T. Fujita, H. Chen, K.T. Wang, et al., Reduction, reuse and recycle of spent Li-ion batteries for automobiles: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 2, p. 179. doi: 10.1007/s12613-020-2127-8
      [3]
      J. Lin, J.W. Wu, E.S. Fan, et al., Environmental and economic assessment of structural repair technologies for spent lithium-ion battery cathode materials, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 942. doi: 10.1007/s12613-022-2430-7
      [4]
      Z.X. Tang, H.Q. Ye, X. Ma, and K. Han, Effect of particle micro-structure on the electrochemical properties of LiNi0.8Co0.1Mn0.1O2 cathode material, Int. J. Miner. Metall. Mater., 29(2022), No. 8, p. 1618. doi: 10.1007/s12613-021-2296-0
      [5]
      J.P. Qu, Y.S. Zhao, Y.R. Ji, Y.R. Zhu, and T.F. Yi, Approaching high-performance lithium storage materials by constructing Li2ZnTi3O8@LiAlO2 composites, Int. J. Miner. Metall. Mater., 30(2023), No. 4, p. 611. doi: 10.1007/s12613-022-2532-2
      [6]
      M.Y. Chen, X.T. Ma, B. Chen, et al., Recycling end-of-life electric vehicle lithium-ion batteries, Joule, 3(2019), No. 11, p. 2622. doi: 10.1016/j.joule.2019.09.014
      [7]
      J.X. Wang, Q. Zhang, J.Z. Sheng, et al., Direct and green repairing of degraded LiCoO2 for reuse in lithium-ion batteries, Natl. Sci. Rev., 9(2022), No. 8, art. No. nwac097. doi: 10.1093/nsr/nwac097
      [8]
      M. Yang, R.Y. Bi, J.Y. Wang, R.B. Yu, and D. Wang, Decoding lithium batteries through advanced in situ characterization techniques, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 965. doi: 10.1007/s12613-022-2461-0
      [9]
      C.W. Liu, J. Lin, H.B. Cao, Y. Zhang, and Z. Sun, Recycling of spent lithium-ion batteries in view of lithium recovery: A critical review, J. Cleaner Prod., 228(2019), p. 801. doi: 10.1016/j.jclepro.2019.04.304
      [10]
      X.Y. Guo, X. Cao, G.Y. Huang, Q.H. Tian, and H.Y. Sun, Recovery of lithium from the effluent obtained in the process of spent lithium-ion batteries recycling, J. Environ. Manage., 198(2017), p. 84. doi: 10.1016/j.jenvman.2017.04.062
      [11]
      J. Lin, L. Li, E.S. Fan, et al., Conversion mechanisms of selective extraction of lithium from spent lithium-ion batteries by sulfation roasting, ACS Appl. Mater. Interfaces, 12(2020), No. 16, p. 18482. doi: 10.1021/acsami.0c00420
      [12]
      J.H. Hou, X.T. Ma, J.Z. Fu, et al., A green closed-loop process for selective recycling of lithium from spent lithium-ion batteries, Green Chem., 24(2022), No. 18, p. 7049. doi: 10.1039/D2GC01811J
      [13]
      Y.B. Liu, B.Z. Ma, Y.W. Lü, C.Y. Wang, and Y.Q. Chen, A review of lithium extraction from natural resources, Int. J. Miner. Metall. Mater., 30(2023), No. 2, p. 209. doi: 10.1007/s12613-022-2544-y
      [14]
      H. Dang, Z.D. Chang, H.L. Zhou, S.H. Ma, M. Li, and J.L. Xiang, Extraction of lithium from the simulated pyrometallurgical slag of spent lithium-ion batteries by binary eutectic molten carbonates, Int. J. Miner. Metall. Mater., 29(2022), No. 9, p. 1715. doi: 10.1007/s12613-021-2366-3
      [15]
      J.X. Wang, Z. Liang, Y. Zhao, et al., Direct conversion of degraded LiCoO2 cathode materials into high-performance LiCoO2: A closed-loop green recycling strategy for spent lithium-ion batteries, Energy Storage Mater., 45(2022), p. 768. doi: 10.1016/j.ensm.2021.12.013
      [16]
      T.N. Lin, Y. Wang, S. Jin, et al., An enhanced strategy based on the pyrolysis of bean dregs for efficient selective recovery of lithium from spent lithium-ion batteries, Green Chem., 24(2022), No. 24, p. 9552. doi: 10.1039/D2GC03439E
      [17]
      L.Y. Sun, B.R. Liu, T. Wu, et al., Hydrometallurgical recycling of valuable metals from spent lithium-ion batteries by reductive leaching with stannous chloride, Int. J. Miner. Metall. Mater., 28(2021), No. 6, p. 991. doi: 10.1007/s12613-020-2115-z
      [18]
      X.P. Chen, L. Cao, D.Z. Kang, J.Z. Li, T. Zhou, and H.R. Ma, Recovery of valuable metals from mixed types of spent lithium ion batteries. Part II: Selective extraction of lithium, Waste Manage., 80(2018), p. 198. doi: 10.1016/j.wasman.2018.09.013
      [19]
      X.P. Chen, D.Z. Kang, L. Cao, J.Z. Li, T. Zhou, and H.R. Ma, Separation and recovery of valuable metals from spent lithium ion batteries: Simultaneous recovery of Li and Co in a single step, Sep. Purif. Technol., 210(2019), p. 690. doi: 10.1016/j.seppur.2018.08.072
      [20]
      W.G. Lv, Z.H. Wang, X.H. Zheng, et al., Selective recovery of lithium from spent lithium-ion batteries by coupling advanced oxidation processes and chemical leaching processes, ACS Sustainable Chem. Eng., 8(2020), No. 13, p. 5165. doi: 10.1021/acssuschemeng.9b07515
      [21]
      J. Guan, Y.G. Li, Y.G. Guo, et al. , Mechanochemical process enhanced cobalt and lithium recycling from wasted lithium-ion batteries, ACS Sustainable Chem. Eng., 5(2017), No. 1, p. 1026. doi: 10.1021/acssuschemeng.6b02337
      [22]
      Y.Z. Jiang, X.P. Chen, S.X. Yan, S.Z. Li, and T. Zhou, Pursuing green and efficient process towards recycling of different metals from spent lithium-ion batteries through Ferro-chemistry, Chem. Eng. J., 426(2021), art. No. 131637. doi: 10.1016/j.cej.2021.131637
      [23]
      X.P. Chen, D.Z. Kang, J.Z. Li, T. Zhou, and H.R. Ma, Gradient and facile extraction of valuable metals from spent lithium ion batteries for new cathode materials re-fabrication, J. Hazard. Mater., 389(2020), art. No. 121887. doi: 10.1016/j.jhazmat.2019.121887
      [24]
      Y.F. Zheng, P.H. Shao, L.M. Yang, et al., Gas exchange-driven carbothermal reduction for simultaneous lithium extraction from anode and cathode scraps, Resour. Conserv. Recycl., 188(2023), art. No. 106696. doi: 10.1016/j.resconrec.2022.106696
      [25]
      Z.M. Yan, A. Sattar, and Z.S. Li, Priority Lithium recovery from spent Li-ion batteries via carbothermal reduction with water leaching, Resour. Conserv. Recycl., 192(2023), art. No. 106937. doi: 10.1016/j.resconrec.2023.106937
      [26]
      N. Wei, Y.Q. He, G.W. Zhang, et al., Recycling of valuable metals from spent lithium-ion batteries by self-supplied reductant roasting, J. Environ. Manage., 329(2023), art. No. 117107. doi: 10.1016/j.jenvman.2022.117107
      [27]
      R. Morina, D. Merli, P. Mustarelli, and C. Ferrara, Lithium and cobalt recovery from lithium-ion battery waste via functional ionic liquid extraction for effective battery recycling, ChemElectroChem, 10(2023), No. 1, art. No. e202201059.
      [28]
      J.L. Zhang, J.T. Hu, W.J. Zhang, Y.Q. Chen, and C.Y. Wang, Efficient and economical recovery of lithium, cobalt, nickel, manganese from cathode scrap of spent lithium-ion batteries, J. Clean. Prod., 204(2018), p. 437. doi: 10.1016/j.jclepro.2018.09.033
      [29]
      J.F. Xiao, J. Li, and Z.M. Xu, Novel approach for in situ recovery of lithium carbonate from spent lithium ion batteries using vacuum metallurgy, Environ. Sci. Technol., 51(2017), No. 20, p. 11960. doi: 10.1021/acs.est.7b02561
      [30]
      X.P. Chen, Y. Wang, S.Z. Li, Y.Z. Jiang, Y. Cao, and X. Ma, Selective recycling of valuable metals from waste LiCoO2 cathode material of spent lithium-ion batteries through low-temperature thermochemistry, Chem. Eng. J., 434(2022), art. No. 134542. doi: 10.1016/j.cej.2022.134542
      [31]
      F.Y. Zhou, X. Qu, Y.X. Wu, et al., Vacuum pyrolysis of pine sawdust to recover spent lithium ion batteries: The synergistic effect of carbothermic reduction and pyrolysis gas reduction, ACS Sustainable Chem. Eng., 10(2022), No. 3, p. 1287. doi: 10.1021/acssuschemeng.1c07424
      [32]
      W.Q. Wang, Y.C. Zhang, X.G. Liu, and S.M. Xu, A simplified process for recovery of Li and co from spent LiCoO2 cathode using Al foil as the in situ reductant, ACS Sustainable Chem. Eng., 7(2019), No. 14, p. 12222.
      [33]
      P. Xu, C.W. Liu, X.H. Zhang, et al., Synergic mechanisms on carbon and sulfur during the selective recovery of valuable metals from spent lithium-ion batteries, ACS Sustainable Chem. Eng., 9(2021), No. 5, p. 2271. doi: 10.1021/acssuschemeng.0c08213
      [34]
      B.A. Nuraeni, K. Avarmaa, L.H. Prentice, W.J. Rankin, and M.A. Rhamdhani, Recovery of cobalt and lithium by carbothermic reduction of LiCoO2 cathode material: A kinetic study, Metall. Mater. Trans. B, 54(2023), No. 2, p. 602. doi: 10.1007/s11663-022-02712-1
      [35]
      M.M. Wang, K. Liu, Z.B. Xu, et al., Selective extraction of critical metals from spent lithium-ion batteries, Environ. Sci. Technol., 57(2023), No. 9, p. 3940. doi: 10.1021/acs.est.2c07689
      [36]
      Y.Q. Tang, H.W. Xie, B.L. Zhang, et al., Recovery and regeneration of LiCoO2-based spent lithium-ion batteries by a carbothermic reduction vacuum pyrolysis approach: Controlling the recovery of CoO or Co, Waste Manage., 97(2019), p. 140. doi: 10.1016/j.wasman.2019.08.004
      [37]
      S. Park, S. Jung, D. Kwon, M. Beak, E.E. Kwon, and K. Kwon, Carbothermic reduction of spent Lithium-Ion batteries using CO2 as reaction medium, Chem. Eng. J., 435(2022), art. No. 135165. doi: 10.1016/j.cej.2022.135165
      [38]
      J.K. Mao, J. Li, and Z.M. Xu, Coupling reactions and collapsing model in the roasting process of recycling metals from LiCoO2 batteries, J. Cleaner Prod., 205(2018), p. 923. doi: 10.1016/j.jclepro.2018.09.098
      [39]
      J. Li, G.X. Wang, and Z.M. Xu, Environmentally-friendly oxygen-free roasting/wet magnetic separation technology for in situ recycling cobalt, lithium carbonate and graphite from spent LiCoO2/graphite lithium batteries, J. Hazard. Mater., 302(2016), p. 97. doi: 10.1016/j.jhazmat.2015.09.050
      [40]
      M. Petranikova, A. Miškufová, T. Havlík, O. Forsén, and A. Pehkonen, Cobalt recovery from spent portable lithium accumulators after thermal treatment, Acta Metall. Slovaca, 17(2011), No. 2, p. 106.
      [41]
      Y. Yang, W. Sun, Y.J. Bu, C.Y. Zhang, S.L. Song, and Y.H. Hu, Recovering valuable metals from spent lithium ion battery via a combination of reduction thermal treatment and facile acid leaching, ACS Sustainable Chem. Eng., 6(2018), No. 8, p. 10445. doi: 10.1021/acssuschemeng.8b01805
      [42]
      N. Vieceli, R. Casasola, G. Lombardo, B. Ebin, and M. Petranikova, Hydrometallurgical recycling of EV lithium-ion batteries: Effects of incineration on the leaching efficiency of metals using sulfuric acid, Waste Manage., 125(2021), p. 192. doi: 10.1016/j.wasman.2021.02.039
      [43]
      R. Hossain, U. Kumar, and V. Sahajwalla, Selective thermal transformation of value added cobalt from spent lithium-ion batteries, J. Cleaner Prod., 293(2021), art. No. 126140. doi: 10.1016/j.jclepro.2021.126140
      [44]
      G. Lombardo, B. Ebin, M.R.St.J. Foreman, B.M. Steenari, and M. Petranikova, Chemical transformations in Li-ion battery electrode materials by carbothermic reduction, ACS Sustainable Chem. Eng., 7(2019), No. 16, p. 13668. doi: 10.1021/acssuschemeng.8b06540
      [45]
      Y.C. Lu, A.N. Mansour, N. Yabuuchi, and Y. Shao-Horn, Probing the origin of enhanced stability of “AlPO4” nanoparticle coated LiCoO2 during cycling to high voltages: Combined XRD and XPS studies, Chem. Mater., 21(2009), No. 19, p. 4408. doi: 10.1021/cm900862v
      [46]
      P.C. Liu, L. Xiao, Y.F. Chen, Y.W. Tang, J. Wu, and H. Chen, Recovering valuable metals from LiNi x Co y Mn1– x y O2 cathode materials of spent lithium ion batteries via a combination of reduction roasting and stepwise leaching, J. Alloys Compd., 783(2019), p. 743. doi: 10.1016/j.jallcom.2018.12.226
      [47]
      G. Lombardo, B. Ebin, M.R.S.J. Foreman, B.M. Steenari, and M. Petranikova, Incineration of EV lithium-ion batteries as a pretreatment for recycling - Determination of the potential formation of hazardous by-products and effects on metal compounds, J. Hazard. Mater., 393(2020), art. No. 122372. doi: 10.1016/j.jhazmat.2020.122372
      [48]
      B. Makuza, Q.H. Tian, X.Y. Guo, K. Chattopadhyay, and D.W. Yu, Pyrometallurgical options for recycling spent lithium-ion batteries: A comprehensive review, J. Power Sources, 491(2021), art. No. 229622. doi: 10.1016/j.jpowsour.2021.229622
      [49]
      S. Lee, W. Jin, S.H. Kim, et al., Oxygen vacancy diffusion and condensation in lithium-ion battery cathode materials, Angew. Chem. Int. Ed., 58(2019), No. 31, p. 10478. doi: 10.1002/anie.201904469
      [50]
      M.L. Wang, C. Liu, H. Shi, T.Y. Long, C.Y. Zhang, and B. Liu, Facile synthesis of chitosan-derived Maillard reaction productions coated CuFeO2 with abundant oxygen vacancies for higher Fenton-like catalytic performance, Chemosphere, 283(2021), art. No. 131191. doi: 10.1016/j.chemosphere.2021.131191
      [51]
      D.S. Kim, J.S. Sohn, C.K. Lee, J.H. Lee, K.S. Han, and Y.I. Lee, Simultaneous separation and renovation of lithium cobalt oxide from the cathode of spent lithium ion rechargeable batteries, J. Power Sources, 132(2004), No. 1-2, p. 145. doi: 10.1016/j.jpowsour.2003.09.046
      [52]
      B. Makuza, D.W. Yu, Z. Huang, Q.H. Tian, and X.Y. Guo, Dry grinding-carbonated ultrasound-assisted water leaching of carbothermally reduced lithium-ion battery black mass towards enhanced selective extraction of lithium and recovery of high-value metals, Resour. Conserv. Recycl., 174(2021), art. No. 105784. doi: 10.1016/j.resconrec.2021.105784

    Catalog


    • /

      返回文章
      返回