Cite this article as: |
Ting Zhang, Wanzong Wang, Zheng Ma, Lei Bai, Yue Yao, and Dongqing Xu, Bimetallic Pt–Ru covalently bonded on carbon nanotubes for efficient methanol oxidation, Int. J. Miner. Metall. Mater., 30(2023), No. 9, pp. 1816-1823. https://doi.org/10.1007/s12613-023-2699-1 |
徐冬青 E-mail: xudongq@163.com
Supplementary Information-10.1007s12613-023-2699-1.doc |
[1] |
P.P. Yang, X.L. Yuan, H.C. Hu, et al., Solvothermal synthesis of alloyed PtNi colloidal nanocrystal clusters (CNCs) with enhanced catalytic activity for methanol oxidation, Adv. Funct. Mater., 28(2018), No. 1, art. No. 1704774. doi: 10.1002/adfm.201704774
|
[2] |
J.C. Fan, S.S. Yu, K. Qi, et al., Synthesis of ultrathin wrinkle-free PdCu alloy nanosheets for modulating d-band electrons for efficient methanol oxidation, J. Mater. Chem. A, 6(2018), No. 18, p. 8531. doi: 10.1039/C8TA01912F
|
[3] |
C.Z. Wang, Y. Zhang, Y.J. Zhang, et al., Highly ordered hierarchical Pt and PtNi nanowire arrays for enhanced electrocatalytic activity toward methanol oxidation, ACS Appl. Mater. Interfaces, 10(2018), No. 11, p. 9444. doi: 10.1021/acsami.7b19727
|
[4] |
L. Huang, X.P. Zhang, Q.Q. Wang, Y.J. Han, Y.X. Fang, and S.J. Dong, Shape-control of Pt–Ru nanocrystals: Tuning surface structure for enhanced electrocatalytic methanol oxidation, J. Am. Chem. Soc., 140(2018), No. 3, p. 1142. doi: 10.1021/jacs.7b12353
|
[5] |
Y.J. Wang, N.N. Zhao, B.Z. Fang, H. Li, X.T. Bi, and H.J. Wang, Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: Particle size, shape, and composition manipulation and their impact to activity, Chem. Rev., 115(2015), No. 9, p. 3433. doi: 10.1021/cr500519c
|
[6] |
X.Y. Wang, J.C. Zhang, X.D. Cao, Y.S. Jiang, and H. Zhu, Synthesis and characterization of Pt–MoOx–TiO2 electrodes for direct ethanol fuel cells, Int. J. Miner. Metall. Mater., 18(2011), No. 5, p. 594. doi: 10.1007/s12613-011-0483-0
|
[7] |
H. Tian, R.X. Zhu, P.L. Deng, et al., Ultrathin Pd3Pt1Rh0.1 nanorings with strong C–C bond breaking ability for the ethanol oxidation reaction, Small, 18(2022), No. 40, art. No. 2203506. doi: 10.1002/smll.202203506
|
[8] |
Z. Qi, C. Xiao, C. Liu, et al., Sub-4 nm PtZn intermetallic nanoparticles for enhanced mass and specific activities in catalytic electrooxidation reaction, J. Am. Chem. Soc., 139(2017), No. 13, p. 4762. doi: 10.1021/jacs.6b12780
|
[9] |
J.P. Zhong, C. Hou, L. Li, et al., A novel strategy for synthesizing Fe, N, and S tridoped graphene-supported Pt nanodendrites toward highly efficient methanol oxidation, J. Catal., 381(2020), p. 275. doi: 10.1016/j.jcat.2019.11.002
|
[10] |
P. Trogadas, V. Ramani, P. Strasser, T.F. Fuller, and M.O. Coppens, Hierarchically structured nanomaterials for electrochemical energy conversion, Angew. Chem. Int. Ed., 55(2016), No. 1, p. 122. doi: 10.1002/anie.201506394
|
[11] |
J.C. Calderón, G. García, L. Calvillo, J.L. Rodríguez, M.J. Lázaro, and E. Pastor, Electrochemical oxidation of CO and methanol on Pt–Ru catalysts supported on carbon nanofibers: The influence of synthesis method, Appl. Catal. B, 165(2015), p. 676. doi: 10.1016/j.apcatb.2014.10.077
|
[12] |
Y.Z. Zhou, G.H. Yang, H.B. Pan, et al., Ultrasonic-assisted synthesis of carbon nanotube supported bimetallic Pt–Ru nanoparticles for effective methanol oxidation, J. Mater. Chem. A, 3(2015), No. 16, p. 8459. doi: 10.1039/C5TA00695C
|
[13] |
J. Xie, Q.H. Zhang, L. Gu, et al., Ruthenium–platinum core-shell nanocatalysts with substantially enhanced activity and durability towards methanol oxidation, Nano Energy, 21(2016), p. 247. doi: 10.1016/j.nanoen.2016.01.013
|
[14] |
J. Zheng, D.A. Cullen, R.V. Forest, et al., Platinum–ruthenium nanotubes and platinum–ruthenium coated copper nanowires as efficient catalysts for electro-oxidation of methanol, ACS Catal., 5(2015), No. 3, p. 1468. doi: 10.1021/cs501449y
|
[15] |
C.S. Shang, Y.X. Guo, and E.K. Wang, Ultrathin nanodendrite surrounded PtRuNi nanoframes as efficient catalysts for methanol electrooxidation, J. Mater. Chem. A, 7(2019), No. 6, p. 2547. doi: 10.1039/C9TA00191C
|
[16] |
S. Park, M. Vosguerichian, and Z.N. Bao, A review of fabrication and applications of carbon nanotube film-based flexible electronics, Nanoscale, 5(2013), No. 5, p. 1727. doi: 10.1039/c3nr33560g
|
[17] |
J.J. Gooding, Nanostructuring electrodes with carbon nanotubes: A review on electrochemistry and applications for sensing, Electrochim. Acta, 50(2005), No. 15, p. 3049. doi: 10.1016/j.electacta.2004.08.052
|
[18] |
P. Luksirikul, K. Tedsree, M.G. Moloney, M.L.H. Green, and S.C.E. Tsang, Electron promotion by surface functional groups of single wall carbon nanotubes to overlying metal particles in a fuel-cell catalyst, Angew. Chem. Int. Ed., 51(2012), No. 28, p. 6998. doi: 10.1002/anie.201201589
|
[19] |
J.M. Liu, R.J. Liu, H. Li, et al., Diversifying nanoparticle superstructures and functions enabled by translative templating from supramolecular polymerization, Angew. Chem. Int. Ed., 61(2022), No. 18, art. No. e202201426.
|
[20] |
L.L. Zhu, X. Li, S.J. Wu, et al., Chirality control for in situ preparation of gold nanoparticle superstructures directed by a coordinatable organogelator, J. Am. Chem. Soc., 135(2013), No. 24, p. 9174. doi: 10.1021/ja403722t
|
[21] |
P.F. Yan, L. Ji, X.P. Liu, et al., 2D amorphous-MoO3−x@Ti3C2-MXene non-van der Waals heterostructures as anode materials for lithium-ion batteries, Nano Energy, 86(2021), art. No. 106139. doi: 10.1016/j.nanoen.2021.106139
|
[22] |
J.Y. Jiang, P.F. Yan, Y.N. Zhou, et al., Interplanar growth of 2D non-van der Waals Co2N-based heterostructures for efficient overall water splitting, Adv. Energy Mater., 10(2020), No. 44, art. No. 2002214. doi: 10.1002/aenm.202002214
|
[23] |
S. Lambert, N. Job, L. D'Souza, et al., Synthesis of very highly dispersed platinum catalysts supported on carbon xerogels by the strong electrostatic adsorption method, J. Catal., 261(2009), No. 1, p. 23. doi: 10.1016/j.jcat.2008.10.014
|
[24] |
L.Y. Zhang, G.D. Wen, H.Y. Liu, N. Wang, and D.S. Su, Preparation of palladium catalysts supported on carbon nanotubes by an electrostatic adsorption method, ChemCatChem, 6(2014), No. 9, p. 2600. doi: 10.1002/cctc.201402175
|
[25] |
C. Silva-Carrillo, B. Trujillo-Navarrete, R.M. Félix-Navarro, F. Paraguay-Delgado, J.Á. Chávez-Carvayar, and E.A. Reynoso-Soto, Influence of organic solvents in the Pt nanoparticle synthesis on MWCNT for the methanol oxidation reaction, J. Solid State Electrochem., 23(2019), No. 3, p. 795. doi: 10.1007/s10008-018-04178-1
|
[26] |
Y.C. Tsai and Y.H. Hong, Electrochemical deposition of platinum nanoparticles in multiwalled carbon nanotube-Nafion composite for methanol electrooxidation, J. Solid State Electrochem., 12(2008), No. 10, p. 1293. doi: 10.1007/s10008-008-0518-2
|
[27] |
R. Sharma and K.K. Kar, Particle size and crystallographic orientation controlled electrodeposition of platinum nanoparticles on carbon nanotubes, Electrochim. Acta, 156(2015), p. 199. doi: 10.1016/j.electacta.2015.01.046
|
[28] |
C.N. Wang, H. Li, J.H. Zhao, Y. Zhu, W.Z. Yuan, and Y.M. Zhang, Graphene nanoribbons as a novel support material for high performance fuel cell electrocatalysts, Int. J. Hydrogen Energy, 38(2013), No. 30, p. 13230. doi: 10.1016/j.ijhydene.2013.07.111
|
[29] |
W.Y. Yuan, Y. Cheng, P.K. Shen, C.M. Li, and S.P. Jiang, Significance of wall number on the carbon nanotube support-promoted electrocatalytic activity of Pt NPs towards methanol/formic acid oxidation reactions in direct alcohol fuel cells, J. Mater. Chem. A, 3(2015), No. 5, p. 1961. doi: 10.1039/C4TA04613G
|
[30] |
J. Li, W. Yang, H. Zhu, et al., In situ PEI and formic acid directed formation of Pt NPs/MWNTs hybrid material with excellent electrocatalytic activity, Talanta, 79(2009), No. 3, p. 935. doi: 10.1016/j.talanta.2009.05.029
|
[31] |
D.Q. Xu, B.B. Hou, L.S. Qian, X.J. Zhang, and G.D. Liu, Non-enzymatic electrochemical sensor based on sliver nanoparticle-decorated carbon nanotubes, Molecules, 24(2019), No. 18, art. No. 3411. doi: 10.3390/molecules24183411
|
[32] |
K.A. Wepasnick, B.A. Smith, K.E. Schrote, H.K. Wilson, S.R. Diegelmann, and D.H. Fairbrother, Surface and structural characterization of multi-walled carbon nanotubes following different oxidative treatments, Carbon, 49(2011), No. 1, p. 24. doi: 10.1016/j.carbon.2010.08.034
|
[33] |
P.J. Wang, Y.T. Yan, P.C. Wang, Z.Y. Ye, X.H. Zheng, and W. Cai, Highly dispersed Pt/CuO nanoclusters in N-doped porous carbon array for superior hydrogen evolution, Chem. Eng. J., 455(2023), art. No. 140856. doi: 10.1016/j.cej.2022.140856
|
[34] |
Y.L. Men, P. Liu, Y. Liu, X.Y. Meng, and Y.X. Pan, Noble-metal-free WO3-decorated carbon nanotubes with strong W–C bonds for boosting an electrocatalytic glucose oxidation reaction, Ind. Eng. Chem. Res., 61(2022), No. 12, p. 4300. doi: 10.1021/acs.iecr.2c00432
|
[35] |
G.H. Ma, X. Shen, L.L. Sun, et al., Low-bias conductance of single benzene molecules contacted by direct Au–C and Pt–C bonds, Nanotechnology, 21(2010), No. 49, art. No. 495202. doi: 10.1088/0957-4484/21/49/495202
|
[36] |
G.Q. Li, P.K. Wen, C.Q. Gao, et al., Effects of CeO2 pre-calcined at different temperatures on the performance of Pt/CeO2–C electrocatalyst for methanol oxidation reaction, Int. J. Miner. Metall. Mater., 28(2021), No. 7, p. 1224. doi: 10.1007/s12613-020-2076-2
|
[37] |
C. Ma, L.Q. Wang, G.G. He, and Z.B. Sun, Enhancement of the catalytic performance for CH3OH oxidation of nanoporous Pt by the addition of Cu and Ce to precursors, J. Alloys Compd., 927(2022), art. No. 167059. doi: 10.1016/j.jallcom.2022.167059
|
[38] |
D. Pan, X.W. Li, and A.F. Zhang, Platinum assisted by carbon quantum dots for methanol electro-oxidation, Appl. Surf. Sci., 427(2018), p. 715. doi: 10.1016/j.apsusc.2017.09.060
|
[39] |
H.H. Li, C.H. Cui, S. Zhao, et al., Mixed-PtPd-shell PtPdCu nanoparticle nanotubes templated from copper nanowires as efficient and highly durable electrocatalysts, Adv. Energy Mater., 2(2012), No. 10, p. 1182. doi: 10.1002/aenm.201200207
|
[40] |
K. Zhang, W. Yang, C. Ma, et al., A highly active, stable and synergistic Pt nanoparticles/Mo2C nanotube catalyst for methanol electro-oxidation, NPG Asia Mater., 7(2015), No. 1, art. No. e153. doi: 10.1038/am.2014.122
|
[41] |
D.Y. Chung, K.J. Lee, and Y.E. Sung, Methanol electro-oxidation on the Pt surface: Revisiting the cyclic voltammetry interpretation, J. Phys. Chem. C, 120(2016), No. 17, p. 9028. doi: 10.1021/acs.jpcc.5b12303
|
[42] |
S. Sakong and A. Groß, The importance of the electrochemical environment in the electro-oxidation of methanol on Pt(111), ACS Catal., 6(2016), No. 8, p. 5575. doi: 10.1021/acscatal.6b00931
|
[43] |
S.L. Wu, J. Liu, Z.F. Tian, et al., Highly dispersed ultrafine Pt nanoparticles on reduced graphene oxide nanosheets: In situ sacrificial template synthesis and superior electrocatalytic performance for methanol oxidation, ACS Appl. Mater. Interfaces, 7(2015), No. 41, p. 22935. doi: 10.1021/acsami.5b06153
|
[44] |
C.Z. Yang, Q.G. Jiang, H.J. Huang, H.Y. He, L. Yang, and W.H. Li, Polyelectrolyte-induced stereoassembly of grain boundary-enriched platinum nanoworms on Ti3C2Tx MXene nanosheets for efficient methanol oxidation, ACS Appl. Mater. Interfaces, 12(2020), No. 21, p. 23822. doi: 10.1021/acsami.0c02806
|
[45] |
Y.Y. Zhang, R. Shi, J. Ren, Y. Dai, Y.J. Yuan, and Z.H. Wang, PtFeCu concave octahedron nanocrystals as electrocatalysts for the methanol oxidation reaction, Langmuir, 35(2019), No. 51, p. 16752. doi: 10.1021/acs.langmuir.9b03238
|
[46] |
Z. Teng, Z.Y. Zhang, and X.W. Li, Preparation of Pt catalysts supported on polyaniline modified carbon black and electrocatalytic methanol oxidation, Synth. Met., 293(2023), art. No. 117256. doi: 10.1016/j.synthmet.2022.117256
|
[47] |
B.Y. Xia, H.B. Wu, Y. Yan, X.W. Lou, and X. Wang, Ultrathin and ultralong single-crystal platinum nanowire assemblies with highly stable electrocatalytic activity, J. Am. Chem. Soc., 135(2013), No. 25, p. 9480. doi: 10.1021/ja402955t
|
[48] |
S.Y. Liu, F. Dong, Z.C. Tang, and Q.C. Wang, The formation of wrapping type Pt–Ni alloy on three-dimensional carbon nanosheet for electrocatalytic oxidation of methanol, Int. J. Hydrogen Energy, 46(2021), No. 29, p. 15431. doi: 10.1016/j.ijhydene.2021.02.050
|
[49] |
H.J. Huang, S.B. Yang, R. Vajtai, X. Wang, and P.M. Ajayan, Pt-decorated 3D architectures built from graphene and graphitic carbon nitride nanosheets as efficient methanol oxidation catalysts, Adv. Mater., 26(2014), No. 30, p. 5160. doi: 10.1002/adma.201401877
|
[50] |
Q.Q. Zhang, J.L. Liu, T.Y. Xia, et al., Antiferromagnetic element Mn modified PtCo truncated octahedral nanoparticles with enhanced activity and durability for direct methanol fuel cells, Nano Res., 12(2019), No. 10, p. 2520. doi: 10.1007/s12274-019-2479-4
|
[51] |
J.M. Zhang, S.N. Sun, Y. Li, X.J. Zhang, P.Y. Zhang, and Y.J. Fan, A strategy in deep eutectic solvents for carbon nanotube-supported PtCo nanocatalysts with enhanced performance toward methanol electrooxidation, Int. J. Hydrogen Energy, 42(2017), No. 43, p. 26744. doi: 10.1016/j.ijhydene.2017.09.090
|
[52] |
J. Zhao, H. Zeng, and Z.X. Lu, Pt nanowires on monolayered graphene oxide for electrocatalytic oxidation of methanol, ACS Appl. Nano Mater., 5(2022), No. 9, p. 13594. doi: 10.1021/acsanm.2c03358
|
[53] |
D. Chen, L.M. Luo, R.H. Zhang, et al., Highly monodispersed ternary hollow PtPdAu alloy nanocatalysts with enhanced activity toward methanol oxidation, J. Electroanal. Chem., 812(2018), p. 90. doi: 10.1016/j.jelechem.2018.01.051
|