留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 9
Sep.  2023

图(5)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  260
  • HTML全文浏览量:  101
  • PDF下载量:  12
  • 被引次数: 0
Ting Zhang, Wanzong Wang, Zheng Ma, Lei Bai, Yue Yao, and Dongqing Xu, Bimetallic Pt–Ru covalently bonded on carbon nanotubes for efficient methanol oxidation, Int. J. Miner. Metall. Mater., 30(2023), No. 9, pp. 1816-1823. https://doi.org/10.1007/s12613-023-2699-1
Cite this article as:
Ting Zhang, Wanzong Wang, Zheng Ma, Lei Bai, Yue Yao, and Dongqing Xu, Bimetallic Pt–Ru covalently bonded on carbon nanotubes for efficient methanol oxidation, Int. J. Miner. Metall. Mater., 30(2023), No. 9, pp. 1816-1823. https://doi.org/10.1007/s12613-023-2699-1
引用本文 PDF XML SpringerLink
研究论文

共价键结合的双金属铂钌碳纳米管复合材料及对高效甲醇氧化反应研究



  • 通讯作者:

    徐冬青    E-mail: xudongq@163.com

文章亮点

  • (1) 采用绿色水热法制备了双金属铂钌碳纳米管复合材料。
  • (2) 超小尺寸的双金属铂钌纳米粒子通过共价键均匀负载到F-MWCNTs表面。
  • (3) Pt–Ru@MWCNT纳米复合材料对MOR的电催化活性远高于20wt%的商业Pt@C和其它合成的纳米复合材料。
  • (4) Pt–Ru@MWCNT纳米复合材料由于其特殊的微观结构,被认为是一种优良的、持久的MOR催化剂。
  • 铂类纳米复合材料被认为是甲醇氧化反应(MOR)中最有前途的催化剂之一,但由于其电子转移性能低、易毒化以及电化学活性较差,导致其在实际应用中仍然面临巨大的挑战。本文报道了一种具有良好电化学性能的铂钌碳纳米管复合材料(Pt–Ru@MWCNT)并应用于甲醇氧化反应。该材料的制备是从功能性多壁碳纳米管(F-MWCNTs)出发,在不添加还原剂的情况下,通过简单、环保的方法合成了Pt–Ru@MWCNT纳米复合材料,铂钌双金属纳米粒子与功能性碳纳米管上的氧原子形成M–O–C共价键的方式均匀的负载到碳纳米管上形成双金属Pt–Ru@MWCNT纳米复合材料。采用傅里叶变换红外、电子能谱、透射电镜和电化学测量等实验研究了纳米复合材料的表面官能团、微观结构和形态以及电化学性能。研究结果表明,在功能性碳纳米管表面铂钌双金属纳米粒子与氧原子形成M–O–C共价键的方式均匀的负载到碳纳米管上;Pt–Ru@MWCNT纳米复合材料对MOR的电化学活性表面积(ECSA)为110.4 m2·g−1,比20wt%的商用Pt@C和其他方法制备的Pt类纳米复合材料的ECSA分别高出2.67和4.0倍,这是主要由于M–O–C共价键的产生改善了材料的电子转移性能。此外,将Ru原子引入Pt@MWCNT纳米复合材料中,增强了材料的抗CO中毒能力。
  • Research Article

    Bimetallic Pt–Ru covalently bonded on carbon nanotubes for efficient methanol oxidation

    + Author Affiliations
    • Platinum-based nanocomposites have been considered as one of the most promising catalysts for methanol oxidation reactions (MORs), which yet still suffer from low electrochemical activity and electron-transfer properties. Apart from van-der-Waals heterostructures, herein, we report a novel nanocomposite with the structure of Pt–Ru bimetallic nanoparticles covalently-bonded onto multi-walled carbon nanotubes (MWCNTs) (Pt–Ru@MWCNT), which have been successfully fabricated via a facile and green synthesis method. It is demonstrated that the Pt–Ru@MWCNT nanocomposite possesses much enhanced electrocatalytic activity with the electrochemical active surface area (ECSA) of 110.4 m2·g−1 for Pt towards MOR, which is 2.67 and 4.0 times higher than those of 20wt% commercial Pt@C and Pt-based nanocomposite prepared by other method, due to the improved electron-transfer properties originated from M–O–C covalent bonds. This work provides us a new strategy for the structural design of highly-efficient electrocatalysts in boosting MOR performance.
    • loading
    • Supplementary Information-10.1007s12613-023-2699-1.doc
    • [1]
      P.P. Yang, X.L. Yuan, H.C. Hu, et al., Solvothermal synthesis of alloyed PtNi colloidal nanocrystal clusters (CNCs) with enhanced catalytic activity for methanol oxidation, Adv. Funct. Mater., 28(2018), No. 1, art. No. 1704774. doi: 10.1002/adfm.201704774
      [2]
      J.C. Fan, S.S. Yu, K. Qi, et al., Synthesis of ultrathin wrinkle-free PdCu alloy nanosheets for modulating d-band electrons for efficient methanol oxidation, J. Mater. Chem. A, 6(2018), No. 18, p. 8531. doi: 10.1039/C8TA01912F
      [3]
      C.Z. Wang, Y. Zhang, Y.J. Zhang, et al., Highly ordered hierarchical Pt and PtNi nanowire arrays for enhanced electrocatalytic activity toward methanol oxidation, ACS Appl. Mater. Interfaces, 10(2018), No. 11, p. 9444. doi: 10.1021/acsami.7b19727
      [4]
      L. Huang, X.P. Zhang, Q.Q. Wang, Y.J. Han, Y.X. Fang, and S.J. Dong, Shape-control of Pt–Ru nanocrystals: Tuning surface structure for enhanced electrocatalytic methanol oxidation, J. Am. Chem. Soc., 140(2018), No. 3, p. 1142. doi: 10.1021/jacs.7b12353
      [5]
      Y.J. Wang, N.N. Zhao, B.Z. Fang, H. Li, X.T. Bi, and H.J. Wang, Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: Particle size, shape, and composition manipulation and their impact to activity, Chem. Rev., 115(2015), No. 9, p. 3433. doi: 10.1021/cr500519c
      [6]
      X.Y. Wang, J.C. Zhang, X.D. Cao, Y.S. Jiang, and H. Zhu, Synthesis and characterization of Pt–MoOx–TiO2 electrodes for direct ethanol fuel cells, Int. J. Miner. Metall. Mater., 18(2011), No. 5, p. 594. doi: 10.1007/s12613-011-0483-0
      [7]
      H. Tian, R.X. Zhu, P.L. Deng, et al., Ultrathin Pd3Pt1Rh0.1 nanorings with strong C–C bond breaking ability for the ethanol oxidation reaction, Small, 18(2022), No. 40, art. No. 2203506. doi: 10.1002/smll.202203506
      [8]
      Z. Qi, C. Xiao, C. Liu, et al., Sub-4 nm PtZn intermetallic nanoparticles for enhanced mass and specific activities in catalytic electrooxidation reaction, J. Am. Chem. Soc., 139(2017), No. 13, p. 4762. doi: 10.1021/jacs.6b12780
      [9]
      J.P. Zhong, C. Hou, L. Li, et al., A novel strategy for synthesizing Fe, N, and S tridoped graphene-supported Pt nanodendrites toward highly efficient methanol oxidation, J. Catal., 381(2020), p. 275. doi: 10.1016/j.jcat.2019.11.002
      [10]
      P. Trogadas, V. Ramani, P. Strasser, T.F. Fuller, and M.O. Coppens, Hierarchically structured nanomaterials for electrochemical energy conversion, Angew. Chem. Int. Ed., 55(2016), No. 1, p. 122. doi: 10.1002/anie.201506394
      [11]
      J.C. Calderón, G. García, L. Calvillo, J.L. Rodríguez, M.J. Lázaro, and E. Pastor, Electrochemical oxidation of CO and methanol on Pt–Ru catalysts supported on carbon nanofibers: The influence of synthesis method, Appl. Catal. B, 165(2015), p. 676. doi: 10.1016/j.apcatb.2014.10.077
      [12]
      Y.Z. Zhou, G.H. Yang, H.B. Pan, et al., Ultrasonic-assisted synthesis of carbon nanotube supported bimetallic Pt–Ru nanoparticles for effective methanol oxidation, J. Mater. Chem. A, 3(2015), No. 16, p. 8459. doi: 10.1039/C5TA00695C
      [13]
      J. Xie, Q.H. Zhang, L. Gu, et al., Ruthenium–platinum core-shell nanocatalysts with substantially enhanced activity and durability towards methanol oxidation, Nano Energy, 21(2016), p. 247. doi: 10.1016/j.nanoen.2016.01.013
      [14]
      J. Zheng, D.A. Cullen, R.V. Forest, et al., Platinum–ruthenium nanotubes and platinum–ruthenium coated copper nanowires as efficient catalysts for electro-oxidation of methanol, ACS Catal., 5(2015), No. 3, p. 1468. doi: 10.1021/cs501449y
      [15]
      C.S. Shang, Y.X. Guo, and E.K. Wang, Ultrathin nanodendrite surrounded PtRuNi nanoframes as efficient catalysts for methanol electrooxidation, J. Mater. Chem. A, 7(2019), No. 6, p. 2547. doi: 10.1039/C9TA00191C
      [16]
      S. Park, M. Vosguerichian, and Z.N. Bao, A review of fabrication and applications of carbon nanotube film-based flexible electronics, Nanoscale, 5(2013), No. 5, p. 1727. doi: 10.1039/c3nr33560g
      [17]
      J.J. Gooding, Nanostructuring electrodes with carbon nanotubes: A review on electrochemistry and applications for sensing, Electrochim. Acta, 50(2005), No. 15, p. 3049. doi: 10.1016/j.electacta.2004.08.052
      [18]
      P. Luksirikul, K. Tedsree, M.G. Moloney, M.L.H. Green, and S.C.E. Tsang, Electron promotion by surface functional groups of single wall carbon nanotubes to overlying metal particles in a fuel-cell catalyst, Angew. Chem. Int. Ed., 51(2012), No. 28, p. 6998. doi: 10.1002/anie.201201589
      [19]
      J.M. Liu, R.J. Liu, H. Li, et al., Diversifying nanoparticle superstructures and functions enabled by translative templating from supramolecular polymerization, Angew. Chem. Int. Ed., 61(2022), No. 18, art. No. e202201426.
      [20]
      L.L. Zhu, X. Li, S.J. Wu, et al., Chirality control for in situ preparation of gold nanoparticle superstructures directed by a coordinatable organogelator, J. Am. Chem. Soc., 135(2013), No. 24, p. 9174. doi: 10.1021/ja403722t
      [21]
      P.F. Yan, L. Ji, X.P. Liu, et al., 2D amorphous-MoO3−x@Ti3C2-MXene non-van der Waals heterostructures as anode materials for lithium-ion batteries, Nano Energy, 86(2021), art. No. 106139. doi: 10.1016/j.nanoen.2021.106139
      [22]
      J.Y. Jiang, P.F. Yan, Y.N. Zhou, et al., Interplanar growth of 2D non-van der Waals Co2N-based heterostructures for efficient overall water splitting, Adv. Energy Mater., 10(2020), No. 44, art. No. 2002214. doi: 10.1002/aenm.202002214
      [23]
      S. Lambert, N. Job, L. D'Souza, et al., Synthesis of very highly dispersed platinum catalysts supported on carbon xerogels by the strong electrostatic adsorption method, J. Catal., 261(2009), No. 1, p. 23. doi: 10.1016/j.jcat.2008.10.014
      [24]
      L.Y. Zhang, G.D. Wen, H.Y. Liu, N. Wang, and D.S. Su, Preparation of palladium catalysts supported on carbon nanotubes by an electrostatic adsorption method, ChemCatChem, 6(2014), No. 9, p. 2600. doi: 10.1002/cctc.201402175
      [25]
      C. Silva-Carrillo, B. Trujillo-Navarrete, R.M. Félix-Navarro, F. Paraguay-Delgado, J.Á. Chávez-Carvayar, and E.A. Reynoso-Soto, Influence of organic solvents in the Pt nanoparticle synthesis on MWCNT for the methanol oxidation reaction, J. Solid State Electrochem., 23(2019), No. 3, p. 795. doi: 10.1007/s10008-018-04178-1
      [26]
      Y.C. Tsai and Y.H. Hong, Electrochemical deposition of platinum nanoparticles in multiwalled carbon nanotube-Nafion composite for methanol electrooxidation, J. Solid State Electrochem., 12(2008), No. 10, p. 1293. doi: 10.1007/s10008-008-0518-2
      [27]
      R. Sharma and K.K. Kar, Particle size and crystallographic orientation controlled electrodeposition of platinum nanoparticles on carbon nanotubes, Electrochim. Acta, 156(2015), p. 199. doi: 10.1016/j.electacta.2015.01.046
      [28]
      C.N. Wang, H. Li, J.H. Zhao, Y. Zhu, W.Z. Yuan, and Y.M. Zhang, Graphene nanoribbons as a novel support material for high performance fuel cell electrocatalysts, Int. J. Hydrogen Energy, 38(2013), No. 30, p. 13230. doi: 10.1016/j.ijhydene.2013.07.111
      [29]
      W.Y. Yuan, Y. Cheng, P.K. Shen, C.M. Li, and S.P. Jiang, Significance of wall number on the carbon nanotube support-promoted electrocatalytic activity of Pt NPs towards methanol/formic acid oxidation reactions in direct alcohol fuel cells, J. Mater. Chem. A, 3(2015), No. 5, p. 1961. doi: 10.1039/C4TA04613G
      [30]
      J. Li, W. Yang, H. Zhu, et al., In situ PEI and formic acid directed formation of Pt NPs/MWNTs hybrid material with excellent electrocatalytic activity, Talanta, 79(2009), No. 3, p. 935. doi: 10.1016/j.talanta.2009.05.029
      [31]
      D.Q. Xu, B.B. Hou, L.S. Qian, X.J. Zhang, and G.D. Liu, Non-enzymatic electrochemical sensor based on sliver nanoparticle-decorated carbon nanotubes, Molecules, 24(2019), No. 18, art. No. 3411. doi: 10.3390/molecules24183411
      [32]
      K.A. Wepasnick, B.A. Smith, K.E. Schrote, H.K. Wilson, S.R. Diegelmann, and D.H. Fairbrother, Surface and structural characterization of multi-walled carbon nanotubes following different oxidative treatments, Carbon, 49(2011), No. 1, p. 24. doi: 10.1016/j.carbon.2010.08.034
      [33]
      P.J. Wang, Y.T. Yan, P.C. Wang, Z.Y. Ye, X.H. Zheng, and W. Cai, Highly dispersed Pt/CuO nanoclusters in N-doped porous carbon array for superior hydrogen evolution, Chem. Eng. J., 455(2023), art. No. 140856. doi: 10.1016/j.cej.2022.140856
      [34]
      Y.L. Men, P. Liu, Y. Liu, X.Y. Meng, and Y.X. Pan, Noble-metal-free WO3-decorated carbon nanotubes with strong W–C bonds for boosting an electrocatalytic glucose oxidation reaction, Ind. Eng. Chem. Res., 61(2022), No. 12, p. 4300. doi: 10.1021/acs.iecr.2c00432
      [35]
      G.H. Ma, X. Shen, L.L. Sun, et al., Low-bias conductance of single benzene molecules contacted by direct Au–C and Pt–C bonds, Nanotechnology, 21(2010), No. 49, art. No. 495202. doi: 10.1088/0957-4484/21/49/495202
      [36]
      G.Q. Li, P.K. Wen, C.Q. Gao, et al., Effects of CeO2 pre-calcined at different temperatures on the performance of Pt/CeO2–C electrocatalyst for methanol oxidation reaction, Int. J. Miner. Metall. Mater., 28(2021), No. 7, p. 1224. doi: 10.1007/s12613-020-2076-2
      [37]
      C. Ma, L.Q. Wang, G.G. He, and Z.B. Sun, Enhancement of the catalytic performance for CH3OH oxidation of nanoporous Pt by the addition of Cu and Ce to precursors, J. Alloys Compd., 927(2022), art. No. 167059. doi: 10.1016/j.jallcom.2022.167059
      [38]
      D. Pan, X.W. Li, and A.F. Zhang, Platinum assisted by carbon quantum dots for methanol electro-oxidation, Appl. Surf. Sci., 427(2018), p. 715. doi: 10.1016/j.apsusc.2017.09.060
      [39]
      H.H. Li, C.H. Cui, S. Zhao, et al., Mixed-PtPd-shell PtPdCu nanoparticle nanotubes templated from copper nanowires as efficient and highly durable electrocatalysts, Adv. Energy Mater., 2(2012), No. 10, p. 1182. doi: 10.1002/aenm.201200207
      [40]
      K. Zhang, W. Yang, C. Ma, et al., A highly active, stable and synergistic Pt nanoparticles/Mo2C nanotube catalyst for methanol electro-oxidation, NPG Asia Mater., 7(2015), No. 1, art. No. e153. doi: 10.1038/am.2014.122
      [41]
      D.Y. Chung, K.J. Lee, and Y.E. Sung, Methanol electro-oxidation on the Pt surface: Revisiting the cyclic voltammetry interpretation, J. Phys. Chem. C, 120(2016), No. 17, p. 9028. doi: 10.1021/acs.jpcc.5b12303
      [42]
      S. Sakong and A. Groß, The importance of the electrochemical environment in the electro-oxidation of methanol on Pt(111), ACS Catal., 6(2016), No. 8, p. 5575. doi: 10.1021/acscatal.6b00931
      [43]
      S.L. Wu, J. Liu, Z.F. Tian, et al., Highly dispersed ultrafine Pt nanoparticles on reduced graphene oxide nanosheets: In situ sacrificial template synthesis and superior electrocatalytic performance for methanol oxidation, ACS Appl. Mater. Interfaces, 7(2015), No. 41, p. 22935. doi: 10.1021/acsami.5b06153
      [44]
      C.Z. Yang, Q.G. Jiang, H.J. Huang, H.Y. He, L. Yang, and W.H. Li, Polyelectrolyte-induced stereoassembly of grain boundary-enriched platinum nanoworms on Ti3C2Tx MXene nanosheets for efficient methanol oxidation, ACS Appl. Mater. Interfaces, 12(2020), No. 21, p. 23822. doi: 10.1021/acsami.0c02806
      [45]
      Y.Y. Zhang, R. Shi, J. Ren, Y. Dai, Y.J. Yuan, and Z.H. Wang, PtFeCu concave octahedron nanocrystals as electrocatalysts for the methanol oxidation reaction, Langmuir, 35(2019), No. 51, p. 16752. doi: 10.1021/acs.langmuir.9b03238
      [46]
      Z. Teng, Z.Y. Zhang, and X.W. Li, Preparation of Pt catalysts supported on polyaniline modified carbon black and electrocatalytic methanol oxidation, Synth. Met., 293(2023), art. No. 117256. doi: 10.1016/j.synthmet.2022.117256
      [47]
      B.Y. Xia, H.B. Wu, Y. Yan, X.W. Lou, and X. Wang, Ultrathin and ultralong single-crystal platinum nanowire assemblies with highly stable electrocatalytic activity, J. Am. Chem. Soc., 135(2013), No. 25, p. 9480. doi: 10.1021/ja402955t
      [48]
      S.Y. Liu, F. Dong, Z.C. Tang, and Q.C. Wang, The formation of wrapping type Pt–Ni alloy on three-dimensional carbon nanosheet for electrocatalytic oxidation of methanol, Int. J. Hydrogen Energy, 46(2021), No. 29, p. 15431. doi: 10.1016/j.ijhydene.2021.02.050
      [49]
      H.J. Huang, S.B. Yang, R. Vajtai, X. Wang, and P.M. Ajayan, Pt-decorated 3D architectures built from graphene and graphitic carbon nitride nanosheets as efficient methanol oxidation catalysts, Adv. Mater., 26(2014), No. 30, p. 5160. doi: 10.1002/adma.201401877
      [50]
      Q.Q. Zhang, J.L. Liu, T.Y. Xia, et al., Antiferromagnetic element Mn modified PtCo truncated octahedral nanoparticles with enhanced activity and durability for direct methanol fuel cells, Nano Res., 12(2019), No. 10, p. 2520. doi: 10.1007/s12274-019-2479-4
      [51]
      J.M. Zhang, S.N. Sun, Y. Li, X.J. Zhang, P.Y. Zhang, and Y.J. Fan, A strategy in deep eutectic solvents for carbon nanotube-supported PtCo nanocatalysts with enhanced performance toward methanol electrooxidation, Int. J. Hydrogen Energy, 42(2017), No. 43, p. 26744. doi: 10.1016/j.ijhydene.2017.09.090
      [52]
      J. Zhao, H. Zeng, and Z.X. Lu, Pt nanowires on monolayered graphene oxide for electrocatalytic oxidation of methanol, ACS Appl. Nano Mater., 5(2022), No. 9, p. 13594. doi: 10.1021/acsanm.2c03358
      [53]
      D. Chen, L.M. Luo, R.H. Zhang, et al., Highly monodispersed ternary hollow PtPdAu alloy nanocatalysts with enhanced activity toward methanol oxidation, J. Electroanal. Chem., 812(2018), p. 90. doi: 10.1016/j.jelechem.2018.01.051

    Catalog


    • /

      返回文章
      返回