留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 1
Jan.  2024

图(14)  / 表(4)

数据统计

分享

计量
  • 文章访问数:  504
  • HTML全文浏览量:  213
  • PDF下载量:  39
  • 被引次数: 0
Hai Li, Aibing Jin, Shuaijun Chen, Yiqing Zhao, and You Ju, Paraffin–CaCl2·6H2O dosage effects on the strength and heat transfer characteristics of cemented tailings backfill, Int. J. Miner. Metall. Mater., 31(2024), No. 1, pp. 60-70. https://doi.org/10.1007/s12613-023-2700-z
Cite this article as:
Hai Li, Aibing Jin, Shuaijun Chen, Yiqing Zhao, and You Ju, Paraffin–CaCl2·6H2O dosage effects on the strength and heat transfer characteristics of cemented tailings backfill, Int. J. Miner. Metall. Mater., 31(2024), No. 1, pp. 60-70. https://doi.org/10.1007/s12613-023-2700-z
引用本文 PDF XML SpringerLink
研究论文

石蜡–CaCl2·6H2O添加量对充填体强度和传热特性的影响


  • 通讯作者:

    金爱兵    E-mail: jinaibing@ustb.edu.cn

    赵怡晴    E-mail: zyq@ustb.edu.cn

文章亮点

  • (1) 为水合盐类型相变材料用于充填采矿降低深井温度提供了新的思路。
  • (2) 推导了石蜡–CaCl2·6H2O不同复合比例导热系数的计算公式,并从微观角度解释导热系数变化机理。
  • (3) 提出“焓–质配比法”计算非反应型复合PCM的相变潜热。
  • 深井采矿中的高温问题一直是影响工作人员身体健康和生产效率的有害因素,而将相变材料(phase change material, PCM)加入充填料浆中,利用相变材料蓄冷功能降低井下温度,是一种缓解井下高温问题的有效途径。通过室内试验制备石蜡–CaCl2·6H2O复合相变材料,研究新型材料的组成成分、相变潜热以及导热系数,并利用FLUENT软件,模拟PCM的传热特性和加入充填体后的吸热效果得出以下结论。(1) 新型石蜡–CaCl2·6H2O复合材料不仅提高了石蜡的导热系数而且克服了CaCl2·6H2O易溶于水的缺点,两种PCM复合后可优势互补。(2) 推导了石蜡与CaCl2·6H2O复合后新材料的导热系数的计算公式,并从微观上解释了导热系数变化原理。(3) 提出“焓–质配比法”计算非反应型复合PCM的相变潜热。(4) 充填体中添加石蜡–CaCl2·6H2O虽然降低了抗压强度,但提高了其吸热能力,这项研究可为绿色矿山中使用蓄热回填材料提供理论依据。
  • Research Article

    Paraffin–CaCl2·6H2O dosage effects on the strength and heat transfer characteristics of cemented tailings backfill

    + Author Affiliations
    • The challenge of high temperatures in deep mining remains harmful to the health of workers and their production efficiency. The addition of phase change materials (PCMs) to filling slurry and the use of the cold storage function of these materials to reduce downhole temperatures is an effective approach to alleviate the aforementioned problem. Paraffin–CaCl2·6H2O composite PCM was prepared in the laboratory. The composition, phase change latent heat, thermal conductivity, and cemented tailing backfill (CTB) compressive strength of the new material were studied. The heat transfer characteristics and endothermic effect of the PCM were simulated using Fluent software. The results showed the following: (1) The new paraffin–CaCl2·6H2O composite PCM improved the thermal conductivity of native paraffin while avoiding the water solubility of CaCl2·6H2O. (2) The calculation formula of the thermal conductivity of CaCl2·6H2O combined with paraffin was deduced, and the reasons were explained in principle. (3) The “enthalpy–mass scale model” was applied to calculate the phase change latent heat of nonreactive composite PCMs. (4) The addition of the paraffin–CaCl2·6H2O composite PCM reduced the CTB strength but increased its heat absorption capacity. This research can give a theoretical foundation for the use of heat storage backfill in green mines.
    • loading
    • [1]
      G.E. Du Plessis, D.C. Arndt, and E.H. Mathews, The development and integrated simulation of a variable water flow energy saving strategy for deep-mine cooling systems, Sustain. Energy Technol. Assess., 10(2015), p. 71.
      [2]
      C. Guo, Some key problems in deep mining of metal mines, China New Technol. Prod., 6(2009), p. 113.
      [3]
      L. Liu, J. Xin, B. Zhang, et al., Basic theories and applied exploration of functional backfill in mines, J. China Coal Soc., 43(2018), No. 7, p. 1811.
      [4]
      X.Y. Zhang, T.R. Cao, L. Liu, B.Y. Bu, Y.P. Ke, and Q.Q. Du, Experimental study on thermal and mechanical properties of tailings-based cemented paste backfill with CaCl2·6H2O/expanded vermiculite shape stabilized phase change materials, Int. J. Miner. Metall. Mater., 30(2023), No. 2, p. 250. doi: 10.1007/s12613-022-2503-7
      [5]
      H.P. Xie, Research framework and anticipated results of deep rock mechanics and mining theory, Adv. Eng. Sci., 49(2017), No. 2, p. 1.
      [6]
      M.F. Cai, D.L. Xue, and F.H. Ren, Current status and development strategy of metal mines, Chin. J. Eng., 41(2019), No. 4, p. 417.
      [7]
      K.Y. Yu, Y.S. Liu, and Y.Z. Yang, Review on form-stable inorganic hydrated salt phase change materials: Preparation, characterization and effect on the thermophysical properties, Appl. Energy, 292(2021), art. No. 116845. doi: 10.1016/j.apenergy.2021.116845
      [8]
      Y.B. Fu, D.M. Wang, and H. Zhu, Review on low temperature phase change materials and its application, Mater. Rep., 30(2016), Suppl. 2, p. 222.
      [9]
      Z. Li, B.R. Li, H.Z. Chen, B. Wen, and X.Z. Du, State of the art review on phase change thermal energy storage technology, Chem. Ind. Eng. Prog., 39(2020), No. 12, p. 5066.
      [10]
      D.Y. Zhang, C.C. Li, N.Z. Lin, B.S. Xie, and J. Chen, Mica-stabilized polyethylene glycol composite phase change materials for thermal energy storage, Int. J. Miner. Metall. Mater., 29(2022), No. 1, p. 168. doi: 10.1007/s12613-021-2357-4
      [11]
      L.G. Xiao and J.W. Wang, Research progress and application of inorganic hydrated salt phase change energy storage materials, Appl. Chem. Ind., 50(2021), No. 6, p. 1653.
      [12]
      Y. Zhou, X. Li, C.X. Hai, Y. Shen, X.F. Ren, and J.B. Zeng, Recent progress in the hydrated salt phase change materials, J. Salt Lake Res., 26(2018), No. 2, p. 9.
      [13]
      C.B. Leng, Preparation and Performance Analysis of Expanded Graphite/Hydrated Salt Composite Phase Change Materials [Dissertation], Yunnan Normal University, Kunming, 2015, p. 23.
      [14]
      Y.S. Liu and Y.Z. Yang, Preparation and thermal properties of Na2CO3·10H2O–Na2HPO4·12H2O eutectic hydrate salt as a novel phase change material for energy storage, Appl. Therm. Eng., 112(2017), p. 606. doi: 10.1016/j.applthermaleng.2016.10.146
      [15]
      Y.S. Liu, M.J. Xie, X.J. Gao, Y.Z. Yang, and Y. Sang, Experimental exploration of incorporating form-stable hydrate salt phase change materials into cement mortar for thermal energy storage, Appl. Therm. Eng., 140(2018), p. 112. doi: 10.1016/j.applthermaleng.2018.05.042
      [16]
      R.D. Ye, W.Z. Lin, K.J. Yuan, X.M. Fang, and Z.G. Zhang, Experimental and numerical investigations on the thermal performance of building plane containing CaCl2·6H2O/expanded graphite composite phase change material, Appl. Energy, 193(2017), p. 325. doi: 10.1016/j.apenergy.2017.02.049
      [17]
      X. Huang, Y.D. Cui, G.Q. Yin, and G.Z. Feng, Research progress of phase change materials, New Chem. Mater., 48(2020), No. 1, p. 19.
      [18]
      R.R. Hu, F.Y. Li, and T.B. Zhao, Preparation and properties of microcapsulated paraffin with the copolymer shell of methyl methacrylate and methacrylic acid, Speciality Petrochemicals, 36(2019), No. 4, p. 63.
      [19]
      A.A. Aydın and G. Toprakçı, Synthesis and characterization of new organic phase change materials (PCMs): Diesters of suberic acid, Sol. Energy Mater. Sol. Cells, 220(2021), art. No. 110822. doi: 10.1016/j.solmat.2020.110822
      [20]
      X.L. Zhang, S.X. Zhou, S. Liu, et al., Cold storage characteristics of n-octanoic-lauric acid nanocomposite phase change materials, J. Tianjin Univ. (Sci. Technol.), 52(2019), No. 1, p. 71.
      [21]
      Z.Y. Ling, J.J. Chen, T. Xu, X.M. Fang, X.N. Gao, and Z.G. Zhang, Thermal conductivity of an organic phase change material/expanded graphite composite across the phase change temperature range and a novel thermal conductivity model, Energy Convers. Manage., 102(2015), p. 202. doi: 10.1016/j.enconman.2014.11.040
      [22]
      Z. Li, W.G. Sun, G. Wang, and Z.G. Wu, Experimental and numerical study on the effective thermal conductivity of paraffin/expanded graphite composite, Sol. Energy Mater. Sol. Cells, 128(2014), p. 447. doi: 10.1016/j.solmat.2014.06.023
      [23]
      W. Shi, J.P. Hou, and X. Zhang, Properties of paraffin phase-change-material (PCM) mass concrete for temperature control, J. Build. Mater., 13(2010), No. 3, p. 414.
      [24]
      X.J. Zheng, X.N. Gao, Z.W. Huang, Z.P. Li, Y.T. Fang, and Z.G. Zhang, Form-stable paraffin/graphene aerogel/copper foam composite phase change material for solar energy conversion and storage, Sol. Energy Mater. Sol. Cells, 226(2021), art. No. 111083. doi: 10.1016/j.solmat.2021.111083
      [25]
      J.B. Shi and M. Li, Lightweight mortar with paraffin/expanded vermiculite-diatomite composite phase change materials: Development, characterization and year-round thermoregulation performance, Sol. Energy, 220(2021), p. 331. doi: 10.1016/j.solener.2021.03.053
      [26]
      C.C. Li, W.X. Wang, X.L. Zeng, C.X. Liu, and R. Sun, Emerging low-density polyethylene/paraffin wax/aluminum composite as a form-stable phase change thermal interface material, Int. J. Miner. Metall. Mater., 30(2023), No. 4, p. 772. doi: 10.1007/s12613-022-2565-6
      [27]
      C.J. Wang, Z.Y. Duan, A.J. Wang, Z.C. Wang, L.J. Cui, and Q. Su, Research progress of eutectic phase change materials, Mater. Rep., 35(2021), No. 13, p. 13058.
      [28]
      Z.W. Tang, H.T. Zhao, and Z.F. Chen, Study on mixtures of stearic acid and Na2HPO4·12H2O as heat storage phase-change materials, J. Beijing Univ. Technol., 35(2009), No. 6, p. 809.
      [29]
      Y.P. Wu and T. Wang, Hydrated salts/expanded graphite composite with high thermal conductivity as a shape-stabilized phase change material for thermal energy storage, Energy Convers. Manage., 101(2015), p. 164. doi: 10.1016/j.enconman.2015.05.006
      [30]
      X.X. Zhang, X. Li, Y. Zhou, et al., Calcium chloride hexahydrate/diatomite/paraffin as composite shape-stabilized phase-change material for thermal energy storage, Energy Fuels, 32(2018), No. 1, p. 916. doi: 10.1021/acs.energyfuels.7b02866
      [31]
      F. Agyenim, N. Hewitt, P. Eames, and M. Smyth, A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS), Renewable Sustainable Energy Rev., 14(2010), No. 2, p. 615. doi: 10.1016/j.rser.2009.10.015
      [32]
      C.F. Shen, X. Li, G.Q. Yang, et al., Shape-stabilized hydrated salt/paraffin composite phase change materials for advanced thermal energy storage and management, Chem. Eng. J., 385(2020), art. No. 123958. doi: 10.1016/j.cej.2019.123958
      [33]
      A.B. Jin, H. Li, H. Sun, S.J. Chen, and Y. Ju, Heat transfer performance and strength characteristics of energy storage filling body before and after phase transformation, J. Central South Univ. (Sci. Technol.), 54(2023), No. 3, p. 807.
      [34]
      H. Zhang and H.Z. Cui, Review of the applications of incorporating phase change materials into concrete, Mater. Rep., 29(2015), Suppl. 1, p. 131.
      [35]
      L.G. Xiao and J.W. Wang, Application research on inorganic hydrated salt phase change material in the field of building energy saving, New Chem. Mater., 49(2021), No. 9, p. 226.
      [36]
      D. Wu, R.K. Zhao, C.W. Xie, and S. Liu, Effect of curing humidity on performance of cemented paste backfill, Int. J. Miner. Metall. Mater., 27(2020), No. 8, p. 1046. doi: 10.1007/s12613-020-1970-y
      [37]
      M. Wang, L. Liu, B. Zhang, et al., Basic theory of cold load and storage functional backfill in mining, J. China Coal Soc., 45(2020), No. 4, p. 1336.
      [38]
      X. Liu, J.H. Wu, T. Xian, and Y. Feng, Preparation and properties of CaCl2·6H2O/expanded graphite composite phase change materials, J. Zhejiang Univ. (Eng. Sci.), 53(2019), No. 7, p. 1291.
      [39]
      W.S. Li, Y.F. Cai, T.S. Yan, Y.T. Li, and R.Z. Wang, Preparation and thermal storage properties of sodium acetate trihydrate-expanded graphite as phase change composite, J. Shanghai Jiaotong Univ., 54(2020), No. 10, p. 1015.
      [40]
      J.Y. Wu, H.W. Jing, Y. Gao, Q.B. Meng, Q. Yin, and Y. Du, Effects of carbon nanotube dosage and aggregate size distribution on mechanical property and microstructure of cemented rockfill, Cem. Concr. Compos., 127(2022), art. No. 104408. doi: 10.1016/j.cemconcomp.2022.104408
      [41]
      X.Y. Zhang, D. Wen, Y.J. Zhao, et al., Thermal-mechanical properties and heat transfer process of heat storage/energy storage backfill body in mine, J. China Coal Soc., 46(2021), No. 10, p. 3158.
      [42]
      M. Wang, P. Liu, S.Y. Shang, Q. Chen, B. Zhang, and L. Liu, Numerical and experimental studies on the cooling performance of backfill containing phase change materials, Build. Environ., 218(2022), art. No. 109155. doi: 10.1016/j.buildenv.2022.109155
      [43]
      A.B. Jin, Y. Ju, H. Sun, H. Li, and Z. Zhang, Mechanical properties of filling materials containing composite phase change materials, J. Central South Univ. (Sci. Technol.), 52(2021), No. 9, p. 3153.
      [44]
      A.B. Jin, Y. Ju, H. Sun, et al., Strength and thermal performance of phase change energy storage backfill, J. Harbin Inst. Technol., 54(2022), No. 2, p. 81.
      [45]
      Z.H. Wei, G. Falzone, S. Das, et al., Restrained shrinkage cracking of cementitious composites containing soft PCM inclusions: A paste (matrix) controlled response, Mater. Des., 132(2017), p. 367. doi: 10.1016/j.matdes.2017.06.066
      [46]
      A.B. Jin, Y. Ju, H. Sun, et al., Pore structure and strength deterioration mechanism of phase change energy storage backfill, Rock Soil Mech., 42(2021), No. 10, p. 2623.
      [47]
      Q. Zhou, J.H. Liu, A.X. Wu, and H.J. Wang, Early-age strength property improvement and stability analysis of unclassified tailing paste backfill materials, Int. J. Miner. Metall. Mater., 27(2020), No. 9, p. 1191. doi: 10.1007/s12613-020-1977-4

    Catalog


    • /

      返回文章
      返回