留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 2
Feb.  2024

图(13)  / 表(4)

数据统计

分享

计量
  • 文章访问数:  922
  • HTML全文浏览量:  66
  • PDF下载量:  28
  • 被引次数: 0
Yanyu Liu, Lina Jia, Wenbo Wang, Zuheng Jin, and Hu Zhang, Effect of Ni content on the wear behavior of Al–Si–Cu–Mg–Ni/SiC particles composites, Int. J. Miner. Metall. Mater., 31(2024), No. 2, pp. 374-383. https://doi.org/10.1007/s12613-023-2701-y
Cite this article as:
Yanyu Liu, Lina Jia, Wenbo Wang, Zuheng Jin, and Hu Zhang, Effect of Ni content on the wear behavior of Al–Si–Cu–Mg–Ni/SiC particles composites, Int. J. Miner. Metall. Mater., 31(2024), No. 2, pp. 374-383. https://doi.org/10.1007/s12613-023-2701-y
引用本文 PDF XML SpringerLink
研究论文

镍含量对Al–Si–Cu–Mg–Ni/SiC 复合材料磨损行为的影响


  • 通讯作者:

    贾丽娜    E-mail: jialina@buaa.edu.cn

文章亮点

  • (1) 系统地研究了Al–Si–Cu–Mg–Ni/SiC 复合材料中由Ni含量引起的析出相演变。
  • (2) 发现适量Ni元素可以提高Al–Si–Cu–Mg–Ni/SiC 复合材料的摩擦磨损性能,阐明其机理。
  • (3) 系统地研究了Al–Si–Cu–Mg–Ni/SiC 复合材料常温和350°C高温摩擦磨损机制。
  • 近年来,添加镍(Ni)元素可以提高Al–Si合金力学性能的观点逐渐被人们接受。然而,Ni元素对Al–Si合金和铝基复合材料磨损行为的研究仍然不足,尤其是在高温环境下。本研究采用半固态搅拌铸造方法制备了不同Ni含量的Al–Si–Cu–Mg–Ni/20wt%SiC颗粒增强铝基复合材料。通过在25°C和350°C下的滑动试验,研究了镍含量对所制备的复合材料干滑动磨损行为的影响。结果表明,随着Ni含量从0增加到3wt%,微观结构中θ-Al2Cu相逐渐减少并最终消失,同时伴随着δ-Al3CuNi相和ε-Al3Ni相的形成和增加。随着Ni从0增加到2wt%,铸态复合材料的硬度和极限抗拉强度都有所提高,复合材料在25°C的磨损速率从5.29 × 10−4降低到1.94 × 10−4 mm3/(N∙m),在350°C的磨损速率从20.2 × 10−4降低到7 × 10−4 mm3/(N∙m)。上述性能的提高是由于复合材料中增强的网状结构和存在更多的富镍相所引起的。然而,由于ε-Al3Ni相容易断裂和脱胶的特点,3Ni复合材料的磨损速率显著增大,大约是2Ni复合材料的2倍。所研究的复合材料在25°C滑动的主要磨损机制为磨粒磨损、分层磨损和氧化磨损,而在350°C的滑动过程中,分层磨损和氧化磨损占主导地位。
  • Research Article

    Effect of Ni content on the wear behavior of Al–Si–Cu–Mg–Ni/SiC particles composites

    + Author Affiliations
    • In recent years, the addition of Ni has been widely acknowledged to be capable of enhancing the mechanical properties of Al–Si alloys. However, the effect of Ni on the wear behaviors of Al–Si alloys and Al matrix composites, particularly at elevated temperatures, remains an understudied area. In this study, Al–Si–Cu–Mg–Ni/20wt% SiC particles (SiCp) composites with varying Ni contents were prepared by using a semisolid stir casting method. The effect of Ni content on the dry sliding wear behavior of the prepared composites was investigated through sliding tests at 25 and 350°C. Results indicated that the θ-Al2Cu phase gradually diminished and eventually disappeared as the Ni content increased from 0wt% to 3wt%. This change was accompanied by the formation and increase in δ-Al3CuNi and ε-Al3Ni phases in microstructures. The hardness and ultimate tensile strength of the as-cast composites improved, and the wear rates of the composites decreased from 5.29 × 10−4 to 1.94 × 10−4 mm3/(N∙m) at 25°C and from 20.2 × 10−4 to 7 × 10−4 mm3/(N∙m) at 350°C with the increase in Ni content from 0wt% to 2wt%. The enhancement in performance was due to the presence of strengthening network structures and additional Ni-containing phases in the composites. However, the wear rate of the 3Ni composite was approximately two times higher than that of the 2Ni composite due to the fracture and debonding of the ε-Al3Ni phase. Abrasive wear, delamination wear, and oxidation wear were the predominant wear mechanisms of the investigated composites at 25°C, whereas delamination wear and oxidation wear were dominant during sliding at 350°C.
    • loading
    • [1]
      M.C. Şenel, Y. Kanca, and M. Gürbüz, Reciprocating sliding wear properties of sintered Al–B4C composites, Int. J. Miner. Metall. Mater., 29(2022), No. 6, p. 1261. doi: 10.1007/s12613-020-2243-5
      [2]
      C.Y. Huang, S.P. Hu, and K. Chen, Influence of rolling temperature on the interfaces and mechanical performance of graphene-reinforced aluminum-matrix composites, Int. J. Miner. Metall. Mater., 26(2019), No. 6, p. 752. doi: 10.1007/s12613-019-1780-2
      [3]
      N.C. Kaushik and R.N. Rao, The effect of wear parameters and heat treatment on two body abrasive wear of Al–SiC–Gr hybrid composites, Tribol. Int., 96(2016), p. 184. doi: 10.1016/j.triboint.2015.12.045
      [4]
      N.C. Kaushik and R.N. Rao, Effect of grit size on two body abrasive wear of Al6082 hybrid composites produced by stir casting method, Tribol. Int., 102(2016), p. 52. doi: 10.1016/j.triboint.2016.05.015
      [5]
      E. Safary, R. Taghiabadi, and M.H. Ghoncheh, Mechanical properties of Al–15Mg2Si composites prepared under different solidification cooling rates, Int. J. Miner. Metall. Mater., 29(2022), No. 6, p. 1249. doi: 10.1007/s12613-020-2244-4
      [6]
      H.M. Xia, L. Zhang, Y.C. Zhu, et al., Mechanical properties of graphene nanoplatelets reinforced 7075 aluminum alloy composite fabricated by spark plasma sintering, Int. J. Miner. Metall. Mater., 27(2020), No. 9, p. 1295. doi: 10.1007/s12613-020-2009-0
      [7]
      X.Z. Kai, Z.Q. Li, G.L. Fan, et al., Enhanced strength and ductility in particulate-reinforced aluminum matrix composites fabricated by flake powder metallurgy, Mater. Sci. Eng. A, 587(2013), p. 46. doi: 10.1016/j.msea.2013.08.042
      [8]
      M.Y. Zhou, L.B. Ren, L.L. Fan, et al., Progress in research on hybrid metal matrix composites, J. Alloys Compd., 838(2020), art. No. 155274. doi: 10.1016/j.jallcom.2020.155274
      [9]
      Z.M. Zhang, G.L. Fan, Z.Q. Tan, et al., Towards the strength–ductility synergy of Al2O3/Al composite through the design of roughened interface, Compos. Part B, 224(2021), art. No. 109251. doi: 10.1016/j.compositesb.2021.109251
      [10]
      N.C. Kaushik and R.N. Rao, Influence of applied load on abrasive wear depth of hybrid Gr/SiC/Al–Mg–Si composites in a two-body condition, J. Tribol., 139(2017), No. 6, art. No. 061601. doi: 10.1115/1.4035779
      [11]
      S. Kumar, R.S. Panwar, and O.P. Pandey, Effect of dual reinforced ceramic particles on high temperature tribological properties of aluminum composites, Ceram. Int., 39(2013), No. 6, p. 6333. doi: 10.1016/j.ceramint.2013.01.059
      [12]
      D.X. Mao, X.C. Meng, Y.M. Xie, et al., Strength–ductility balance strategy in SiC reinforced aluminum matrix composites via deformation-driven metallurgy, J. Alloys Compd., 891(2022), art. No. 162078. doi: 10.1016/j.jallcom.2021.162078
      [13]
      W. Zhang and J. Xu, Advanced lightweight materials for Automobiles: A review, Mater. Des., 221(2022), art. No. 110994. doi: 10.1016/j.matdes.2022.110994
      [14]
      A.M. Hassan, A. Alrashdan, M.T. Hayajneh, and A.T. Mayyas, Wear behavior of Al–Mg–Cu-based composites containing SiC particles, Tribol. Int., 42(2009), No. 8, p. 1230. doi: 10.1016/j.triboint.2009.04.030
      [15]
      F. Lin, J. Wang, H. Wu, et al., Synergistic effects of TiC and graphene on the microstructure and tribological properties of Al2024 matrix composites, Adv. Powder Technol., 32(2021), No. 10, p. 3635. doi: 10.1016/j.apt.2021.08.015
      [16]
      R.K. Singh, A. Telang, and S. Das, Microstructure, mechanical properties and two-body abrasive wear behaviour of hypereutectic Al–Si–SiC composite, Trans. Nonferrous Met. Soc. China, 30(2020), No. 1, p. 65. doi: 10.1016/S1003-6326(19)65180-0
      [17]
      Z.Q. Sun, D. Zhang, and G.B. Li, Evaluation of dry sliding wear behavior of silicon particles reinforced aluminum matrix composites, Mater. Des., 26(2005), No. 5, p. 454. doi: 10.1016/j.matdes.2004.07.026
      [18]
      E.A. Diler and R. Ipek, Main and interaction effects of matrix particle size, reinforcement particle size and volume fraction on wear characteristics of Al–SiCp composites using central composite design, Compos. Part B, 50(2013), p. 371. doi: 10.1016/j.compositesb.2013.02.001
      [19]
      H. Ghandvar, M.H. Idris, N. Ahmad, and N. Moslemi, Microstructure development, mechanical and tribological properties of a semisolid A356/xSiCp composite, J. Appl. Res. Technol., 15(2017), No. 6, p. 533. doi: 10.1016/j.jart.2017.06.002
      [20]
      Y. Yalcin and H. Akbulut, Dry wear properties of A356-SiC particle reinforced MMCs produced by two melting routes, Mater. Des., 27(2006), No. 10, p. 872. doi: 10.1016/j.matdes.2005.03.007
      [21]
      D. Li, K. Liu, J. Rakhmonov, and X.G. Chen, Enhanced thermal stability of precipitates and elevated-temperature properties via microalloying with transition metals (Zr, V and Sc) in Al–Cu 224 cast alloys, Mater. Sci. Eng. A, 827(2021), art. No. 142090. doi: 10.1016/j.msea.2021.142090
      [22]
      C. Puncreobutr, P.D. Lee, K.M. Kareh, T. Connolley, J.L. Fife, and A.B. Phillion, Influence of Fe-rich intermetallics on solidification defects in Al–Si–Cu alloys, Acta Mater., 68(2014), p. 42. doi: 10.1016/j.actamat.2014.01.007
      [23]
      J. Rakhmonov, G. Timelli, and F. Bonollo, Characterization of the solidification path and microstructure of secondary Al–7Si–3Cu–0.3Mg alloy with Zr, V and Ni additions, Mater. Charact., 128(2017), p. 100. doi: 10.1016/j.matchar.2017.03.039
      [24]
      H. Tan, S. Wang, Y. Yu, et al., Friction and wear properties of Al–20Si–5Fe–2Ni–graphite solid-lubricating composite at elevated temperatures, Tribol. Int., 122(2018), p. 228. doi: 10.1016/j.triboint.2018.02.037
      [25]
      L.J. Zuo, B. Ye, J. Feng, X.J. Xu, X.Y. Kong, and H.Y. Jiang, Effect of δ-Al3CuNi phase and thermal exposure on microstructure and mechanical properties of Al–Si–Cu–Ni alloys, J. Alloys Compd., 791(2019), p. 1015. doi: 10.1016/j.jallcom.2019.03.412
      [26]
      J. Rakhmonov, K. Liu, L. Pan, F. Breton, and X.G. Chen, Enhanced mechanical properties of high-temperature-resistant Al–Cu cast alloy by microalloying with Mg, J. Alloys Compd., 827(2020), art. No. 154305. doi: 10.1016/j.jallcom.2020.154305
      [27]
      H.L. Yang, S.X. Ji, and Z.Y. Fan, Effect of heat treatment and Fe content on the microstructure and mechanical properties of die-cast Al–Si–Cu alloys, Mater. Des., 85(2015), p. 823. doi: 10.1016/j.matdes.2015.07.074
      [28]
      L.J. Zuo, B. Ye, J. Feng, X.Y. Kong, H.Y. Jiang, and W.J. Ding, Effect of Q-Al5Cu2Mg8Si6 phase on mechanical properties of Al–Si–Cu–Mg alloy at elevated temperature, Mater. Sci. Eng. A, 693(2017), p. 26. doi: 10.1016/j.msea.2017.03.087
      [29]
      Q. Liu, M.W. Liu, C. Xu, et al, Effects of Sr, Ce and P on the microstructure and mechanical properties of rapidly solidified Al–7Si alloys, Mater. Charact., 140(2018), p. 290. doi: 10.1016/j.matchar.2018.04.018
      [30]
      C. Xu, W.L. Xiao, R.X. Zheng, S. Hanada, H. Yamagata, and C.L. Ma, The synergic effects of Sc and Zr on the microstructure and mechanical properties of Al–Si–Mg alloy, Mater. Des., 88(2015), p. 485. doi: 10.1016/j.matdes.2015.09.045
      [31]
      G. Timelli, D. Caliari, and J. Rakhmonov, Influence of process parameters and Sr addition on the microstructure and casting defects of LPDC A356 alloy for engine blocks, J. Mater. Sci. Technol., 32(2016), No. 6, p. 515. doi: 10.1016/j.jmst.2016.03.010
      [32]
      S.K. Shaha, F. Czerwinski, W. Kasprzak, and D.L. Chen, Tensile and compressive deformation behavior of the Al–Si–Cu–Mg cast alloy with additions of Zr, V and Ti, Mater. Des., 59(2014), p. 352. doi: 10.1016/j.matdes.2014.02.060
      [33]
      S.K. Shaha, F. Czerwinski, W. Kasprzak, J. Friedman, and D.L. Chen, Thermal stability of (AlSi)x(ZrVTi) intermetallic phases in the Al–Si–Cu–Mg cast alloy with additions of Ti, V, and Zr, Thermochim. Acta, 595(2014), p. 11. doi: 10.1016/j.tca.2014.08.037
      [34]
      J. Feng, B. Ye, L.J. Zuo, et al., Effects of Ni content on low cycle fatigue and mechanical properties of Al–12Si–0.9Cu–0.8Mg–xNi at 350°C, Mater. Sci. Eng. A, 706(2017), p. 27. doi: 10.1016/j.msea.2017.08.114
      [35]
      Y.G. Li, Y. Yang, Y.Y. Wu, L.Y. Wang, and X.F. Liu, Quantitative comparison of three Ni-containing phases to the elevated-temperature properties of Al–Si piston alloys, Mater. Sci. Eng. A, 527(2010), No. 26, p. 7132. doi: 10.1016/j.msea.2010.07.073
      [36]
      Y. Ma, A. Addad, G. Ji, et al., Atomic-scale investigation of the interface precipitation in a TiB2 nanoparticles reinforced Al–Zn–Mg–Cu matrix composite, Acta Mater., 185(2020), p. 287. doi: 10.1016/j.actamat.2019.11.068
      [37]
      Z. Asghar, G. Requena, and E. Boller, Three-dimensional rigid multiphase networks providing high-temperature strength to cast AlSi10Cu5Ni1-2 piston alloys, Acta Mater., 59(2011), No. 16, p. 6420. doi: 10.1016/j.actamat.2011.07.006
      [38]
      Z. Asghar, G. Requena, H.P. Degischer, and P. Cloetens, Three-dimensional study of Ni aluminides in an AlSi12 alloy by means of light optical and synchrotron microtomography, Acta Mater., 57(2009), No. 14, p. 4125. doi: 10.1016/j.actamat.2009.05.010
      [39]
      Y.Y. Liu, L.N. Jia, W.B. Wang, Z.H. Jin, and H. Zhang, Effects of Ni content on microstructure and wear behavior of Al–13Si–3Cu–1Mg–xNi–0.6Fe–0.6Mn alloys, Wear, 500-501(2022), art. No. 204365. doi: 10.1016/j.wear.2022.204365
      [40]
      Z. Shi, S. Ochiai, M. Gu, M. Hojo, and J.C. Lee, The formation and thermostability of MgO and MgAl2O4 nanoparticles in oxidized SiC particle-reinforced Al–Mg composites, Appl. Phys. A, 74(2002), No. 1, p. 97. doi: 10.1007/s003390100844
      [41]
      A. Ureña, E.E. Martı́nez, P. Rodrigo, and L. Gil, Oxidation treatments for SiC particles used as reinforcement in aluminium matrix composites, Compos. Sci. Technol., 64(2004), No. 12, p. 1843. doi: 10.1016/j.compscitech.2004.01.010
      [42]
      Y. Xing, N.Y. Li, C.J. Li, et al., Effects of size and oxidation treatment for SiC particles on the microstructures and mechanical properties of SiCp/Al composites prepared by powder metallurgy, Mater. Sci. Eng. A, 851(2022), art. No. 143664. doi: 10.1016/j.msea.2022.143664
      [43]
      J.F. Archard Contact and rubbing of flat surfaces, J. Appl. Phys., 24(1953), No. 8, p. 981.
      [44]
      M. Moazami-Goudarzi and F. Akhlaghi, Wear behavior of Al5252 alloy reinforced with micrometric and nanometric SiC particles, Tribol. Int., 102(2016), p. 28. doi: 10.1016/j.triboint.2016.05.013
      [45]
      C. Subramanian, Some considerations towards the design of a wear resistant aluminium alloy, Wear, 155(1992), No. 1, p. 193. doi: 10.1016/0043-1648(92)90118-R
      [46]
      L. Wang, B.X. Dong, F. Qiu, et al., Dry sliding friction and wear characterization of in situ TiC/Al–Cu3.7–Mg1.3 nanocomposites with nacre-like structures, J. Mater. Res. Technol., 9(2020), No. 1, p. 641. doi: 10.1016/j.jmrt.2019.11.005

    Catalog


    • /

      返回文章
      返回