留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 12
Dec.  2023

图(4)

数据统计

分享

计量
  • 文章访问数:  704
  • HTML全文浏览量:  212
  • PDF下载量:  63
  • 被引次数: 0
Haiyan Li, Yuzhao Wang, Fanqi Meng, Wei Mao, Xingzhong Cao, Yi Bian, Hao Zhang, Yong Jiang, Nuofu Chen, and Jikun Chen, Metal–organic decomposition growth of thin film metastable perovskite nickelates with kinetically improved quantum transitions, Int. J. Miner. Metall. Mater., 30(2023), No. 12, pp. 2441-2450. https://doi.org/10.1007/s12613-023-2703-9
Cite this article as:
Haiyan Li, Yuzhao Wang, Fanqi Meng, Wei Mao, Xingzhong Cao, Yi Bian, Hao Zhang, Yong Jiang, Nuofu Chen, and Jikun Chen, Metal–organic decomposition growth of thin film metastable perovskite nickelates with kinetically improved quantum transitions, Int. J. Miner. Metall. Mater., 30(2023), No. 12, pp. 2441-2450. https://doi.org/10.1007/s12613-023-2703-9
引用本文 PDF XML SpringerLink
研究论文

金属有机分解法生长具有优异电子相变特性的亚稳相稀土镍基氧化物薄膜



    * 共同第一作者
  • 通讯作者:

    陈吉堃    E-mail: jikunchen@ustb.edu.cn

文章亮点

  • (1) 设计以金属有机物为前驱体的化学方法,通过高氧压下固相反应与界面非均匀形核协同作用实现处于热力学亚稳相的稀土镍基氧化物薄膜的有效生长。
  • (2) 与稀土镍基氧化物传统的真空沉积技术相比,该方法可通过对金属有机化合物前驱体的组分设计实现对稀土镍基氧化物薄膜稀土元素组分的灵活调控,从而实现其金属绝缘体相变温度的宽范围灵活调控。
  • (3) 与稀土镍基氧化物以往报道的化学技术相比,该方法所使用的金属有机化合物前驱体具有更高的反应活性,因此可以有效提高亚稳相稀土镍基氧化物薄膜的沉积厚度。
  • 以稀土镍基氧化物(RENiO3)为代表的过渡族金属氧化物多场触发下所发生的多重量子态转变为设计制备新型强关联电子器件提供了宽广的探索空间。与VO2等常见电子相变材料相比,RENiO3的优势在于可以通过稀土元素组分设计实现其金属绝缘体转变温度在跨越400 K的宽广温区范围内的连续调节。除传统的金属绝缘体相变外,RENiO3还可以由氢触发其基于Ni3+的电子迅游态转变为基于Ni2+的电子局域态,引起电子电导率的可逆巨幅增加,进一步开启了RENiO3在海洋电场传感、神经元逻辑器件、生物质传感等方面的潜在应用探索。而更为值得关注的是2019年镍基超导特性的发现,使得RENiO3成为凝聚态物理领域的研究热点之一。然而,开展相关研究的壁垒在于RENiO3材料处于热力学亚稳相,其具有正的吉布斯自由能因而难以通过传统的固相反应实现材料生长,特别是现有真空沉积技术难以实现对其稀土组分与电子结构的灵活调控。针对上述问题,本文设计了一种金属有机分解法(MOD),通过高氧压下固相反应与界面非均匀形核协同作用制备了涵盖一系列稀土组分的RENiO3薄膜材料。与以往报道的化学技术相比,该方法通过对金属有机化合物前驱体的组分设计实现了稀土元素组分的灵活调控,且所使用的前驱体具有更高的反应活性,因此可以有效提高薄膜的沉积厚度。进一步的研究结果表明MOD制备的RENiO3薄膜中具有大量的晶格缺陷,促进了氢的进入以及电子的转移,有效地提高了RENiO3电阻的调控幅度,揭示了缺陷工程可能是调控强关联电子氧化物材料氢致电子相变特性的有效方法。
  • Research Article

    Metal–organic decomposition growth of thin film metastable perovskite nickelates with kinetically improved quantum transitions

    + Author Affiliations
    • The multiple quantum transitions within d-band correlation oxides such as rare-earth nickelates (RENiO3) triggered by critical temperatures and/or hydrogenation opened up a new paradigm for correlated electronics applications, e.g. ocean electric field sensor, bio-sensor, and neuron synapse logical devices. Nevertheless, these applications are obstructed by the present ineffectiveness in the thin film growth of the metastable RENiO3 with flexibly adjustable rare-earth compositions and electronic structures. Herein, we demonstrate a metal-organic decompositions (MOD) approach that can effectively grow metastable RENiO3 covering a large variety of the rare-earth composition without introducing any vacuum process. Unlike the previous chemical growths for RENiO3 relying on strict interfacial coherency that limit the film thickness, the MOD growth using reactive isooctanoate percussors is tolerant to lattice defects and therefore achieves comparable film thickness to vacuum depositions. Further indicated by positron annihilation spectroscopy, the RENiO3 grown by MOD exhibit large amount of lattice defects that improves their hydrogen incorporation amount and electron transfers, as demonstrated by the resonant nuclear reaction analysis and near edge X-ray absorption fine structure analysis. This effectively enlarges the magnitude in the resistance regulations in particular for RENiO3 with lighter RE, shedding a light on the extrinsic regulation of the hydrogen induced quantum transitions for correlated oxides semiconductors kinetically via defect engineering.
    • loading
    • Supplementary Information-10.1007s12613-023-2703-9.docx
    • [1]
      Z. Zhang, D. Schwanz, B. Narayanan, et al., Perovskite nickelates as electric-field sensors in salt water, Nature, 553(2018), No. 7686, p. 68. doi: 10.1038/nature25008
      [2]
      Y. Zhou, X.F. Guan, H. Zhou, et al., Strongly correlated perovskite fuel cells, Nature, 534(2016), No. 7606, p. 231. doi: 10.1038/nature17653
      [3]
      Y.F. Sun, M. Kotiuga, D. Lim, et al., Strongly correlated perovskite lithium ion shuttles, Proc. Natl. Acad. Sci. USA, 115(2018), No. 39, p. 9672. doi: 10.1073/pnas.1805029115
      [4]
      J. Shi, Y. Zhou, and S. Ramanathan, Colossal resistance switching and band gap modulation in a perovskite nickelate by electron doping, Nat. Commun., 5(2014), art. No. 4860. doi: 10.1038/ncomms5860
      [5]
      F. Zuo, P. Panda, M. Kotiuga, et al., Habituation based synaptic plasticity and organismic learning in a quantum perovskite, Nat. Commun., 8(2017), No. 1, art. No. 240. doi: 10.1038/s41467-017-00248-6
      [6]
      H.T. Zhang, T.J. Park, I.A. Zaluzhnyy, et al., Perovskite neural trees, Nat. Commun., 11(2020), No. 1, art. No. 2245. doi: 10.1038/s41467-020-16105-y
      [7]
      H.T. Zhang, F. Zuo, F. Li, et al., Perovskite nickelates as bio-electronic interfaces, Nat. Commun., 10(2019), No. 1, art. No. 1651. doi: 10.1038/s41467-019-09660-6
      [8]
      H. Yoon, M. Choi, T.W. Lim, et al., Reversible phase modulation and hydrogen storage in multivalent VO2 epitaxial thin films, Nat. Mater., 15(2016), No. 10, p. 1113. doi: 10.1038/nmat4692
      [9]
      N.P. Lu, P.F. Zhang, Q.H. Zhang, et al., Electric-field control of tri-state phase transformation with a selective dual-ion switch, Nature, 546(2017), No. 7656, p. 124. doi: 10.1038/nature22389
      [10]
      Z.X. Wei, Z.Y. Wang, C.Q. Xu, et al., Defect-induced insulator-metal transition and negative permittivity in La1−xBaxCoO3 perovskite structure, J. Mater. Sci. Technol., 112(2022), p. 77. doi: 10.1016/j.jmst.2021.11.002
      [11]
      S.J. Fang, Z.Y. Pang, F.G. Wang, L. Lin, and S.H. Han, Annealing effect on transport and magnetic properties of La0.67Sr0.33MnO3 thin films grown on glass substrates by RF magnetron sputtering, J. Mater. Sci. Technol., 27(2011), No. 3, p. 223. doi: 10.1016/S1005-0302(11)60053-4
      [12]
      X.F. Zhou, Z.R. Jia, A.L. Feng, et al., Synthesis of fish skin-derived 3D carbon foams with broadened bandwidth and excellent electromagnetic wave absorption performance, Carbon, 152(2019), p. 827. doi: 10.1016/j.carbon.2019.06.080
      [13]
      H.J. Wu, G.L. Wu, and L.D. Wang, Peculiar porous α-Fe2O3, γ-Fe2O3 and Fe3O4 nanospheres: Facile synthesis and electromagnetic properties, Powder Technol., 269(2015), p. 443. doi: 10.1016/j.powtec.2014.09.045
      [14]
      G. Catalan, Progress in perovskite nickelate research, Phase Transitions, 81(2008), No. 7-8, p. 729. doi: 10.1080/01411590801992463
      [15]
      J.K. Chen, H.Y. Hu, J.O. Wang, et al., Overcoming synthetic metastabilities and revealing metal-to-insulator transition & thermistor bi-functionalities for d-band correlation perovskite nickelates, Mater. Horiz., 6(2019), No. 4, p. 788. doi: 10.1039/C9MH00008A
      [16]
      J.R. Li, R.J. Green, Z. Zhang, et al., Sudden collapse of magnetic order in oxygen-deficient nickelate films, Phys. Rev. Lett., 126(2021), No. 18, art. No. 187602. doi: 10.1103/PhysRevLett.126.187602
      [17]
      R. Jaramillo, S.D. Ha, D.M. Silevitch, and S. Ramanathan, Origins of bad-metal conductivity and the insulator-metal transition in the rare-earth nickelates, Nat. Phys., 10(2014), No. 4, p. 304. doi: 10.1038/nphys2907
      [18]
      J.S. Zhou, J.B. Goodenough, and B. Dabrowski, Pressure-induced non-fermi-liquid behavior of PrNiO3, Phys. Rev. Lett., 94(2005), No. 22, art. No. 226602. doi: 10.1103/PhysRevLett.94.226602
      [19]
      I.I. Mazin, D.I. Khomskii, R. Lengsdorf, et al., Charge ordering as alternative to Jahn–Teller distortion, Phys. Rev. Lett., 98(2007), No. 17, art. No. 176406. doi: 10.1103/PhysRevLett.98.176406
      [20]
      D. Li, K. Lee, B.Y. Wang, et al., Superconductivity in an infinite-layer nickelate, Nature, 572(2019), No. 7771, p. 624. doi: 10.1038/s41586-019-1496-5
      [21]
      J.K. Chen, W. Mao, L. Gao, et al., Electron-doping mottronics in strongly correlated perovskite, Adv. Mater., 32(2020), No. 6, art. No. 1905060. doi: 10.1002/adma.201905060
      [22]
      H. Lu, M. Rossi, A. Nag, et al., Magnetic excitations in infinite-layer nickelates, Science, 373(2021), No. 6551, p. 213. doi: 10.1126/science.abd7726
      [23]
      E. Been, W.S. Lee, H.Y. Hwang, et al., Electronic structure trends across the rare-earth series in superconducting infinite-layer nickelates, Phys. Rev. X, 11(2021), No. 1, art. No. 011050. doi: 10.1103/PhysRevX.11.011050
      [24]
      H.F. Li, F.Q. Meng, Y. Bian, et al., Frequency regulation in alternation-current transports across metal to insulator transitions of thin film correlated perovskite nickelates, J. Mater. Sci. Technol., 148(2023), p. 235. doi: 10.1016/j.jmst.2022.11.026
      [25]
      R. Jaramillo, F. Schoofs, S.D. Ha and S. Ramanathan, High pressure synthesis of SmNiO3 thin films and implications for thermodynamics of the nickelates, J. Mater. Chem. C, 1(2013), No. 13, p. 2455. doi: 10.1039/c3tc00844d
      [26]
      N. Shukla, T. Joshi, S. Dasgupta, P. Borisov, D. Lederman, and S. Datta, Electrically induced insulator to metal transition in epitaxial SmNiO3 thin films, Appl. Phys. Lett., 105(2014), No. 1, art. No. 012108. doi: 10.1063/1.4890329
      [27]
      A. Ambrosini and J.F. Hamet, SmxNd1–x NiO3 thin-film solid solutions with tunable metal–insulator transition synthesized by alternate-target pulsed-laser deposition, Appl. Phys. Lett., 82(2003), No. 5, p. 727. doi: 10.1063/1.1541116
      [28]
      J. Shi, S.D. Ha, Y. Zhou, F. Schoofs, and S. Ramanathan, A correlated nickelate synaptic transistor, Nat. Commun., 4(2013), art. No. 2676. doi: 10.1038/ncomms3676
      [29]
      F.Y. Bruno, K.Z. Rushchanskii, S. Valencia, et al., Rationalizing strain engineering effects in rare-earth nickelates, Phys. Rev. B, 88(2013), No. 19, art. No. 195108. doi: 10.1103/PhysRevB.88.195108
      [30]
      F. Conchon, A. Boulle, R. Guinebretière, et al., Effect of tensile and compressive strains on the transport properties of SmNiO3 layers epitaxially grown on (001) SrTiO3 and LaAlO3 substrates, Appl. Phys. Lett., 91(2007), No. 19, art. No. 192110. doi: 10.1063/1.2800306
      [31]
      R.W. Vest, Metallo-organic decomposition (MOD) processing of ferroelectric and electro-optic films: A review, Ferroelectrics, 102(1990), No. 1, p. 53. doi: 10.1080/00150199008221465
      [32]
      G.M. Vest and S. Singaram, Synthesis of metallo-organic compounds for mod powders and films, MRS Online Proc. Libr., 60(1985), No. 1, p. 35.
      [33]
      I.V. Nikulin, M.A. Novojilov, A.R. Kaul, S.N. Mudretsova, and S.V. Kondrashov, Oxygen nonstoichiometry of NdNiO3−δ and SmNiO3−δ, Mater. Res. Bull., 39(2004), No. 6, p. 775. doi: 10.1016/j.materresbull.2004.02.005
      [34]
      M.T. Escote, A.M.L. da Silva, J.R. Matos, and R.F. Jardim, General properties of polycrystalline LnNiO3 (Ln = Pr, Nd, Sm) compounds prepared through different precursors, J. Solid State Chem., 151(2000), No. 2, p. 298. doi: 10.1006/jssc.2000.8657
      [35]
      J.K. Chen, H.Y. Hu, J.O. Wang, et al., A d-band electron correlated thermoelectric thermistor established in metastable perovskite family of rare-earth nickelates, ACS Appl. Mater. Interfaces, 11(2019), No. 37, p. 34128. doi: 10.1021/acsami.9b12609
      [36]
      B.Y. Wang, Y.Y. Ma, Z. Zhang, R.S. Yu, and P. Wang, Performance of the Beijing pulsed variable-energy positron beam, Appl. Surf. Sci., 255(2008), No. 1, p. 119. doi: 10.1016/j.apsusc.2008.05.183
      [37]
      Y. Bian, H.Y. Li, F.B. Yan, et al., Hydrogen induced electronic transition within correlated perovskite nickelates with heavy rare-earth composition, Appl. Phys. Lett., 120(2022), No. 9, art. No. 092103. doi: 10.1063/5.0082917
      [38]
      J.K. Chen, Y. Zhou, S. Middey, et al., Self-limited kinetics of electron doping in correlated oxides, Appl. Phys. Lett., 107(2015), No. 3, art. No. 031905. doi: 10.1063/1.4927322
      [39]
      K. Kleiner, J. Melke, M. Merz, et al., Unraveling the degradation process of LiNi0.8Co0.15Al0.05O2 electrodes in commercial lithium ion batteries by electronic structure investigations, ACS Appl. Mater. Interfaces, 7(2015), No. 35, p. 19589. doi: 10.1021/acsami.5b03191
      [40]
      L.A. Montoro, M. Abbate, and J.M. Rosolen, Electronic structure of transition metal ions in deintercalated and reintercalated LiCo0.5Ni0.5O2, J. Electrochem. Soc., 147(2000), No. 5, art. No. 1651. doi: 10.1149/1.1393412
      [41]
      H. Kobayashi, M. Shikano, S. Koike, H. Sakaebe, and K. Tatsumi, Investigation of positive electrodes after cycle testing of high-power Li-ion battery cells, J. Power Sources, 174(2007), No. 2, p. 380. doi: 10.1016/j.jpowsour.2007.06.134
      [42]
      M. Wilde and K. Fukutani, Hydrogen detection near surfaces and shallow interfaces with resonant nuclear reaction analysis, Surf. Sci. Rep., 69(2014), No. 4, p. 196. doi: 10.1016/j.surfrep.2014.08.002
      [43]
      J.K. Chen, W. Mao, B.H. Ge, et al., Revealing the role of lattice distortions in the hydrogen-induced metal-insulator transition of SmNiO3, Nat. Commun., 10(2019), No. 1, art. No. 694. doi: 10.1038/s41467-019-08613-3
      [44]
      W. Mao, M. Wilde, T. Chikada, et al., Fabrication and hydrogen permeation properties of epitaxial Er2O3 films revealed by nuclear reaction analysis, J. Phys. Chem. C, 120(2016), No. 28, p. 15147. doi: 10.1021/acs.jpcc.6b02864

    Catalog


    • /

      返回文章
      返回