留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 3
Mar.  2024

图(13)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  146
  • HTML全文浏览量:  41
  • PDF下载量:  6
  • 被引次数: 0
Xiangtao Huo, Rongxia Chai, Lizheng Gou, Mei Zhang, and Min Guo, Facile synthesis of composite polyferric magnesium–silicate–sulfate coagulant with enhanced performance in water and wastewater, Int. J. Miner. Metall. Mater., 31(2024), No. 3, pp. 574-584. https://doi.org/10.1007/s12613-023-2704-8
Cite this article as:
Xiangtao Huo, Rongxia Chai, Lizheng Gou, Mei Zhang, and Min Guo, Facile synthesis of composite polyferric magnesium–silicate–sulfate coagulant with enhanced performance in water and wastewater, Int. J. Miner. Metall. Mater., 31(2024), No. 3, pp. 574-584. https://doi.org/10.1007/s12613-023-2704-8
引用本文 PDF XML SpringerLink
研究论文

具备改进的水和废水处理能力的复合聚硅酸镁–硫酸铁混凝剂的简易合成


  • 通讯作者:

    郭敏    E-mail: guomin@ustb.edu.cn

文章亮点

  • (1) 合成了新型复合混凝剂聚硅酸硫酸铁镁
  • (2) PFMS在处理水和废水时表现出良好的混凝性能
  • (3) UV254去除率和残留浊度分别为98.81%和0.56NTU
  • (4) UV254的去除率和残留浊度在静置后保持良好的值
  • (5) PFMS在pH7–13范围内具有良好的脱色效果。
  • 混凝工艺是一种广泛应用于水和废水处理的技术。本论文以Na2SiO3·9H2O、Fe2(SO4)3和MgSO4为原料,合成了新型复合聚硅酸镁–硫酸铁混凝剂。系统地研究了老化时间、Fe:Si:Mg和OH:M摩尔比(M表示金属离子)对所制备的PFMS的混凝性能的影响,以获得最佳的混凝剂。结果表明,PFMS混凝剂对处理模拟腐殖酸-高岭土地表水和活性染料废水具有良好的混凝性能。当摩尔比控制在Fe:Si:Mg=2:2:1和OH:M=0.32时,所获得的PFMS表现出优异的稳定性和高的凝固效率。紫外线(UV)254的去除率为99.81%,在30 mg·L–1的剂量下,地表水的残余浊度达到0.56 NTU。混凝剂在实验室静置120 d后,对地表水UV254和残余浊度的去除率分别为88.12%和0.68 NTU,符合地表水处理要求。此外,结合镁盐和铁盐的优点,大大提高了活性染料废水的混凝性能。与聚硅酸硫酸铁(PFS)和聚硅酸硫酸镁(PMS)相比,PFMS混凝剂在7–13的pH范围内具有更好的脱色作用。
  • Research Article

    Facile synthesis of composite polyferric magnesium–silicate–sulfate coagulant with enhanced performance in water and wastewater

    + Author Affiliations
    • The coagulation process is a widely applied technology in water and wastewater treatment. Novel composite polyferric magnesium–silicate–sulfate (PFMS) coagulants were synthesized using Na2SiO3·9H2O, Fe2(SO4)3, and MgSO4 as raw materials in this paper. The effects of aging time, Fe:Si:Mg, and OH:M molar ratios (M represents the metal ions) on the coagulation performance of the as-prepared PFMS were systematically investigated to obtain optimum coagulants. The results showed that PFMS coagulant exhibited good coagulation properties in the treatment of simulated humic acid–kaolin surface water and reactive dye wastewater. When the molar ratio was controlled at Fe:Si:Mg = 2:2:1 and OH:M = 0.32, the obtained PFMS presented excellent stability and a high coagulation efficiency. The removal efficiency of ultraviolet UV254 was 99.81%, and the residual turbidity of the surface water reached 0.56 NTU at a dosage of 30 mg·L–1. After standing the coagulant for 120 d in the laboratory, the removal efficiency of UV254 and residual turbidity of the surface water were 88.12% and 0.68 NTU, respectively, which accord with the surface water treatment requirements. In addition, the coagulation performance in the treatment of reactive dye wastewater was greatly improved by combining the advantages of magnesium and iron salts. Compared with polyferric silicate–sulfate (PFS) and polymagnesium silicate–sulfate (PMS), the PFMS coagulant played a better decolorization role within the pH range of 7–13.
    • loading
    • [1]
      G.C. Zhu, H.L. Zheng, Z. Zhang, T. Tshukudu, P. Zhang, and X.Y. Xiang, Characterization and coagulation–flocculation behavior of polymeric aluminum ferric sulfate (PAFS), Chem. Eng. J., 178(2011), p. 50. doi: 10.1016/j.cej.2011.10.008
      [2]
      A.K. Tolkou and A. Zouboulis, Synthesis and characterization of a novel composite pre polymerized coagulant for water and wastewater treatment, Int. J. Environ. Eng., 2(2015), No. 2, p.154.
      [3]
      Q.N. Ho, M. Fettweis, K.L. Spencer, and B.J. Lee, Flocculation with heterogeneous composition in water environments: A review, Water Res., 213(2022), art. No. 118147. doi: 10.1016/j.watres.2022.118147
      [4]
      C.L. Zhao, J.Y. Zhou, Y. Yan, et al., Application of coagulation/flocculation in oily wastewater treatment: A review, Sci. Total Environ., 765(2021), art. No. 142795. doi: 10.1016/j.scitotenv.2020.142795
      [5]
      X.W. Liu, Q.K. Zhou, K.X. Li, P. Chen, M.M. Ye, and L.L. Wang, Applying permanganate/bisulfite (PM/BS) pre-oxidation enhanced coagulation to control fouling of ultrafiltration membrane in drinking waterworks, J. Water Process. Eng., 52(2023), art. No. 103486. doi: 10.1016/j.jwpe.2023.103486
      [6]
      L.H. Zhang, X.L. Liu, M.S. Zhang, T.Z. Wang, H. Tang, and Y.P. Jia, The effect of pH/PAC on the coagulation of anionic surfactant wastewater generated in the cosmetic production, J. Environ. Chem. Eng., 11(2023), No. 2, art. No. 109312. doi: 10.1016/j.jece.2023.109312
      [7]
      Y. Rakhila, A. Elmchaouri, A. Mestari, S. Korili, M. Abouri, and A. Gil, Adsorption recovery of Ag(I) and Au(III) from an electronics industry wastewater on a clay mineral composite, Int. J. Miner. Metall. Mater., 26(2019), No. 6, p. 673. doi: 10.1007/s12613-019-1777-x
      [8]
      J.S. Yuan, Y. Zhang, X.Y. Zhang, L. Zhao, H.L. Shen, and S.G. Zhang, Template-free synthesis of core–shell Fe3O4@MoS2@mesoporous TiO2 magnetic photocatalyst for wastewater treatment, Int. J. Miner. Metall. Mater., 30(2023), No. 1, p. 177. doi: 10.1007/s12613-022-2473-9
      [9]
      A.K. Badawi and K. Zaher, Hybrid treatment system for real textile wastewater remediation based on coagulation/flocculation, adsorption and filtration processes: Performance and economic evaluation, J. Water Process. Eng., 40(2021), art. No. 101963. doi: 10.1016/j.jwpe.2021.101963
      [10]
      M.S.S. Abujazar, S.U. Karaağaç, S.S. Abu Amr, M.Y.D. Alazaiza, and M.J. Bashir, Recent advancement in the application of hybrid coagulants in coagulation-flocculation of wastewater: A review, J. Clean. Prod., 345(2022), art. No. 131133. doi: 10.1016/j.jclepro.2022.131133
      [11]
      Y. Cheng, Q.Q. Cheng, C.J. Zhao, et al., Evaluation of efficiently removing secondary effluent organic matters (EfOM) by Al-based coagulant for wastewater recycling: A case study with an industrial-scale food-processing wastewater treatment plant, Membranes, 13(2023), No. 5, art. No. 510. doi: 10.3390/membranes13050510
      [12]
      A. Turan, M. Kobya, C. Iskurt, E. Gengec, and A. Khataee, A techno-economical assessment of treatment by coagulation-flocculation with aluminum and iron-bases coagulants of landfill leachate membrane concentrates, Chemosphere, 314(2023), art. No. 137750. doi: 10.1016/j.chemosphere.2023.137750
      [13]
      S.Q. Wu, B.W. Ma, C.Z. Hu, et al., Cake layer 3D structure regulation to optimize water channels during Al-based coagulation-ultrafiltration process, Water Res., 236(2023), art. No. 119941. doi: 10.1016/j.watres.2023.119941
      [14]
      X.Y. Wang, C. Shi, X.D. Hao, M.C.M. van Loosdrecht, and Y.Y. Wu, Synergy of phosphate recovery from sludge-incinerated ash and coagulant production by desalinated brine, Water Res., 231(2023), art. No. 119658. doi: 10.1016/j.watres.2023.119658
      [15]
      B.Y. Gao, Q.Y. Yue, and H.S. Huang, The research progress of water treatment of inorganic coagulating agent, Environ. Prot. Oil Gas Fields, 8(1998), No. 2, p. 39.
      [16]
      K. Hu, Q.L. Zhao, W. Chen, and F. Tang, Preparation of an aluminum and iron-based coagulant from fly ash for industrial wastewater treatment, Clean Soil Air Water, 45(2017), No. 9, art. No. 1600437. doi: 10.1002/clen.201600437
      [17]
      G.C. Zhu, C. Wang, X.B. Liu, et al., Preparation and characterization of polymeric phosphate-aluminum sulphate for source water treatment, Water Supply, 16(2016), No. 4, p. 1138. doi: 10.2166/ws.2016.035
      [18]
      W. Chen, H.L. Zheng, H.K. Teng, et al., Enhanced coagulation-flocculation performance of iron-based coagulants: Effects of PO ${}_4^{3-} $ and SiO ${}_3^{2-} $ modifiers, PLoS One, 10(2015), No. 9, art. No. e0137116. doi: 10.1371/journal.pone.0137116
      [19]
      N. Al Otaibi, E. Bakir, and E. Afkar, Efficient alum and iron supported on silica matrix as gel coagulants for advance chemical treatment of dairy product effluents, J. Sol Gel Sci. Technol., 92(2019), No. 3, p. 529. doi: 10.1007/s10971-019-05115-y
      [20]
      X. Liu, X.M. Li, Q. Yang, et al., Landfill leachate pretreatment by coagulation-flocculation process using iron-based coagulants: Optimization by response surface methodology, Chem. Eng. J., 200-202(2012), p. 39. doi: 10.1016/j.cej.2012.06.012
      [21]
      T. Coradin and J. Livage, Effect of some amino acids and peptides on silicic acid polymerization, Colloids Surf. B, 21(2001), No. 4, p. 329. doi: 10.1016/S0927-7765(01)00143-6
      [22]
      B.Y. Gao, H.H. Hahn, and E. Hoffmann, Evaluation of aluminum–silicate polymer composite as a coagulant for water treatment, Water Res., 36(2002), No. 14, p. 3573. doi: 10.1016/S0043-1354(02)00054-4
      [23]
      Y.Y. Dai and H.Q. Qiu, Speciation analysis and coagulation behavior of PFSS, Tech. Equip. Environ. Pollut. Control, 6(2005), No. 3, p. 61.
      [24]
      A.I. Zouboulis and N.D. Tzoupanos, Polyaluminium silicate chloride—A systematic study for the preparation and application of an efficient coagulant for water or wastewater treatment, J. Hazard. Mater., 162(2009), No. 2-3, p. 1379. doi: 10.1016/j.jhazmat.2008.06.019
      [25]
      B.H. Tan, T.T. Teng, and A.K.M. Omar, Removal of dyes and industrial dye wastes by magnesium chloride, Water Res., 34(2000), No. 2, p. 597. doi: 10.1016/S0043-1354(99)00151-7
      [26]
      Y.X. Wei, A.M. Ding, L. Dong, Y.Q. Tang, F.L. Yu, and X.Z. Dong, Characterization and coagulation performance of an inorganic coagulant—poly-magnesium–silicate–chloride in treatment of simulated dyeing wastewater, Colloids Surf. A, 470(2015), p. 137. doi: 10.1016/j.colsurfa.2015.01.066
      [27]
      A. Tolkou and A. Zouboulis, Synthesis and coagulation performance of composite poly-aluminum–ferric–silicate–chloride coagulants in water and wastewater, Desalin. Water Treat., 53(2015), No. 12, p. 3309. doi: 10.1080/19443994.2014.933614
      [28]
      P.A. Moussas and A.I. Zouboulis, A study on the properties and coagulation behaviour of modified inorganic polymeric coagulant—polyferric silicate sulphate (PFSiS), Sep. Purif. Technol., 63(2008), No. 2, p. 475. doi: 10.1016/j.seppur.2008.06.009
      [29]
      K.S. Zhang and F.C. Zeng, Preparation of poly-ferric aluminium silica sulfate coagulant from industrial wastes, J. Chem. Ind. Eng. China, 59(2008), No. 9, p. 2361.
      [30]
      Y. Fu, S.L. Yu, Y.Z. Yu, L.P. Qiu, and B. Hui, Reaction mode between Si and Fe and evaluation of optimal species in poly-silicic–ferric coagulant, J. Environ. Sci., 19(2007), No. 6, p. 678. doi: 10.1016/S1001-0742(07)60114-4
      [31]
      E. Doelsch, A. Masion, J. Rose, W.E.E. Stone, J.Y. Bottero, and P.M. Bertsch, Chemistry and structure of colloids obtained by hydrolysis of Fe(III) in the presence of SiO4 ligands, Colloids Surf. A, 217(2003), No. 1-3, p. 121. doi: 10.1016/S0927-7757(02)00566-6
      [32]
      Y. Fu, S.L. Yu, and C.W. Han, Morphology and coagulation performance during preparation of poly-silicic–ferric (PSF) coagulant, Chem. Eng. J., 149(2009), No. 1-3, p. 1. doi: 10.1016/j.cej.2007.03.020
      [33]
      Y.B. Zeng and J. Park, Characterization and coagulation performance of a novel inorganic polymer coagulant—poly-zinc–silicate–sulfate, Colloids Surf. A, 334(2009), No. 1-3, p. 147. doi: 10.1016/j.colsurfa.2008.10.009
      [34]
      T. Sun, L.L. Liu, L.L. Wan, and Y.P. Zhang, Effect of silicon dose on preparation and coagulation performance of poly-ferric–aluminum–silicate–sulfate from oil shale ash, Chem. Eng. J., 163(2010), No. 1-2, p. 48. doi: 10.1016/j.cej.2010.07.037
      [35]
      W. Chen, H.L. Zheng, J. Zhai, et al., Characterization and coagulation–flocculation performance of a composite coagulant: Poly-ferric–aluminum–silicate–sulfate, Desalin. Water Treat., 56(2015), No. 7, p. 1776. doi: 10.1080/19443994.2014.958109
      [36]
      P. Jarvis, E. Sharp, M. Pidou, R. Molinder, S.A. Parsons, and B. Jefferson, Comparison of coagulation performance and floc properties using a novel zirconium coagulant against traditional ferric and alum coagulants, Water Res., 46(2012), No. 13, p. 4179. doi: 10.1016/j.watres.2012.04.043
      [37]
      A.J. Jafari, M. Mahrooghi, and M. Moslemzadeh, Removal of Escherichia coli from synthetic turbid water using titanium tetrachloride and zirconium tetrachloride as coagulants, Desalin. Water Treat., 163(2019), p. 358. doi: 10.5004/dwt.2019.24552
      [38]
      Y.X. Wei, Q.Z. Ji, L. Chen, J.W. Hao, C.L. Yao, and X.Z. Dong, Preparation of an inorganic coagulant–polysilicate–magnesium for dyeing wastewater treatment: Effect of acid medium on the characterization and coagulation performance, J. Taiwan Inst. Chem. Eng., 72(2017), p. 142. doi: 10.1016/j.jtice.2017.01.020
      [39]
      Y.X. Wei, X.Z. Dong, A.M. Ding, and D. Xie, Characterization and coagulation–flocculation behavior of an inorganic polymer coagulant–poly-ferric–zinc–sulfate, J. Taiwan Inst. Chem. Eng., 58(2016), p. 351. doi: 10.1016/j.jtice.2015.06.004
      [40]
      G.C. Zhu, Q. Wang, J. Yin, et al., Toward a better understanding of coagulation for dissolved organic nitrogen using polymeric zinc–iron–phosphate coagulant, Water Res., 100(2016), p. 201. doi: 10.1016/j.watres.2016.05.035
      [41]
      Z.M. Liu, Y.M. Sang, Z.G. Tong, Q.H. Wang, and T.C. Sun, Decolourization performance and mechanism of leachate secondary effluent using poly-aluminium(III)–magnesium(II) sulphate, Water Environ. J., 26(2012), No. 1, p. 85. doi: 10.1111/j.1747-6593.2011.00266.x
      [42]
      H.J. Jeoung, T.H. Lee, Y. Kim, et al., Use of various MgO resources for high-purity Mg metal production through molten salt electrolysis and vacuum distillation, J. Magnesium Alloys, 11(2023), No. 2, p. 562. doi: 10.1016/j.jma.2022.07.009
      [43]
      B.Y. Gao, Q.Y. Yue, Y. Wang, and W.Z. Zhou, Color removal from dye-containing wastewater by magnesium chloride, J. Environ. Manage., 82(2007), No. 2, p. 167. doi: 10.1016/j.jenvman.2005.12.019
      [44]
      L. Semerjian and G.M. Ayoub, High-pH–magnesium coagulation–flocculation in wastewater treatment, Adv. Environ. Res., 7(2003), No. 2, p. 389. doi: 10.1016/S1093-0191(02)00009-6
      [45]
      P.A. Moussas and A.I. Zouboulis, Synthesis, characterization and coagulation behavior of a composite coagulation reagent by the combination of polyferric sulfate (PFS) and cationic polyelectrolyte, Sep. Purif. Technol., 96(2012), p. 263. doi: 10.1016/j.seppur.2012.06.024
      [46]
      R. Li, C. He, and Y.L. He, Preparation and characterization of poly-silicic-cation coagulants by synchronous-polymerization and co-polymerization, Chem. Eng. J., 223(2013), p. 869. doi: 10.1016/j.cej.2013.03.010
      [47]
      N.D. Tzoupanos and A.I. Zouboulis, Novel inorganic–organic composite coagulants based on aluminium, Desalin. Water Treat., 13(2010), No. 1-3, p. 340. doi: 10.5004/dwt.2010.1042
      [48]
      S. Mohan and R. Gandhimathi, Removal of heavy metal ions from municipal solid waste leachate using coal fly ash as an adsorbent, J. Hazard. Mater., 169(2009), No. 1-3, p. 351. doi: 10.1016/j.jhazmat.2009.03.104
      [49]
      X.C. Liu, Y. Zhang, J.T. Zhou, and T.C. Cao, Experimental research on the characterization and application of Mg–Fe composite flocculant, China Environ. Sci., 29(2009), No. 6, p. 646.
      [50]
      M. Sano, A. Kamino, and S. Shinkai, Critical coagulation of Langmuir monolayers: 2D Schulze−Hardy rule, J. Phys. Chem. B, 104(2000), No. 44, p. 10339. doi: 10.1021/jp002387y
      [51]
      D. Wang and H. Tang, Modified inorganic polymer flocculant–PFSi: Its preparation, characterization and coagulation behavior, Water Res., 35(2001), No. 14, p. 3418. doi: 10.1016/S0043-1354(01)00034-3
      [52]
      M.Y. Liao and S.J. Randtke, Predicting the removal of soluble organic contaminants by lime softening, Water Res., 20(1986), No. 1, p. 27. doi: 10.1016/0043-1354(86)90210-1
      [53]
      N.E. Palmer and R. von Wandruszka, Dynamic light scattering measurements of particle size development in aqueous humic materials, Fresenius J. Anal. Chem., 371(2001), No. 7, p. 951. doi: 10.1007/s002160101037
      [54]
      L.F. Wang, D.Q. He, W. Chen, and H.Q. Yu, Probing the roles of Ca2+ and Mg2+ in humic acids-induced ultrafiltration membrane fouling using an integrated approach, Water Res., 81(2015), p. 325. doi: 10.1016/j.watres.2015.06.009
      [55]
      A.R. Costa, M.N. de Pinho, and M. Elimelech, Mechanisms of colloidal natural organic matter fouling in ultrafiltration, J. Membr. Sci., 281(2006), No. 1-2, p. 716. doi: 10.1016/j.memsci.2006.04.044
      [56]
      M.S. Lucas and J.A. Peres, Decolorization of the azo dye Reactive Black 5 by Fenton and photo-Fenton oxidation, Dyes Pigm., 71(2006), No. 3, p. 236. doi: 10.1016/j.dyepig.2005.07.007
      [57]
      J. Xiao, X. Fang, S.G. Yang, H. He, and C. Sun, Microwave-assisted heterogeneous catalytic oxidation of high-concentration Reactive yellow 3 with CuFe2O4/PAC, J. Chem. Technol. Biotechnol., 90(2015), No. 10, p. 1861. doi: 10.1002/jctb.4497

    Catalog


    • /

      返回文章
      返回