留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 2
Feb.  2024

图(16)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  261
  • HTML全文浏览量:  101
  • PDF下载量:  28
  • 被引次数: 0
Zhanghao Wan, Shiliang Yang, Desong Kong, Dongbo Li, Jianhang Hu, and Hua Wang, Numerical investigation of sinusoidal pulsating gas intake to intensify the gas–slag momentum transfer in the top-blown smelting furnace, Int. J. Miner. Metall. Mater., 31(2024), No. 2, pp. 301-314. https://doi.org/10.1007/s12613-023-2705-7
Cite this article as:
Zhanghao Wan, Shiliang Yang, Desong Kong, Dongbo Li, Jianhang Hu, and Hua Wang, Numerical investigation of sinusoidal pulsating gas intake to intensify the gas–slag momentum transfer in the top-blown smelting furnace, Int. J. Miner. Metall. Mater., 31(2024), No. 2, pp. 301-314. https://doi.org/10.1007/s12613-023-2705-7
引用本文 PDF XML SpringerLink
研究论文

正弦脉动进气强化顶吹熔炼炉内气-渣动量传递的数值研究


  • 通讯作者:

    杨世亮    E-mail: yangshiliang0802@163.com

文章亮点

  • (1) 提出了顶吹多相流动过程正弦脉动进气新方式;
  • (2) 气泡前缘始终附着在喷枪边界直至气泡由自由表面喷发;
  • (3) 气泡边界处的轴向速度分量和温度基于喷枪中心轴对称;
  • (4) 气泡边界处的高速区域总是伴随着低温度分布;
  • (5) Vg = 58 + 10sin(2πt)的进气速度可以抑制铜熔渣的喷溅以及炉内的搅拌死区。
  • 基于计算流体动力学方法探讨了气泡在顶吹熔炼炉内的形态变化特征以及气泡边界处热物理特性。探讨了流体相的基本特性(如喷溅体积、铜渣搅拌死区和气相穿透深度),以及正弦脉动进气对相间动量传递性能的影响。结果表明,在气泡腰部和喷枪下方分别出现了两个相对较大和两个相对较小的涡流。大涡流的扩张及小涡旋的收缩共同导致了气泡腰部处的形态收缩。与注气速度(Vg)为58 m/s 的工况相比,Vg = 58 + 10sin(2πt) 工况下的熔渣喷溅体积和搅拌死区体积分别减少了24.9%和23.5%。后者的气体穿透深度和熔渣运动速度分别是前者的1.03 倍和1.31 倍。
  • Research Article

    Numerical investigation of sinusoidal pulsating gas intake to intensify the gas–slag momentum transfer in the top-blown smelting furnace

    + Author Affiliations
    • The variation characteristics of bubble morphology and the thermal-physical properties of bubble boundary in the top-blown smelting furnace were explored by means of the computational fluid dynamics method. The essential aspects of the fluid phase (e.g., splashing volume, dead zone of copper slag, and gas penetration depth) were explored together with the effect of sinusoidal pulsating gas intake on the momentum-transfer performance between phases. The results illustrated that two relatively larger vortices and two smaller vortices appear in the bubble waist and below the lance, respectively. The expansion of larger ones as well as the shrinking of smaller ones combine to cause the contraction of the bubble waist. Compared to the results of the case with a fixed gas injection velocity (Vg = 58 m/s), the splashing volume and dead zone volume of the slag under the Vg = 58 + 10sin(2πt) condition are reduced by 24.9% and 23.5%, respectively, where t represents the instant time. Gas penetration depth and slag motion velocity of the latter are 1.03 and 1.31 times higher than those of the former, respectively.
    • loading
    • [1]
      Z.B. Chen, H.J Yan, P. Zhou, et al., Parametric study of gas–liquid two-phase flow field in horizontal stirred tank, Trans. Nonferrous Met. Soc. China, 31(2021), No. 6, p. 1806. doi: 10.1016/S1003-6326(21)65618-2
      [2]
      J.H. Wang, P.Y. Ni, C. Chen, M. Ersson, and Y. Li, Effect of gas blowing nozzle angle on multiphase flow and mass transfer during RH refining process, Int. J. Miner. Metall. Mater., 30(2023), No. 5, p. 844. doi: 10.1007/s12613-022-2558-5
      [3]
      H.L. Zhao, J.Q. Wang, F.Q. Liu, and H.Y. Sohn, Flow zone distribution and mixing time in a Peirce—Smith copper converter, Int. J. Miner. Metall. Mater., 29(2022), No. 1, p. 70. doi: 10.1007/s12613-020-2196-8
      [4]
      D. Obiso, M. Reuter, and A. Richter, CFD Investigations of Bath Dynamics in a Pilot-Scale TSL Furnace, Metall. Mater. Trans. B, 52(2021), No. 1, p. 3064.
      [5]
      Y.C. Chen, L. Sheng, J. Deng, and G.S. Luo, Geometric effect on gas–liquid bubbly flow in capillary-embedded T-junction microchannels, Ind. Eng. Chem. Res., 60(2021), No. 12, p. 4735. doi: 10.1021/acs.iecr.1c00262
      [6]
      Z.H. Wan, S.L. Yang, D.S. Kong, D.B. Li, J.H. Hu, and H. Wang, Numerical modelling of stirring characteristics of gas–slag–copper matte multiphase flow in bath with top submerged lance, Trans. Nonferrous Met. Soc. China, 33(2023), No. 7, p. 2231. doi: 10.1016/S1003-6326(23)66255-7
      [7]
      N. Huda, J. Naser, G. Brooks, M.A. Reuter, and R.W. Matusewicz, CFD modeling of swirl and nonswirl gas injections into liquid baths using top submerged lances, Metall. Mater. Trans. B, 41(2010), No. 1, p. 35. doi: 10.1007/s11663-009-9316-1
      [8]
      H.L. Zhao, T.T. Lu, P. Yin, L.Z. Mu, and F.Q. Liu, An experimental and simulated study on gas–liquid flow and mixing behavior in an ISASMELT furnace, Metals, 9(2019), No. 5, art. No. 565. doi: 10.3390/met9050565
      [9]
      D. Obiso, S. Kriebitzsch, M. Reuter, and B. Meyer, The importance of viscous and interfacial forces in the hydrodynamics of the top-submerged-lance furnace, Metall. Mater. Trans. B, 50(2019), No. 5, p. 2403. doi: 10.1007/s11663-019-01630-z
      [10]
      X. Wang, S.G. Zheng, and M.Y. Zhu, Numerical simulation on gas–liquid multiphase flow in hot metal ladle with top submerged lance, Ironmaking Steelmaking, 47(2020), No. 8, p. 915. doi: 10.1080/03019233.2019.1644037
      [11]
      Y.N. Wang, M. Vanierschot, L.L. Cao, Z.F. Cheng, B. Blanpain, and M.X. Guo, Hydrodynamics study of bubbly flow in a top-submerged lance vessel, Chem. Eng. Sci., 192(2018), p. 1091. doi: 10.1016/j.ces.2018.08.045
      [12]
      H.L. Zhao, L.F. Zhang, P. Yin, and S. Wang, Bubble motion and gas–liquid mixing in metallurgical reactor with a top submerged lance, Int. J. Chem. React. Eng., 15(2017), No. 3, art. No. 20160139.
      [13]
      C. Song, Y.H. Pan, P. Ma, M. Zhao, and T.C. Liu, Numerical simulation on the influence of submerged combustion on splashing and heat transfer in TSL furnace, Metals, 12(2022), No. 2, art. No. 328. doi: 10.3390/met12020328
      [14]
      X. Zhang, J. Wu, H. Zhang, W. Ding, and J. Zhang, Visualization of liquid reaction in submerged top-blow agitation process, Fuel Cells, 21(2021), No. 1, p. 18. doi: 10.1002/fuce.202000016
      [15]
      A. Gosset, P. Rambaud, P. Planquart, J.M. Buchlin, and E. Robert, Experimental characterization of bubbling in submerged lance injection, [in] Proceedings of the 6th International Symposium on Multiphase Flow, Heat Mass Transfer and Energy Conversion, Xi’an, 2010, p. 205.
      [16]
      J.L. Liow, Quasi-equilibrium bubble formation during top-submerged gas injection, Chem. Eng. Sci., 55(2000), No. 20, p. 4515. doi: 10.1016/S0009-2509(00)00095-6
      [17]
      D. Obiso, M. Akashi, S. Kriebitzsch, et al., CFD modeling and experimental validation of top-submerged-lance gas injection in liquid metal, Metall. Mater. Trans. B, 51(2020), No. 4, p. 1509. doi: 10.1007/s11663-020-01864-2
      [18]
      M. Akashi, O. Keplinger, N. Shevchenko, S. Anders, M.A. Reuter, and S. Eckert, X-ray radioscopic visualization of bubbly flows injected through a top submerged lance into a liquid metal, Metall. Mater. Trans. B, 51(2020), No. 1, p. 124. doi: 10.1007/s11663-019-01720-y
      [19]
      D. Obiso, M. Reuter, and A. Richter, CFD investigation of rotational sloshing waves in a top-submerged-lance metal bath, Metall. Mater. Trans. B, 52(2021), No. 4, p. 2386. doi: 10.1007/s11663-021-02182-x
      [20]
      Y.D. Wu, Z.Q. Liu, B.K. Li, and Y. Gan, Numerical simulation of multi-size bubbly flow in a continuous casting mold using population balance model, Powder Technol., 396(2022), p. 224. doi: 10.1016/j.powtec.2021.10.055
      [21]
      Y.S. Morsi, W. Yang, and I. El-Katatny, Experimental characterisation of AusIron top submerged injection system, Ironmaking Steelmaking, 35(2008), No. 1, p. 69. doi: 10.1179/174328107X203958
      [22]
      H.L. Zhao, P. Yin, L.F. Zhang, and S. Wang, Water model experiments of multiphase mixing in the top-blown smelting process of copper concentrate, Int. J. Miner. Metall. Mater., 23(2016), No. 12, p. 1369. doi: 10.1007/s12613-016-1360-7
      [23]
      Z.F. Cheng, A. Khaliq, B. Blanpain, and M.X. Guo, Zn Fuming kinetics in a bubble-stirred molten slag bath, Metall. Mater. Trans. B, 53(2022), No. 2, p. 1308. doi: 10.1007/s11663-022-02449-x
      [24]
      X. Huang, L.H. Zhang, R.H. Zhang, X.Z. Chen, Y.L. Zhao, and S. Yuan, Numerical simulation of gas–liquid two-phase flow in the micro-fracture networks in fractured reservoirs, J. Nat. Gas Sci. Eng., 94(2021), art. No. 104101. doi: 10.1016/j.jngse.2021.104101
      [25]
      X. Bai, Q.L. Li, P. Cheng, L.Y. Sheng, and Z.T. Kang, Investigation of self-pulsation characteristics for a liquid-centered swirl coaxial injector with recess, Acta Astronaut., 151(2018), p. 511. doi: 10.1016/j.actaastro.2018.07.002
      [26]
      J.U. Brackbill, D.B. Kothe, and C. Zemach, A continuum method for modeling surface tension, J. Comput. Phys., 100(1992), No. 2, p. 335. doi: 10.1016/0021-9991(92)90240-Y
      [27]
      S.S. Lafmejani, A.C. Olesen, and S.K. Kær, VOF modelling of gas-liquid flow in PEM water electrolysis cell micro-channels, Int. J. Hydrogen Energy., 42(2017), No. 26, p. 16333. doi: 10.1016/j.ijhydene.2017.05.079
      [28]
      F.R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications, AIAA J., 32(1994), No. 8, p. 1598. doi: 10.2514/3.12149
      [29]
      H. Jasak and H.G. Weller, Interface Tracking Capabilities of the Inter-Gamma Differencing Scheme [Internal Report], Mechanical Engineering Department, Imperial College of Science, Technology and Medicine, London, 1995.
      [30]
      Y.N. Wang, L.L. Cao, M. Vanierschot, Z.F. Cheng, B. Blanpain, and M.X. Guo, Modelling of gas injection into a viscous liquid through a top-submerged lance, Chem. Eng. Sci., 212(2020), art. No. 115359. doi: 10.1016/j.ces.2019.115359
      [31]
      H.L. Zhao, T.T. Lu, F.Q. Liu, P. Yin, and S. Wang, Computational fluid dynamics study on a top-blown smelting process with lance failure in an isa furnace, JOM, 71(2019), No. 5, p. 1643. doi: 10.1007/s11837-019-03389-9
      [32]
      H.L. Zhao, Y.D. Xiao, F.Q. Liu, and H.Y. Sohn, Computational fluid dynamics simulation of gas–matte–slag three-phase flow in an ISASMELT furnace, Metall. Mater. Trans. B, 52(2021), No. 6, p. 3767. doi: 10.1007/s11663-021-02290-8
      [33]
      C. Xu, S.L. Xu, Z.Y. Wang, and D.W. Feng, Experimental investigation of flow and heat transfer characteristics of pulsating flows driven by wave signals in a microchannel heat sink, Int. Commun. Heat Mass Transfer, 125(2021), art. No. 105343. doi: 10.1016/j.icheatmasstransfer.2021.105343
      [34]
      Y.S. Morsi, W. Yang, B.R. Clayton, and N.B. Gray, Experimental investigation of swirl and non-swirl gas injections into liquid baths using submerged vertical lances, Can. Metall. Q., 39(2000), No. 1, p. 87. doi: 10.1179/cmq.2000.39.1.87
      [35]
      N. Huda, J. Naser, G.A. Brooks, M.A. Reuter, and R.W. Matusewicz, Computational fluid dynamics (CFD) investigation of submerged combustion behavior in a tuyere blown slag-fuming furnace, Metall. Mater. Trans. B, 43(2012), No. 5, p. 1054. doi: 10.1007/s11663-012-9686-7
      [36]
      W.J. Duan, Y.K. Gao, Q.B. Yu, T.W. Wu, and Z.M. Wang, Numerical simulation of coal gasification in molten slag: Gas–liquid interaction characteristic, Energy, 183(2019), p. 1233. doi: 10.1016/j.energy.2019.06.178
      [37]
      P. Yaqoubnejad, H.A. Rad, and M. Taghavijeloudar, Development a novel hexagonal airlift flat plate photobioreactor for the improvement of microalgae growth that simultaneously enhance CO2 bio-fixation and wastewater treatment, J. Environ. Manage., 298(2021), art. No. 113482. doi: 10.1016/j.jenvman.2021.113482
      [38]
      M. Girard, D. Vidal, F. Bertrand, J.R. Tavares, and M.C. Heuzey, Evidence-based guidelines for the ultrasonic dispersion of cellulose nanocrystals, Ultrason. Sonochem., 71(2021), art. No. 105378. doi: 10.1016/j.ultsonch.2020.105378
      [39]
      B. Aslanbay Guler, I. Deniz, Z. Demirel, S.S. Oncel, and E. Imamoglu, Computational fluid dynamics modelling of stirred tank photobioreactor for Haematococcus pluvialis production: Hydrodynamics and mixing conditions, Algal Res., 47(2020), art. No. 101854. doi: 10.1016/j.algal.2020.101854

    Catalog


    • /

      返回文章
      返回