留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 12
Dec.  2023

图(16)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  394
  • HTML全文浏览量:  164
  • PDF下载量:  24
  • 被引次数: 0
Hao Chen, Yanmei Yang, Conglin Hu, Gang Zhou, Hui Shi, Genzhi Jiang, Yuanding Huang, Norbert Hort, Weidong Xie, and Guobing Wei, Hot deformation behavior of novel high-strength Mg–0.6Mn–0.5Al–0.5Zn–0.4Ca alloy, Int. J. Miner. Metall. Mater., 30(2023), No. 12, pp. 2397-2410. https://doi.org/10.1007/s12613-023-2706-6
Cite this article as:
Hao Chen, Yanmei Yang, Conglin Hu, Gang Zhou, Hui Shi, Genzhi Jiang, Yuanding Huang, Norbert Hort, Weidong Xie, and Guobing Wei, Hot deformation behavior of novel high-strength Mg–0.6Mn–0.5Al–0.5Zn–0.4Ca alloy, Int. J. Miner. Metall. Mater., 30(2023), No. 12, pp. 2397-2410. https://doi.org/10.1007/s12613-023-2706-6
引用本文 PDF XML SpringerLink
研究论文

新型高强度Mg–0.6Mn–0.5Al–0.5Zn–0.4Ca合金的热变形行为


  • 通讯作者:

    谢卫东    E-mail: wdxie@cqu.edu.cn

    魏国兵    E-mail: guobingwei@cqu.edu.cn

文章亮点

  • (1) 研究了Mg–0.6Mn–0.5Al–0.5Zn–0.4Ca合金不同温度和应变速率的热压缩应力–应变规律。
  • (2) 建立并分析了合金的本构方程和加工图,为预测和优化合金热变形行为提供了依据。
  • (3) 研究揭示了合金热变形微观结构和织构变化规律,探索了合金构效关系。
  • 发展低成本高性能镁合金及其加工技术是拓展镁合金应用的重要方向之一,本文通过热压缩、微观组织表征等,重点研究了原材料成本低、强度高的Mg–0.6Mn–0.5Al–0.5Zn–0.4Ca的热变形行为。借助Gleeble-3500热模拟机获得了挤压态Mg–0.6Mn–0.5Al–0.5Zn–0.4Ca合金温度523至673 K,应变速率0.001至1 s−1的应力–应变曲线。结果显示,应变速率增加,变形温度降低,真应力均增加。建立并分析了该合金的本构方程和加工图,推荐的热变形加工区域为,在573–623 K温度范围内,最佳应变速率为0.001–0.01 s−1;在623–673 K温度范围内,最佳应变速率为0.001–0.1 s−1。利用电子背散射衍射技术(EBSD)研究了应变速率、变形温度对合金微观结构及织构的影响。发现挤压态合金呈现出由粗大的变形晶粒和细小等轴晶组织(约1.57 μm)组成的双峰结构。热变形后,合金再结晶程度和平均晶粒尺寸增加,且变形温度越高,增加幅度越大。与此同时,位错密度和织构强度下降。在0.01 s−1的应变速率下,随着变形温度的增加,织构强度减弱,大多数晶粒的{0001}晶面逐渐偏离压缩方向。此外,当应变速率降低时,再结晶程度和平均晶粒尺寸增加,位错密度下降。有趣的是,织构对应变速率的变化并不敏感。这些发现为了解Mg–0.6Mn–0.5Al–0.5Zn–0.4Ca合金的热压缩行为、显微结构演变和织构变化提供了有益的见解,有助于深化对其加工–微观结构–性能关系的理解。
  • Research Article

    Hot deformation behavior of novel high-strength Mg–0.6Mn–0.5Al–0.5Zn–0.4Ca alloy

    + Author Affiliations
    • The hot compression behavior of as-extruded Mg–0.6Mn–0.5Al–0.5Zn–0.4Ca alloy was studied on a Gleeble-3500 thermal simulation machine. Experiments were conducted at temperatures ranging from 523 to 673 K and strain rates ranging from 0.001 to 1 s−1. Results showed that an increase in the strain rate or a decrease in deformation temperature led to an increase in true stress. The constitutive equation and processing maps of the alloy were obtained and analyzed. The influence of deformation temperatures and strain rates on microstructural evolution and texture was studied with the assistance of electron backscatter diffraction (EBSD). The as-extruded alloy exhibited a bimodal structure that consisted of deformed coarse grains and fine equiaxed recrystallized structures (approximately 1.57 μm). The EBSD results of deformed alloy samples revealed that the recrystallization degree and average grain size increased as the deformation temperature increased. By contrast, dislocation density and texture intensity decreased. Compressive texture weakened with the increase in the deformation temperature at the strain rate of 0.01 s−1. Most grains with {0001} planes tilted away from the compression direction (CD) gradually. In addition, when the strain rate decreased, the recrystallization degree and average grain size increased. Meanwhile, the dislocation density decreased. Texture appeared to be insensitive to the strain rate. These findings provide valuable insights into the hot compression behavior, microstructural evolution, and texture changes in the Mg–0.6Mn–0.5Al–0.5Zn–0.4Ca alloy, contributing to the understanding of its processing–microstructure–property relationships.
    • loading
    • [1]
      T. Nakata, C. Xu, N.A.S. binti Osman, L. Geng, and S. Kamado, Development of corrosion-resistant Mg–Al–Ca–Mn–Zn alloy sheet with good tensile properties and stretch formability, J. Alloys Compd., 910(2022), art. No. 164752. doi: 10.1016/j.jallcom.2022.164752
      [2]
      T. Nakata, C. Xu, K. Kaibe, Y. Yoshida, K. Yoshida, and S. Kamado, Improvement of strength and ductility synergy in a room-temperature stretch-formable Mg–Al–Mn alloy sheet by twin-roll casting and low-temperature annealing, J. Magnes. Alloys, 10(2022), No. 4, p. 1066. doi: 10.1016/j.jma.2021.07.017
      [3]
      S. Nishimoto, M. Yamasaki, and Y. Kawamura, Inherited multimodal microstructure evolution of high-fracture-toughness Mg–Zn–Y–Al alloys during extrusion for the consolidation of rapidly solidified ribbons, J. Magnes. Alloys, 10(2022), No. 9, p. 2433. doi: 10.1016/j.jma.2022.05.014
      [4]
      Z.T. Li, X.D. Zhang, M.Y. Zheng, et al., Effect of Ca/Al ratio on microstructure and mechanical properties of Mg–Al–Ca–Mn alloys, Mater. Sci. Eng. A, 682(2017), p. 423. doi: 10.1016/j.msea.2016.11.026
      [5]
      J.S. Xie, Z. Zhang, S.J. Liu, et al., Designing new low alloyed Mg–RE alloys with high strength and ductility via high-speed extrusion, Int. J. Miner. Metall. Mater., 30(2023), No. 1, p. 82. doi: 10.1007/s12613-022-2472-x
      [6]
      S.V. Satya Prasad, S.B. Prasad, K. Verma, R.K. Mishra, V. Kumar, and S. Singh, The role and significance of Magnesium in modern day research—A review, J. Magnes. Alloys, 10(2022), No. 1, p. 1. doi: 10.1016/j.jma.2021.05.012
      [7]
      H.L. Shi, C. Xu, X.S. Hu, W.M. Gan, K. Wu, and X.J. Wang, Improving the Young’s modulus of Mg via alloying and compositing—A short review, J. Magnes. Alloys, 10(2022), No. 8, p. 2009. doi: 10.1016/j.jma.2022.07.011
      [8]
      L. Liu, X.J. Zhou, S.L. Yu, et al., Effects of heat treatment on mechanical properties of an extruded Mg–4.3Gd–3.2Y–1.2Zn–0.5Zr alloy and establishment of its Hall–Petch relation, J. Magnes. Alloys, 10(2022), No. 2, p. 501. doi: 10.1016/j.jma.2020.09.023
      [9]
      J.R. Li, D.S. Xie, Z.R. Zeng, et al., Mechanistic investigation on Ce addition in tuning recrystallization behavior and mechanical property of Mg alloy, J. Mater. Sci. Technol., 132(2023), p. 1. doi: 10.1016/j.jmst.2022.05.042
      [10]
      Z.D. Wang, K.B. Nie, K.K. Deng, and J.G. Han, Effect of extrusion on the microstructure and mechanical properties of a low-alloyed Mg−2Zn−0.8Sr−0.2Ca matrix composite reinforced by TiC nano-particles, Int. J. Miner. Metall. Mater., 29(2022), No. 11, p. 1981. doi: 10.1007/s12613-021-2353-8
      [11]
      S.W. Xu, C.C. Zhu, Z.H. Lin, et al., Dynamic microstructure evolution and mechanical properties of dilute Mg–Al–Ca–Mn alloy during hot rolling, J. Mater. Sci. Technol., 129(2022), p. 1. doi: 10.1016/j.jmst.2022.03.029
      [12]
      A. Chapuis and J.H. Driver, Temperature dependency of slip and twinning in plane strain compressed magnesium single crystals, Acta Mater., 59(2011), No. 5, p. 1986. doi: 10.1016/j.actamat.2010.11.064
      [13]
      J. Deng, Y.C. Lin, S.S. Li, J. Chen, and Y. Ding, Hot tensile deformation and fracture behaviors of AZ31 magnesium alloy, Mater. Des., 49(2013), p. 209. doi: 10.1016/j.matdes.2013.01.023
      [14]
      Z.W. Yu, A.T. Tang, Q. Wang, et al., High strength and superior ductility of an ultra-fine grained magnesium–manganese alloy, Mater. Sci. Eng. A, 648(2015), p. 202. doi: 10.1016/j.msea.2015.09.065
      [15]
      F.P. Hu, S.J. Zhao, G.L. Gu, et al., Strong and ductile Mg–0.4Al alloy with minor Mn addition achieved by conventional extrusion, Mater. Sci. Eng. A, 795(2020), art. No. 139926. doi: 10.1016/j.msea.2020.139926
      [16]
      Z.W. Yu, A.T. Tang, J.J. He, et al., Effect of high content of manganese on microstructure, texture and mechanical properties of magnesium alloy, Mater. Charact., 136(2018), p. 310. doi: 10.1016/j.matchar.2017.12.029
      [17]
      S.D. Ma, A.T. Tang, P. Peng, et al., Effect of Al on microstructure and mechanical properties of as-extruded Mg–1Mn alloy sheet, Prog. Nat. Sci. Mater. Int., 30(2020), No. 3, p. 402. doi: 10.1016/j.pnsc.2020.05.005
      [18]
      P. Peng, A.T. Tang, B. Wang, et al., Achieving superior combination of yield strength and ductility in Mg–Mn–Al alloys via ultrafine grain structure, J. Mater. Res. Technol., 15(2021), p. 1252. doi: 10.1016/j.jmrt.2021.08.133
      [19]
      P. Peng, J. She, A.T. Tang, et al., A new dilute Mg–Mn–Al alloy with exceptional rollability and ductility at room temperature, Mater. Sci. Eng. A, 859(2022), art. No. 144229. doi: 10.1016/j.msea.2022.144229
      [20]
      L. Shao, C. Zhang, C.Y. Li, et al., Mechanistic study of Mg–Mn–Al extrusion alloy with superior ductility and high strength, Mater. Charact., 183(2022), art. No. 111651. doi: 10.1016/j.matchar.2021.111651
      [21]
      S. Sanyal, P. Bhuyan, T.K. Bandyopadhyay, and S. Mandal, Multiscale precipitate evolution and its implications on the tensile deformation behavior in thermomechanically processed and peak-aged lean Mg–Al–Ca–Mn alloy, Materialia, 26(2022), art. No. 101566. doi: 10.1016/j.mtla.2022.101566
      [22]
      J. Zuo, T. Nakata, C. Xu, et al., Effect of annealing on microstructure evolution and age-hardening behavior of dilute Mg–Al–Ca–Mn alloy, J. Mater. Res. Technol., 18(2022), p. 1754. doi: 10.1016/j.jmrt.2022.03.091
      [23]
      J.H. Li, X.Y. Zhou, A. Breen, et al., Elucidation of formation and transformation mechanisms of Ca-rich Laves phase in Mg–Al–Ca–Mn alloys, J. Alloys Compd., 928(2022), art. No. 167177. doi: 10.1016/j.jallcom.2022.167177
      [24]
      S.S. Chai, S.Y. Zhong, Q.S. Yang, et al., Transformation of Laves phases and its effect on the mechanical properties of TIG welded Mg–Al–Ca–Mn alloys, J. Mater. Sci. Technol., 120(2022), p. 108. doi: 10.1016/j.jmst.2022.01.005
      [25]
      D.W. Kim, B.C. Suh, M.S. Shim, J.H. Bae, D.H. Kim, and N.J. Kim, Texture evolution in Mg–Zn–Ca alloy sheets, Metall. Mater. Trans. A, 44(2013), No. 7, p. 2950. doi: 10.1007/s11661-013-1674-2
      [26]
      Y. Chino, T. Ueda, Y. Otomatsu, et al., Effects of Ca on tensile properties and stretch formability at room temperature in Mg–Zn and Mg–Al alloys, Mater. Trans., 52(2011), No. 7, p. 1477. doi: 10.2320/matertrans.M2011048
      [27]
      D.F. Shi, C.M. Cepeda-Jiménez, and M.T. Pérez-Prado, The relation between ductility at high temperature and solid solution in Mg alloys, J. Magnes. Alloys, 10(2022), No. 1, p. 224. doi: 10.1016/j.jma.2021.09.024
      [28]
      T.T. Cao, Y. Zhu, Y.Y. Gao, et al., Optimization on microstructure, mechanical properties and damping capacities of duplex structured Mg–8Li–4Zn–1Mn alloys, Int. J. Miner. Metall. Mater., 30(2023), No. 5, p. 949. doi: 10.1007/s12613-022-2572-7
      [29]
      X.S. Huang, M.Z. Bian, I. Nakatsugawa, et al., Simultaneously achieving excellent mechanical properties and high thermal conductivity in a high Mn-containing Mg–Zn–Ca–Al–Mn sheet alloy, J. Alloys Compd., 887(2021), art. No. 161394. doi: 10.1016/j.jallcom.2021.161394
      [30]
      H. Chen, L. Sun, X.N. Ke, et al., Microstructure evolution and mechanical properties of the Mg–5Al–1Mn–0.5Zn–xCa alloys prepared by regular extrusion, Mater. Sci. Eng. A, 858(2022), art. No. 144117. doi: 10.1016/j.msea.2022.144117
      [31]
      M. Li, D.S. Xie, J.R. Li, et al., Realizing ultra-fine grains and ultra-high strength in conventionally extruded Mg–Ca–Al–Zn–Mn alloys: The multiple roles of nano-precipitations, Mater. Charact., 175(2021), art. No. 111049. doi: 10.1016/j.matchar.2021.111049
      [32]
      J.D. Robson, D.T. Henry, and B. Davis, Particle effects on recrystallization in magnesium–manganese alloys: Particle-stimulated nucleation, Acta Mater., 57(2009), No. 9, p. 2739. doi: 10.1016/j.actamat.2009.02.032
      [33]
      L. Li and X.M. Zhang, Hot compression deformation behavior and processing parameters of a cast Mg–Gd–Y–Zr alloy, Mater. Sci. Eng. A, 528(2011), No. 3, p. 1396. doi: 10.1016/j.msea.2010.10.026
      [34]
      H.Z. Li, H.J. Wang, Z. Li, C.M. Liu, and H.T. Liu, Flow behavior and processing map of as-cast Mg–10Gd–4.8Y–2Zn–0.6Zr alloy, Mater. Sci. Eng. A, 528(2010), No. 1, p. 154. doi: 10.1016/j.msea.2010.08.090
      [35]
      H.C. Xiao, S.N. Jiang, B. Tang, et al., Hot deformation and dynamic recrystallization behaviors of Mg–Gd–Y–Zr alloy, Mater. Sci. Eng. A, 628(2015), p. 311. doi: 10.1016/j.msea.2015.01.041
      [36]
      B.J. Lv, J. Peng, D.W. Shi, A.T. Tang, and F.S. Pan, Constitutive modeling of dynamic recrystallization kinetics and processing maps of Mg–2.0Zn–0.3Zr alloy based on true stress–strain curves, Mater. Sci. Eng. A, 560(2013), p. 727. doi: 10.1016/j.msea.2012.10.025
      [37]
      G.B. Wei, X.D. Peng, F.P. Hu, et al., Deformation behavior and constitutive model for dual-phase Mg–Li alloy at elevated temperatures, Trans. Nonferrous Met. Soc. China, 26(2016), No. 2, p. 508. doi: 10.1016/S1003-6326(16)64139-0
      [38]
      C. Zhang, L.W. Zhang, W.F. Shen, C.R. Liu, Y.N. Xia, and R.Q. Li, Study on constitutive modeling and processing maps for hot deformation of medium carbon Cr–Ni–Mo alloyed steel, Mater. Des., 90(2016), p. 804. doi: 10.1016/j.matdes.2015.11.036
      [39]
      A. He, L. Chen, S. Hu, C. Wang, and L.X. Huangfu, Constitutive analysis to predict high temperature flow stress in 20CrMo continuous casting billet, Mater. Des., 46(2013), p. 54. doi: 10.1016/j.matdes.2012.09.049
      [40]
      H.T. Lu, D.Z. Li, S.Y. Li, and Y.A. Chen, Hot deformation behavior of Fe–27.34Mn–8.63Al–1.03C lightweight steel, Int. J. Miner. Metall. Mater., 30(2023), No. 4, p. 734. doi: 10.1007/s12613-022-2531-3
      [41]
      Y. Yang, X.D. Peng, F.J. Ren, H.M. Wen, J.F. Su, and W.D. Xie, Constitutive modeling and hot deformation behavior of duplex structured Mg–Li–Al–Sr alloy, J. Mater. Sci. Technol., 32(2016), No. 12, p. 1289. doi: 10.1016/j.jmst.2016.11.015
      [42]
      G.B. Wei, X.D. Peng, A. Hadadzadeh, et al., Constitutive modeling of Mg–9Li–3Al–2Sr–2Y at elevated temperatures, Mech. Mater., 89(2015), p. 241. doi: 10.1016/j.mechmat.2015.05.006
      [43]
      F.C. Ren, F. Chen, J. Chen, and X.Y. Tang, Hot deformation behavior and processing maps of AISI 420 martensitic stainless steel, J. Manuf. Process., 31(2018), p. 640. doi: 10.1016/j.jmapro.2017.12.015
      [44]
      A. Venkatalaxmi, B.S. Padmavathi, and T. Amaranath, A general solution of unsteady Stokes equations, Fluid Dyn. Res., 35(2004), No. 3, p. 229. doi: 10.1016/j.fluiddyn.2004.06.001
      [45]
      L.Y. Ye, Y.W. Zhai, L.Y. Zhou, H.Z. Wang, and P. Jiang, The hot deformation behavior and 3D processing maps of 25Cr2Ni4MoV steel for a super-large nuclear-power rotor, J. Manuf. Process., 59(2020), p. 535. doi: 10.1016/j.jmapro.2020.09.062
      [46]
      N. Tahreen, D.F. Zhang, F.S. Pan, X.Q. Jiang, D.Y. Li, and D.L. Chen, Hot deformation and processing map of an as-extruded Mg–Zn–Mn–Y alloy containing I and W phases, Mater. Des., 87(2015), p. 245. doi: 10.1016/j.matdes.2015.08.023
      [47]
      Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, et al., Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242, Metall. Trans. A, 15(1984), No. 10, p. 1883. doi: 10.1007/BF02664902
      [48]
      D.Q. Ma, S. Yuan, S.Y. Luan, et al., Hot deformation behavior, microstructure evolution and slip system of Mg–2Zn–0.5Mn–0.2Ca alloy, J. Mater. Res. Technol., 21(2022), p. 1643. doi: 10.1016/j.jmrt.2022.10.012
      [49]
      N. Ansari, B. Tran, W.J. Poole, S.S. Singh, H. Krishnaswamy, and J. Jain, High temperature deformation behavior of Mg–5wt.%Y binary alloy: Constitutive analysis and processing maps, Mater. Sci. Eng. A, 777(2020), art. No. 139051. doi: 10.1016/j.msea.2020.139051
      [50]
      Z.D. Ma, G. Li, Z.H. Su, et al., Hot deformation behavior and microstructural evolution for dual-phase Mg–9Li–3Al alloys, J. Mater. Res. Technol., 19(2022), p. 3536. doi: 10.1016/j.jmrt.2022.06.047
      [51]
      J.Y. Yang and W.J. Kim, The effect of addition of Sn to copper on hot compressive deformation mechanisms, microstructural evolution and processing maps, J. Mater. Res. Technol., 9(2020), No. 1, p. 749. doi: 10.1016/j.jmrt.2019.11.015
      [52]
      O.B. Bembalge and S.K. Panigrahi, Hot deformation behavior and processing map development of cryorolled AA6063 alloy under compression and tension, Int. J. Mech. Sci., 191(2021), art. No. 106100. doi: 10.1016/j.ijmecsci.2020.106100
      [53]
      X.R. Chen, Q.Y. Liao, Y.X. Niu, et al., Comparison study of hot deformation behavior and processing map of AZ80 magnesium alloy casted with and without ultrasonic vibration, J. Alloys Compd., 803(2019), p. 585. doi: 10.1016/j.jallcom.2019.06.242
      [54]
      L. Gu, N.N. Liang, Y.Y. Chen, and Y.H. Zhao, Achieving maximum strength-ductility combination in fine-grained Cu–Zn alloy via detwinning and twinning deformation mechanisms, J. Alloys Compd., 906(2022), art. No. 164401. doi: 10.1016/j.jallcom.2022.164401
      [55]
      S. Mishra, F. Khan, and S.K. Panigrahi, A crystal plasticity based approach to establish role of grain size and crystallographic texture in the Tension–Compression yield asymmetry and strain hardening behavior of a Magnesium–Silve–Rare Earth alloy, J. Magnes. Alloys, 10(2022), No. 9, p. 2546. doi: 10.1016/j.jma.2021.08.021
      [56]
      A. Sheikhani, R. Roumina, and R. Mahmudi, Hot deformation behavior of an extruded AZ31 alloy doped with rare-earth elements, J. Alloys Compd., 852(2021), art. No. 156961. doi: 10.1016/j.jallcom.2020.156961
      [57]
      X. Liu, J.J. Jonas, L.X. Li, and B.W. Zhu, Flow softening, twinning and dynamic recrystallization in AZ31 magnesium, Mater. Sci. Eng. A, 583(2013), p. 242. doi: 10.1016/j.msea.2013.06.074
      [58]
      A. Malik, Y.W. Wang, H.W. Cheng, et al., Constitutive analysis, twinning, recrystallization, and crack in fine-grained ZK61 Mg alloy during high strain rate compression over a wide range of temperatures, Mater. Sci. Eng. A, 771(2020), art. No. 138649. doi: 10.1016/j.msea.2019.138649

    Catalog


    • /

      返回文章
      返回