留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 1
Jan.  2024

图(11)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  499
  • HTML全文浏览量:  170
  • PDF下载量:  18
  • 被引次数: 0
Qiang Su, Hanqun Wang, Yunfei He, Dongdong Liu, Xiaoxiao Huang,  and Bo Zhong, Preparation of CIP@TiO2 composite with broadband electromagnetic wave absorption properties, Int. J. Miner. Metall. Mater., 31(2024), No. 1, pp. 197-205. https://doi.org/10.1007/s12613-023-2707-5
Cite this article as:
Qiang Su, Hanqun Wang, Yunfei He, Dongdong Liu, Xiaoxiao Huang,  and Bo Zhong, Preparation of CIP@TiO2 composite with broadband electromagnetic wave absorption properties, Int. J. Miner. Metall. Mater., 31(2024), No. 1, pp. 197-205. https://doi.org/10.1007/s12613-023-2707-5
引用本文 PDF XML SpringerLink
研究论文

具有宽频电磁波吸收性能二氧化钛包覆羰基铁复合吸波材料的制备


  • 通讯作者:

    钟博    E-mail: zhongbo@hit.edu.cn

文章亮点

  • (1) 提出了通过钛酸异丙酯水解的方法制备二氧化钛包覆羰基铁(CIP@TiO2)复合吸波材料;
  • (2) 钛酸异丙酯水解的方法制备的CIP@TiO2具有优异的吸波性能,所制备的CIP@TiO2最小反射损耗可达−46.07 dB,当其厚度为1.5 mm时,有效吸收带宽可达8 GHz;
  • (3) 相比未涂覆的羰基铁,CIP@TiO2的氧化起始温度提高到了400℃左右,最大氧化速率温度提高到550℃左右。
  • 电子设备的广泛应用所产生的电磁污染不仅影响敏感电气设备的正常运行,而且威胁着人体健康。电磁波吸收材料的应用可以有效地解决日常生产生活中的电磁污染问题。由于羰基铁在高频率下具有更高的饱和磁化强度和Snoek极限,使得其成为宽频吸收材料的理想材料之一。但是羰基铁的吸波应用也面临着一些局限性。例如,碳基铁的强氧化性导致其在高温环境中容易氧化,且其阻抗匹配差,往往导致阻抗失配,使电磁波无法有效进入羰基铁内部。在本文中,我们基于钛酸异丙酯的水解特性,提出了一种简单的二氧化钛包覆羰基铁(CIP@TiO2)复合吸波材料的制备工艺。具体步骤为以钛酸异丙酯为钛源,在无水乙醇中实现了CIP@TiO2的表面改性工艺,得到了CIP@TiO2复合吸波材料。由于羰基铁包覆了二氧化钛,CIP@TiO2复合吸波材料的介电参数显著降低,而其磁参数基本不变,这使得CIP@TiO2的阻抗匹配明显提高。此外,羰基铁和二氧化钛之间的非均相界面极化进一步增强了CIP@TiO2的电磁波吸收性能。电磁波吸收测试表明,CIP@TiO2的最小反射损耗可达−46.07 dB,当其厚度为1.5 mm时,有效吸收带宽可达8 GHz。CIP@TiO2的电磁波吸收性能在电磁波吸收强度、材料涂层厚度、有效吸收带宽等方面均有明显提高。在羰基铁表面涂覆二氧化钛后,CIP@TiO2的氧化起始温度约为400℃,而未涂覆的羰基铁的氧化起始温度约为250℃。同时,CIP@TiO2的最大氧化速率温度提高到550℃左右。
  • Research Article

    Preparation of CIP@TiO2 composite with broadband electromagnetic wave absorption properties

    + Author Affiliations
    • Scholars aim for the improved impedance matching (Z) of materials while maintaining their excellent wave absorption properties. Based on the hydrolysis characteristics of isopropyl titanate, a simple preparation process for the coating of carbonyl iron powder (CIP) with TiO2 was designed. Given the TiO2 coating, the Z of the CIP@TiO2 composite was adjusted well by decreasing the dielectric constant. Moreover, the interfacial polarization of CIP@TiO2 was enhanced. Ultimately, the electromagnetic-wave (EMW) absorption property of the CIP@TiO2 composite was improved substantially, the minimum reflection loss reached −46.07 dB, and the effective absorption bandwidth can reach 8 GHz at the composite thickness of 1.5 mm. Moreover, compared with CIP, the oxidation resistance of CIP@TiO2 showed remarkable improvement. The results revealed that the oxidation starting temperature of CIP@TiO2 was about 400°C, whereas the uncoated CIP had an oxidation starting temperature of approximately 250°C. Moreover, the largest oxidation rate temperature of CIP@TiO2 increased to around 550°C. This work opens up a novel strategy for the production of high-performance EMW absorbers via structural design.
    • loading
    • [1]
      X.F. Xu, G.Z. Wang, G.P. Wan, et al., Magnetic Ni/graphene connected with conductive carbon nano-onions or nanotubes by atomic layer deposition for lightweight and low-frequency microwave absorption, Chem. Eng. J., 382(2020), art. No. 122980. doi: 10.1016/j.cej.2019.122980
      [2]
      Z.G. Gao, K. Yang, Z.H. Zhao, et al., Design principles in MOF-derived electromagnetic wave absorption materials: Review and perspective, Int. J. Miner. Metall. Mater., 30(2023), No. 3, pp. 405-427. doi: 10.1007/s12613-022-2555-8
      [3]
      S.J. Zhang, J.Y. Li, X.T. Jin, et al., Current advances of transition metal dichalcogenides in electromagnetic wave absorption: A brief review, Int. J. Miner. Metall. Mater., 30(2023), No. 3, pp. 428-445. doi: 10.1007/s12613-022-2546-9
      [4]
      H. Sun, R.C. Che, X. You, et al., Cross-stacking aligned carbon-nanotube films to tune microwave absorption frequencies and increase absorption intensities, Adv. Mater., 26(2014), No. 48, p. 8120. doi: 10.1002/adma.201403735
      [5]
      Y.F. Zhang, A.M. Bu, Y. Xiang, et al., Rapid synthesis of scaly SiO2 coating on flake carbonyl iron powders by plasma electrolysis, Mater. Sci. Eng. B, 262(2020), art. No. 114703. doi: 10.1016/j.mseb.2020.114703
      [6]
      Q.L. Chen, L.Y. Li, Z.L. Wang, Y.C. Ge, C.S. Zhou, and J.H. Yi, Synthesis and enhanced microwave absorption performance of CIP@ SiO2@Mn0.6Zn0.4Fe2O4 ferrite composites, J. Alloys Compd., 779(2019), p. 720. doi: 10.1016/j.jallcom.2018.11.112
      [7]
      Y.T. Zhao, L. Liu, J.N. Han, W.H. Wu, and G.X. Tong, Effective modulation of electromagnetic characteristics by composition and size in expanded graphite/Fe3O4 nanoring composites with high Snoek’s limit, J. Alloys Compd., 728(2017), p. 100. doi: 10.1016/j.jallcom.2017.08.238
      [8]
      H. Xie, Y.Y. Zhou, Z.W. Ren, X. Wei, S.P. Tao, and C.Q. Yang, Enhancement of electromagnetic interference shielding and heat-resistance properties of silver-coated carbonyl iron powders composite material, J. Magn. Magn. Mater., 499(2020), art. No. 166244. doi: 10.1016/j.jmmm.2019.166244
      [9]
      P.C. Ji, G.Z. Xie, N.Y. Xie, et al., Fabrication and microwave absorption properties of the flaky carbonyl iron/FeSiAl composite in S-band, J. Mater. Sci. Mater. Electron., 29(2018), No. 6, p. 4711. doi: 10.1007/s10854-017-8423-z
      [10]
      X.L. Guo, Z.J. Yao, H.Y. Lin, et al., Epoxy resin addition on the microstructure, thermal stability and microwave absorption properties of core–shell carbonyl iron@epoxy composites, J. Magn. Magn. Mater., 485(2019), p. 244. doi: 10.1016/j.jmmm.2019.04.059
      [11]
      X.Q. Chen, Z. Wu, Z.L. Zhang, L.Y. Heng, S. Wang, and Y.H. Zou, Impedance matching for omnidirectional and polarization insensitive broadband absorber based on carbonyl iron powders, J. Magn. Magn. Mater., 476(2019), p. 349. doi: 10.1016/j.jmmm.2018.12.054
      [12]
      L.Y. Yang, L.H. Yin, C.Q. Hong, S. Dong, C. Liu, and X.H. Zhang, Strong and thermostable hydrothermal carbon coated 3D needled carbon fiber reinforced silicon–boron carbonitride composites with broadband and tunable high-performance microwave absorption, J. Colloid Interface Sci., 582(2021), p. 270. doi: 10.1016/j.jcis.2020.08.030
      [13]
      J.J. Ding, L. Wang, Y.H. Zhao, et al., Boosted interfacial polarization from multishell TiO2 @Fe3O4 @PPy heterojunction for enhanced microwave absorption, Small, 15(2019), No. 36, art. No. e1902885. doi: 10.1002/smll.201902885
      [14]
      L.Q. Yue, B. Zhong, L. Xia, T. Zhang, Y.L. Yu, and X.X. Huang, Three-dimensional network-like structure formed by silicon coated carbon nanotubes for enhanced microwave absorption, J. Colloid Interface Sci., 582(2021), p. 177. doi: 10.1016/j.jcis.2020.08.024
      [15]
      H.Q. Wang, M. Wang, X.C. Zhang, et al., A new type of catalyst allows carbonyl iron powder to be coated with SiO2 for tuned microwave absorption, Surf. Interfaces, 21(2020), art. No. 100755. doi: 10.1016/j.surfin.2020.100755
      [16]
      Z. Komeily-Nia, M. Montazer, S.S.S. Aye, and B. Nasri-Nasrabadi, A practical approach to load CuO/MnO2 core/shell nanostructures on textiles through in situ wet chemical synthesis, Colloids Surf. A: Physicochem. Eng. Aspects, 583(2019), art. No. 123998. doi: 10.1016/j.colsurfa.2019.123998
      [17]
      M.T. Qiao, X.F. Lei, Y. Ma, et al., Facile synthesis and enhanced electromagnetic microwave absorption performance for porous core–shell Fe3O4@MnO2 composite microspheres with lightweight feature, J. Alloys Compd., 693(2017), p. 432. doi: 10.1016/j.jallcom.2016.09.181
      [18]
      R.L. Gao, Z.H. Wang, G. Chen, X.L. Deng, W. Cai, and C.L. Fu, Influence of core size on the multiferroic properties of CoFe2O4@BaTiO3 core shell structured composites, Ceram. Int., 44(2018), p. S84. doi: 10.1016/j.ceramint.2018.08.234
      [19]
      G.M. Shi, Y.F. Li, L. Ai, and F.N. Shi, Two step synthesis and enhanced microwave absorption properties of polycrystalline BaTiO3 coated Ni nanocomposites, J. Alloys Compd., 680(2016), p. 735. doi: 10.1016/j.jallcom.2016.04.131
      [20]
      B. Zhong, Y.J. Cheng, M. Wang, et al., Three dimensional hexagonal boron nitride nanosheet/carbon nanotube composites with light weight and enhanced microwave absorption performance, Compos. Part A: Appl. Sci. Manuf., 112(2018), p. 515. doi: 10.1016/j.compositesa.2018.07.009
      [21]
      Q. Su, D.D. Liu, C.Y. Wang, L. Xia, X.X. Huang, and B. Zhong, Graphene/BN/Fe/BN nanocomposites for highly efficient electromagnetic wave absorption, ACS Appl. Nano Mater., 5(2022), No. 10, p. 15902. doi: 10.1021/acsanm.2c04129
      [22]
      D.T. Kuang, L.Z. Hou, S.L. Wang, et al., Facile synthesis of Fe/Fe3C–C core–shell nanoparticles as a high-efficiency microwave absorber, Appl. Surf. Sci., 493(2019), p. 1083. doi: 10.1016/j.apsusc.2019.07.073
      [23]
      C. Fu, D.W. He, Y.S. Wang, and X. Zhao, Facile synthesis and microwave absorption performance of coated carbon nanotubes by porous Fe3O4@C nanorods, Synth. Met., 248(2019), p. 76. doi: 10.1016/j.synthmet.2018.12.020
      [24]
      W.Y. Jang, S. Mallesh, S.B. Lee, and K.H. Kim, Microwave absorption properties of core–shell structured FeCoNi@PMMA filled in composites, Curr. Appl. Phys., 20(2020), No. 4, p. 525. doi: 10.1016/j.cap.2020.01.019
      [25]
      A.A. Mahani, S. Motahari, and V. Nayyeri, Electromagnetic and microwave absorption characteristics of PMMA composites filled with a nanoporous resorcinol formaldehyde based carbon aerogel, RSC Adv., 8(2018), No. 20, p. 10855. doi: 10.1039/C8RA00196K
      [26]
      H.Y. Yan, Y.Q. Fu, X.M. Wu, X.X. Xue, C. Li, and L. Zhang, Core–shell structured NaTi2(PO4)3@polyaniline as an efficient electrode material for electrochemical energy storage, Solid State Ion., 336(2019), p. 95. doi: 10.1016/j.ssi.2019.03.024
      [27]
      A.F. Zhu, H.L. Xing, Q. Fan, X.L. Ji, and P. Yang, Conductive polyaniline coated on aluminum substrate as bi-functional materials with high-performance microwave absorption and low infrared emissivity, Synth. Met., 271(2021), art. No. 116640. doi: 10.1016/j.synthmet.2020.116640
      [28]
      J. Xu, Z.H. Liu, J.Q. Wang, et al., Preparation of core–shell C@TiO2 composite microspheres with wrinkled morphology and its microwave absorption, J. Colloid Interface Sci., 607(2022), p. 1036. doi: 10.1016/j.jcis.2021.09.038
      [29]
      P.B. Liu, Y. Huang, J. Yan, and Y. Zhao, Magnetic graphene@PANI@porous TiO2 ternary composites for high-performance electromagnetic wave absorption, J. Mater. Chem. C, 4(2016), No. 26, p. 6362. doi: 10.1039/C6TC01718E
      [30]
      J. Qiao, X. Zhang, C. Liu, et al., Facile fabrication of Ni embedded TiO2/C core–shell ternary nanofibers with multicomponent functional synergy for efficient electromagnetic wave absorption, Compos. Part B: Eng., 200(2020), art. No. 108343. doi: 10.1016/j.compositesb.2020.108343
      [31]
      C. Chen, Q.H. Liu, H. Bi, W.B. You, W. She, and R.C. Che, Fabrication of hierarchical TiO2 coated Co20Ni80 particles with tunable core sizes as high-performance wide-band microwave absorbers, Phys. Chem. Chem. Phys., 18(2016), No. 38, p. 26712. doi: 10.1039/C6CP04081K
      [32]
      P. Arora, A. Fermah, J.K. Rajput, H. Singh, and J. Badhan, Efficient solar light-driven degradation of Congo red with novel Cu-loaded Fe3O4@TiO2 nanoparticles, Environ. Sci. Pollut. Res. Int., 24(2017), No. 24, p. 19546. doi: 10.1007/s11356-017-9571-7
      [33]
      J.L. Wei, A. Ostadhossein, S.Q. Li, and M. Ihme, Kinetics for the hydrolysis of Ti(OC3H7)4: A molecular dynamics simulation study, Proc. Combust. Inst., 38(2021), No. 1, p. 1433. doi: 10.1016/j.proci.2020.06.345
      [34]
      D.N. Chen, K.L. Li, H.Y. Yu, et al., Effects of secondary particle size distribution on the magnetic properties of carbonyl iron powder cores, J. Magn. Magn. Mater., 497(2020), art. No. 166062. doi: 10.1016/j.jmmm.2019.166062
      [35]
      C.W. Zhang, Y. Peng, T.L. Zhang, W.B. Guo, Y. Yuan, and Y.B. Li, In situ dual-template method of synthesis of inverse-opal Co3O4@TiO2 with wideband microwave absorption, Inorg. Chem., 60(2021), No. 23, p. 18455. doi: 10.1021/acs.inorgchem.1c03035
      [36]
      M. He, Q. Liao, Y.M. Zhou, et al., Lightweight TiO2@C/carbon fiber aerogels prepared from Ti3C2Tx/cotton for high-efficiency microwave absorption, Langmuir, 38(2022), No. 3, p. 945. doi: 10.1021/acs.langmuir.1c02237
      [37]
      D.Q. Zhang, Y.F. Xiong, J.Y. Cheng, et al., Construction of low-frequency and high-efficiency electromagnetic wave absorber enabled by texturing rod-like TiO2 on few-layer of WS2 nanosheets, Appl. Surf. Sci., 548(2021), art. No. 149158. doi: 10.1016/j.apsusc.2021.149158
      [38]
      S.K.M. Jamari, N.A. Nordin, U. Ubaidillah, S.A.A. Aziz, S.A. Mazlan, and N. Nazmi, Enhancement of the rheological properties of magnetorheological elastomer via polystyrene-grafted carbonyl iron particles, J. Appl. Polym. Sci., 138(2021), No. 34, art. No. 50860. doi: 10.1002/app.50860
      [39]
      X. Li, C.Y. Wen, L.T. Yang, R.X. Zhang, Y.S. Li, and R.C. Che, Enhanced visualizing charge distribution of 2D/2D MXene/MoS2 heterostructure for excellent microwave absorption performance, J. Alloys Compd., 869(2021), art. No. 159365. doi: 10.1016/j.jallcom.2021.159365
      [40]
      C.W. Qiang, J.C. Xu, Z.Q. Zhang, et al., Magnetic properties and microwave absorption properties of carbon fibers coated by Fe3O4 nanoparticles, J. Alloys Compd., 506(2010), No. 1, p. 93. doi: 10.1016/j.jallcom.2010.06.193
      [41]
      Z. Zhang, H.Q. Zhao, W.H. Gu, L.J. Yang, and B.S. Zhang, A biomass derived porous carbon for broadband and lightweight microwave absorption, Sci. Rep., 9(2019), No. 1, art. No. 18617. doi: 10.1038/s41598-019-54104-2
      [42]
      Y.L. Yu, M. Wang, Y.Q. Bai, et al., Tuning the inner hollow structure of lightweight amorphous carbon for enhanced microwave absorption, Chem. Eng. J., 375(2019), art. No. 121914. doi: 10.1016/j.cej.2019.121914
      [43]
      Y. Liu, Y.N. Li, K.D. Jiang, G.X. Tong, T.X. Lv, and W.H. Wu, Controllable synthesis of elliptical Fe3O4@C and Fe3O4/Fe@C nanorings for plasmon resonance-enhanced microwave absorption, J. Mater. Chem. C, 4(2016), No. 30, p. 7316. doi: 10.1039/C6TC01737A
      [44]
      X.X. Sun, M.L. Yang, S. Yang, et al., Ultrabroad band microwave absorption of carbonized waxberry with hierarchical structure, Small, 15(2019), No. 43, art. No. 1902974. doi: 10.1002/smll.201902974
      [45]
      M. Yu, Y. Huang, X.D. Liu, X.X. Zhao, W.Q. Fan, and K.H. She, In situ modification of MXene nanosheets with polyaniline nanorods for lightweight and broadband electromagnetic wave absorption, Carbon, 208(2023), p. 311. doi: 10.1016/j.carbon.2023.03.066
      [46]
      K.S. Sista, S. Dwarapudi, D. Kumar, G.R. Sinha, and A.P. Moon, Carbonyl iron powders as absorption material for microwave interference shielding: A review, J. Alloys Compd., 853(2021), art. No. 157251. doi: 10.1016/j.jallcom.2020.157251
      [47]
      X.D. Liu, S. Zhang, M. Yu, et al., WS2 nanosheets anchored on N-doped carbon fibers for superior electromagnetic wave absorption, Chem. Eng. J., 465(2023), art. No. 142932. doi: 10.1016/j.cej.2023.142932
      [48]
      C.M. Gao, T. Wei, Y.Y. Zhang, et al., A photoresponsive rutile TiO2 heterojunction with enhanced electron–hole separation for high-performance hydrogen evolution, Adv. Mater., 31(2019), No. 8, art. No. 1806596. doi: 10.1002/adma.201806596

    Catalog


    • /

      返回文章
      返回