留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 1
Jan.  2024

图(11)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  1650
  • HTML全文浏览量:  384
  • PDF下载量:  136
  • 被引次数: 0
Qicheng Feng, Wenhang Yang, Maohan Chang, Shuming Wen, Dianwen Liu, and Guang Han, Advances in depressants for flotation separation of Cu–Fe sulfide minerals at low alkalinity: A critical review, Int. J. Miner. Metall. Mater., 31(2024), No. 1, pp. 1-17. https://doi.org/10.1007/s12613-023-2709-3
Cite this article as:
Qicheng Feng, Wenhang Yang, Maohan Chang, Shuming Wen, Dianwen Liu, and Guang Han, Advances in depressants for flotation separation of Cu–Fe sulfide minerals at low alkalinity: A critical review, Int. J. Miner. Metall. Mater., 31(2024), No. 1, pp. 1-17. https://doi.org/10.1007/s12613-023-2709-3
引用本文 PDF XML SpringerLink
特约综述

低碱度铜硫浮选分离抑制剂研究进展


  • 通讯作者:

    韩广    E-mail: ghkmust@126.com

文章亮点

  • (1) 归纳了低碱度铜硫浮选分离中的抑制剂种类。
  • (2) 回顾了无机抑制剂和有机抑制剂在低碱度铜硫浮选分离中的应用。
  • (3) 总结了低碱度铜硫浮选分离中无机抑制剂和有机抑制剂的作用机理。
  • 选择性抑制剂可实现低碱度铜硫浮选分离。在铜硫矿物浮选体系中,抑制剂通常优先与黄铁矿表面发生相互作用,促使矿物表面亲水,阻碍捕收剂的吸附。本文综述了低碱度铜硫浮选分离抑制剂的研究进展,分别对无机抑制剂和有机抑制剂的应用和抑制机理进行了归纳总结。其中,无机抑制剂包括氧化剂和硫氧化合物,有机抑制剂包括天然多糖(淀粉、糊精、魔芋葡甘聚糖和半乳甘露聚糖)、改性聚合物(羧甲基纤维素、聚丙烯酰胺、木质素磺酸盐和三羧酸钠淀粉)、有机酸(聚谷氨酸、腐殖酸钠、单宁酸、焦没食子酸、水杨酸和乳酸)、二甲基二硫代氨基甲酸钠和二乙烯三胺。在总结了不同类型抑制剂作用特点的基础上,本文对无机抑制剂和有机抑制剂在低碱度铜硫浮选分离中的应用前景进行了评述。此外,本文系统地介绍了不同类型有机抑制剂在矿物表面的抑制机制差异。最后,针对现有研究的不足对低碱度铜硫浮选分离抑制剂的未来研究方向提出了建议。
  • Invited Review

    Advances in depressants for flotation separation of Cu–Fe sulfide minerals at low alkalinity: A critical review

    + Author Affiliations
    • The flotation separation of Cu–Fe sulfide minerals at low alkalinity can be achieved using selective depressants. In the flotation system of Cu–Fe sulfide minerals, depressants usually preferentially interact with the pyrite surface to render the mineral surface hydrophilic and hinder the adsorption of the collector. This review summarizes the advances in depressants for the flotation separation of Cu–Fe sulfide minerals at low alkalinity. These advances include use of inorganic depressants (oxidants and sulfur–oxygen compounds), natural polysaccharides (starch, dextrin, konjac glucomannan, and galactomannan), modified polymers (carboxymethyl cellulose, polyacrylamide, lignosulfonate, and tricarboxylate sodium starch), organic acids (polyglutamic acid, sodium humate, tannic acid, pyrogallic acid, salicylic acid, and lactic acid), sodium dimethyl dithiocarbamate, and diethylenetriamine. The potential application of specific inorganic and organic depressants in the flotation separation of Cu–Fe sulfide minerals at low alkalinity is reviewed. The advances in the use of organic depressants with respect to the flotation separation of Cu–Fe sulfide minerals are comprehensively detailed. Additionally, the depression performances and mechanisms of different types of organic depressants on mineral surfaces are summarized. Finally, several perspectives on depressants vis-à-vis flotation separation of Cu–Fe sulfide minerals at low alkalinity are proposed.
    • loading
    • [1]
      A.H. Alami, B. Rajab, J. Abed, M. Faraj, A. Abu Hawili, and H. Alawadhi, Investigating various copper oxides-based counter electrodes for dye sensitized solar cell applications, Energy, 174(2019), p. 526. doi: 10.1016/j.energy.2019.03.011
      [2]
      R.J. Ji, Y.H. Liu, S. To, et al., Efficient fabrication of gradient nanostructure layer on surface of commercial pure copper by coupling electric pulse and ultrasonics treatment, J. Alloys Compd., 764(2018), p. 51. doi: 10.1016/j.jallcom.2018.06.042
      [3]
      K.I. Kim, H. Lee, J. Kim, K.H. Oh, and K.T. Kim, Wear behavior of commercial copper-based aircraft brake pads fabricated under different SPS conditions, Crystals, 11(2021), No. 11, art. No. 1298. doi: 10.3390/cryst11111298
      [4]
      J.H. Chen, J.M. Wang, Y.Q. Li, et al., Effects of surface spatial structures and electronic properties of chalcopyrite and pyrite on Z-200 selectivity, Miner. Eng., 163(2021), art. No. 106803. doi: 10.1016/j.mineng.2021.106803
      [5]
      S.A. Khoso, Y.H. Hu, R.Q. Liu, et al., Selective depression of pyrite with a novel functionally modified biopolymer in a Cu–Fe flotation system, Miner. Eng., 135(2019), p. 55. doi: 10.1016/j.mineng.2019.02.044
      [6]
      H. Rezvanipour, A. Mostafavi, A. Ahmadi, M. Karimimobarakabadi, and M. Khezri, Desulfurization of iron ores: Processes and challenges, Steel Res. Int., 89(2018), No. 7, art. No. 1700568. doi: 10.1002/srin.201700568
      [7]
      X. Jiang, W.J. Zhang, R.H. Fan, et al., Improved flotation of chalcopyrite from galena and pyrite by employing Cu-affinity phosphate collector, Miner. Eng., 197(2023), art. No. 108064. doi: 10.1016/j.mineng.2023.108064
      [8]
      G.H. Gu, Y.H. Hu, H. Wang, G.Z. Qiu, and D.Z. Wang, Original potential flotation of galena and its industrial application, J. Cent. South Univ. Technol., 9(2002), No. 2, p. 91. doi: 10.1007/s11771-002-0049-4
      [9]
      X.L. Zhang, J. Kou, C.B. Sun, R.Y. Zhang, M. Su, and S.F. Li, Mineralogical characterization of copper sulfide tailings using automated mineral liberation analysis: A case study of the Chambishi Copper Mine tailings, Int. J. Miner. Metall. Mater., 28(2021), No. 6, p. 944. doi: 10.1007/s12613-020-2093-1
      [10]
      Q. Zhang, S.M. Wen, Q.C. Feng, and H. Wang, Enhanced sulfidization of azurite surfaces by ammonium phosphate and its effect on flotation, Int. J. Miner. Metall. Mater., 29(2022), No. 6, p. 1150. doi: 10.1007/s12613-021-2379-y
      [11]
      S. Northey, S. Mohr, G.M. Mudd, Z. Weng, and D. Giurco, Modelling future copper ore grade decline based on a detailed assessment of copper resources and mining, Resour. Conserv. Recycl., 83(2014), p. 190. doi: 10.1016/j.resconrec.2013.10.005
      [12]
      G.M. Mudd, Z.H. Weng, and M.S. Jowitt, A detailed assessment of global Cu resource trends and endowments, Econ. Geol., 108(2013), No. 5, p. 1163. doi: 10.2113/econgeo.108.5.1163
      [13]
      J. John, C. Evans, and N.W. Johnson, The influence of lime and sodium hydroxide conditioning on sulfide sulfur behaviour in pyrite flotation, Miner. Eng., 151(2020), art. No. 106304. doi: 10.1016/j.mineng.2020.106304
      [14]
      R.P. Liao, S.M. Wen, Q.C. Feng, J.S. Deng, and H. Lai, Activation mechanism of ammonium oxalate with pyrite in the lime system and its response to flotation separation of pyrite from arsenopyrite, Int. J. Miner. Metall. Mater., 30(2023), No. 2, p. 271. doi: 10.1007/s12613-022-2505-5
      [15]
      J. Li, B. Dabrowski, J.D. Miller, et al., The influence of pyrite pre-oxidation on gold recovery by cyanidation, Miner. Eng., 19(2006), No. 9, p. 883. doi: 10.1016/j.mineng.2005.09.052
      [16]
      B. Guo, Y.J. Peng, and G. Parker, Electrochemical and spectroscopic studies of pyrite–cyanide interactions in relation to the depression of pyrite flotation, Miner. Eng., 92(2016), p. 78. doi: 10.1016/j.mineng.2016.03.003
      [17]
      X.H. Qiu, Z.J. Huang, F. Cao, D.S. Sun, P.P. Wang, and C.F. Chen, Flotation separation of chalcopyrite from pyrite using a novel O-n-butyl-N-isobutyl thionocarbamate as the selective collector, Colloids Surf. A: Physicochem. Eng. Aspects, 661(2023), art. No. 130890. doi: 10.1016/j.colsurfa.2022.130890
      [18]
      S.H. Wu, J.J. Wang, L.M. Tao, et al., Selective separation of chalcopyrite from pyrite using an acetylacetone-based lime-free process, Miner. Eng., 182(2022), art. No. 107584. doi: 10.1016/j.mineng.2022.107584
      [19]
      G. Han, S.M. Wen, H. Wang, and Q.C. Feng, Effect of starch on surface properties of pyrite and chalcopyrite and its response to flotation separation at low alkalinity, Miner. Eng., 143(2019), art. No. 106015. doi: 10.1016/j.mineng.2019.106015
      [20]
      L.B. Zhao, Y.J. Xian, S.M. Wen, S. Zhang, G. Han, and Z.H. Chen, Research development of depression and activation separation of pyrite, Conserv. Util. Miner. Resour., 40(2020), No. 2, p. 74.
      [21]
      J.V. Mehrabani, S.M. Mousavi, and M. Noaparast, Evaluation of the replacement of NaCN with Acidithiobacillus ferrooxidans in the flotation of high-pyrite, low-grade lead–zinc ore, Sep. Purif. Technol., 80(2011), No. 2, p. 202. doi: 10.1016/j.seppur.2011.04.006
      [22]
      X.M. Qiu, H.Y. Yang, G.B. Chen, L.L. Tong, Z.N. Jin, and Q. Zhang, Interface behavior of chalcopyrite during flotation from cyanide tailings, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 439. doi: 10.1007/s12613-020-2170-5
      [23]
      A.P. Zheng, D.A. Dzomba, R.G. Luthy, et al., Evaluation and testing of analytical methods for cyanide species in municipal and industrial contaminated waters, Environ. Sci. Technol., 37(2003), No. 1, p. 107. doi: 10.1021/es0258273
      [24]
      Y.F. Mu, Y.J. Peng, and R.A. Lauten, The depression of pyrite in selective flotation by different reagent systems—A literature review, Miner. Eng., 96-97(2016), p. 143. doi: 10.1016/j.mineng.2016.06.018
      [25]
      Y.F. Mu, Y.J. Peng, and R.A. Lauten, Electrochemistry aspects of pyrite in the presence of potassium amyl xanthate and a lignosulfonate-based biopolymer depressant, Electrochim. Acta, 174(2015), p. 133. doi: 10.1016/j.electacta.2015.05.150
      [26]
      A. Boulton, D. Fornasiero, and J. Ralston, Selective depression of pyrite with polyacrylamide polymers, Int. J. Miner. Process., 61(2001), No. 1, p. 13. doi: 10.1016/S0301-7516(00)00024-7
      [27]
      J. Gregory and S. Barany, Adsorption and flocculation by polymers and polymer mixtures, Adv. Colloid Interface Sci., 169(2011), No. 1, p. 1. doi: 10.1016/j.cis.2011.06.004
      [28]
      Z. Wang, Y.L. Qian, L.H. Xu, B. Dai, J.H. Xiao, and K.B. Fu, Selective chalcopyrite flotation from pyrite with glycerine-xanthate as depressant, Miner. Eng., 74(2015), p. 86. doi: 10.1016/j.mineng.2015.01.008
      [29]
      X. Chen, G.H. Gu, L.J. Li, and Z.X. Chen, Effect of food-grade guar gum on the flotation separation of chalcopyrite and monoclinic pyrrhotite in low-alkali systems, Physicochem. Probl. Miner. Process., 55(2018), p. 437.
      [30]
      X. Wang, J. Liu, Y.M. Zhu, and Y.X. Han, Adsorption and depression mechanism of an eco-friendly depressant PCA onto chalcopyrite and pyrite for the efficiency flotation separation, Colloids Surf. A: Physicochem. Eng. Aspects, 620(2021), art. No. 126574. doi: 10.1016/j.colsurfa.2021.126574
      [31]
      Y.Q. Li, J.H. Chen, and Y. Chen, Electronic structures and flotation behavior of pyrite containing vacancy defects, Acta Phys. Chim. Sin., 26(2010), No. 5, p. 1435.
      [32]
      Y.Q. Li, J.H. Chen, Y. Chen, and J. Guo, Density functional theory study of influence of impurity on electronic properties and reactivity of pyrite, Trans. Nonferrous Met. Soc. China, 21(2011), No. 8, p. 1887. doi: 10.1016/S1003-6326(11)60946-1
      [33]
      K.S. Savage, D. Stefan, and S.W. Lehner, Impurities and heterogeneity in pyrite: Influences on electrical properties and oxidation products, Appl. Geochem., 23(2008), No. 2, p. 103. doi: 10.1016/j.apgeochem.2007.10.010
      [34]
      H.D. Yu and C.Y. Sun, Flotation characteristics of different geo-genetic type pyrite, Nonferrous Met., 61(2009), No. 3, p. 111.
      [35]
      E.T. Pecina, A. Uribe, F. Nava, and J.A. Finch, The role of copper and lead in the activation of pyrite in xanthate and non-xanthate systems, Miner. Eng., 19(2006), No. 2, p. 172. doi: 10.1016/j.mineng.2005.09.024
      [36]
      S. He, D. Fornasiero, and W. Skinner, Correlation between copper-activated pyrite flotation and surface species: Effect of pulp oxidation potential, Miner. Eng., 18(2005), No. 12, p. 1208. doi: 10.1016/j.mineng.2005.07.016
      [37]
      A.P. Chandra, L. Puskar, D.J. Simpson, and A.R. Gerson, Copper and xanthate adsorption onto pyrite surfaces: Implications for mineral separation through flotation, Int. J. Miner. Process., 114-117(2012), p. 16. doi: 10.1016/j.minpro.2012.08.003
      [38]
      W.J. Zhao, B. Yang, Y.H. Yi, Q.C. Feng, and D.W. Liu, Synergistic activation of smithsonite with copper-ammonium species for enhancing surface reactivity and xanthate adsorption, Int. J. Min. Sci. Technol., 33(2023), No. 4, p. 519. doi: 10.1016/j.ijmst.2023.03.001
      [39]
      C. Su, P.L. Shen, J.L. Li, et al., A review on depression and derepression of pyrite flotation, Chem. Ind. Eng. Prog., 38(2019), No. 4, p. 1921.
      [40]
      C.I. Castellón, N. Toro, E. Gálvez, P. Robles, W.H. Leiva, and R.I. Jeldres, Froth flotation of chalcopyrite/pyrite ore: A critical review, Materials, 15(2022), No. 19, art. No. 6536. doi: 10.3390/ma15196536
      [41]
      R.L.J. Lee, X.M. Chen, and Y.J. Peng, Flotation performance of chalcopyrite in the presence of an elevated pyrite proportion, Miner. Eng., 177(2022), art. No. 107387. doi: 10.1016/j.mineng.2021.107387
      [42]
      J.J. Wu, W.K. Ma, X.J. Wang, F. Jiao, and W.Q. Qin, The effect of galvanic interaction between chalcopyrite and pyrite on the surface chemistry and collector adsorption: Flotation and DFT study, Colloids Surf. A: Physicochem. Eng. Aspects, 607(2020), art. No. 125377. doi: 10.1016/j.colsurfa.2020.125377
      [43]
      S. Zou, S. Wang, X. Ma, and H. Zhong, Underlying synergistic collection mechanism of an emerging mixed reagent scheme in chalcopyrite flotation, J. Mol. Liq., 364(2022), art. No. 119948. doi: 10.1016/j.molliq.2022.119948
      [44]
      X.M. Chen, Y.J. Peng, and D. Bradshaw, The separation of chalcopyrite and chalcocite from pyrite in cleaner flotation after regrinding, Miner. Eng., 58(2014), p. 64. doi: 10.1016/j.mineng.2014.01.010
      [45]
      T. Hirajima, H. Miki, G.P.W. Suyantara, et al., Selective flotation of chalcopyrite and molybdenite with H2O2 oxidation, Miner. Eng., 100(2017), p. 83. doi: 10.1016/j.mineng.2016.10.007
      [46]
      G. Han, S.M. Wen, H. Wang, and Q.C. Feng, Sulfidization regulation of cuprite by pre-oxidation using sodium hypochlorite as an oxidant, Int. J. Min. Sci. Technol., 31(2021), No. 6, p. 1117. doi: 10.1016/j.ijmst.2021.11.001
      [47]
      F. Goktepe, Effect of pH on pulp potential and sulphide mineral flotation, Turk. J. Eng. Environ. Sci., 26(2002), p. 309.
      [48]
      Y.J. Peng, B. Wang, and A. Gerson, The effect of electrochemical potential on the activation of pyrite by copper and lead ions during grinding, Int. J. Miner. Process., 102-103(2012), p. 141. doi: 10.1016/j.minpro.2011.11.010
      [49]
      L. Yang, X.W. Zhou, H.S. Yan, H.L. Zhang, X.H. Liu, and T.S. Qiu, Effects of galvanic interaction between chalcopyrite and monoclinic pyrrhotite on their flotation separation, Minerals, 12(2021), No. 1, art. No. 39. doi: 10.3390/min12010039
      [50]
      A. Rabieh, B. Albijanic, and J.J. Eksteen, A review of the effects of grinding media and chemical conditions on the flotation of pyrite in refractory gold operations, Miner. Eng., 94(2016), p. 21. doi: 10.1016/j.mineng.2016.04.012
      [51]
      X.L. Zhang, Y.H. Qin, Y.X. Han, et al., A potential ceramic ball grinding medium for optimizing flotation separation of chalcopyrite and pyrite, Powder Technol., 392(2021), p. 167. doi: 10.1016/j.powtec.2021.07.006
      [52]
      Y.B. Li, W.Q. Duan, W.Q. Li, X. Yang, and W. Chen, Oxidative flotation separation of chalcopyrite and pyrite using K2FeO4 in seawater, Miner. Process. Extr. Metall. Rev., 2022. DOI: 10.1080/08827508.2022.2155958.
      [53]
      W. Yang, X.H. Qiu, H.S. Yan, et al., Investigating the selectivity of calcium hypochlorite for flotation separation of chalcopyrite and pyrite pre-adsorbed collector, Physicochem. Probl. Miner. Process., 58(2022), No. 4, art. No. 150703.
      [54]
      J.L. Feng, H. Tian, Y.L. Huang, Z.Y. Ding, and Z.L. Yin, Pyrite oxidation mechanism in aqueous medium, J. Chin. Chem. Soc., 66(2019), No. 4, p. 345. doi: 10.1002/jccs.201800368
      [55]
      X.P. Niu, J.H. Chen, Y.Q. Li, et al., Correlation of surface oxidation with xanthate adsorption and pyrite flotation, Appl. Surf. Sci., 495(2019), art. No. 143411. doi: 10.1016/j.apsusc.2019.07.153
      [56]
      Z.H. Tu, J.J. Wan, C.L. Guo, et al., Electrochemical oxidation of pyrite in pH 2 electrolyte, Electrochim. Acta, 239(2017), p. 25. doi: 10.1016/j.electacta.2017.04.049
      [57]
      T.S. Qiu, X.P. Luo, and X.H. Fang, Study on depression behavior and oxidation mechanism of pyrite, Multipurp. Util. Miner. Resour., 2001, No. 5, p. 17.
      [58]
      X.Y. Yu, Y. Zhou, and H. Zhong, Depressor for Cu–S separation in low alkaline medium and its depressing mechanism, Met. Mine, 2008, No. 9, p. 65.
      [59]
      S.J. Bai, P. Yu, C.L. Li, S.M. Wen, and Z. Ding, Depression of pyrite in a low-alkaline medium with added calcium hypochlorite: Experiment, visual MINTEQ models, XPS, and ToF–SIMS studies, Miner. Eng., 141(2019), art. No. 105853. doi: 10.1016/j.mineng.2019.105853
      [60]
      M.A.A. Schoonen, A.D. Harrington, R. Laffers, and D.R. Strongin, Role of hydrogen peroxide and hydroxyl radical in pyrite oxidation by molecular oxygen, Geochim. Cosmochim. Acta, 74(2010), No. 17, p. 4971. doi: 10.1016/j.gca.2010.05.028
      [61]
      D. Hermosilla, M. Cortijo, and C.P. Huang, Optimizing the treatment of landfill leachate by conventional Fenton and photo-Fenton processes, Sci. Total Environ., 407(2009), No. 11, p. 3473. doi: 10.1016/j.scitotenv.2009.02.009
      [62]
      B. Aftab, H.S. Shin, and J. Hur, Exploring the fate and oxidation behaviors of different organic constituents in landfill leachate upon Fenton oxidation processes using EEM-PARAFAC and 2D-COS-FTIR, J. Hazard. Mater., 354(2018), p. 33. doi: 10.1016/j.jhazmat.2018.04.059
      [63]
      S.A. Khoso, Y.H. Hu, F. Lü, Y. Gao, R.Q. Liu, and W. Sun, Xanthate interaction and flotation separation of H2O2-treated chalcopyrite and pyrite, Trans. Nonferrous Met. Soc. China, 29(2019), No. 12, p. 2604. doi: 10.1016/S1003-6326(19)65167-8
      [64]
      X. Yang, Y.B. Li, R. Fan, W.Q. Duan, L.Y. Huang, and Q. Xiao, Separation mechanism of chalcopyrite and pyrite due to H2O2 treatment in low-alkaline seawater flotation system, Miner. Eng., 176(2022), art. No. 107356. doi: 10.1016/j.mineng.2021.107356
      [65]
      Z. Ding, Y.X. Bi, J. Li, J.Q. Yuan, H.X. Dai, and S.J. Bai, Flotation separation of chalcopyrite and pyrite via Fenton oxidation modification in a low alkaline acid mine drainage (AMD) system, Miner. Eng., 187(2022), art. No. 107818. doi: 10.1016/j.mineng.2022.107818
      [66]
      X.H. Wang and K.S. Eric Forssberg, Mechanisms of pyrite flotation with xanthates, Int. J. Miner. Process., 33(1991), No. 1-4, p. 275. doi: 10.1016/0301-7516(91)90058-Q
      [67]
      C.T. Wang, R.Q. Liu, Q.L. Zhai, et al., Exploring the effect of pulp aeration and lime-aid grinding on pyrrhotite-rich type copper sulfide ore flotation separation, Sep. Purif. Technol., 311(2023), art. No. 123268. doi: 10.1016/j.seppur.2023.123268
      [68]
      J.D. Miller, R. Du Plessis, D.G. Kotylar, X. Zhu, and G.L. Simmons, The low-potential hydrophobic state of pyrite in amyl xanthate flotation with nitrogen, Int. J. Miner. Process., 67(2002), No. 1-4, p. 1. doi: 10.1016/S0301-7516(02)00011-X
      [69]
      Q.C. Feng, W.H. Yang, S.M. Wen, H. Wang, W.J. Zhao, and G. Han, Flotation of copper oxide minerals: A review, Int. J. Min. Sci. Technol., 32(2022), No. 6, p. 1351. doi: 10.1016/j.ijmst.2022.09.011
      [70]
      N.D. Janetski, S.I. Woodburn, and R. Woods, An electrochemical investigation of pyrite flotation and depression, Int. J. Miner. Process., 4(1977), No. 3, p. 227. doi: 10.1016/0301-7516(77)90004-7
      [71]
      Q.C. Feng, M.L. Wang, G. Zhang, W.J. Zhao, and G. Han, Enhanced adsorption of sulfide and xanthate on smithsonite surfaces by lead activation and implications for flotation intensification, Sep. Purif. Technol., 307(2023), art. No. 122772. doi: 10.1016/j.seppur.2022.122772
      [72]
      T.N. Khmeleva, D.A. Beattie, T.V. Georgiev, and W.M. Skinner, Surface study of the effect of sulphite ions on copper-activated pyrite pre-treated with xanthate, Miner. Eng., 16(2003), No. 7, p. 601. doi: 10.1016/S0892-6875(03)00133-X
      [73]
      T.N. Khmeleva, W. Skinner, and D.A. Beattie, Depressing mechanisms of sodium bisulphite in the collectorless flotation of copper-activated sphalerite, Int. J. Miner. Process., 76(2005), No. 1-2, p. 43. doi: 10.1016/j.minpro.2004.10.001
      [74]
      G.I. Dávila-Pulido, A. Uribe-Salas, and R. Espinosa-Gómez, Comparison of the depressant action of sulfite and metabisulfite for Cu-activated sphalerite, Int. J. Miner. Process., 101(2011), No. 1-4, p. 71. doi: 10.1016/j.minpro.2011.07.012
      [75]
      Y.F. Mu and Y.J. Peng, The role of sodium metabisulphite in depressing pyrite in chalcopyrite flotation using saline water, Miner. Eng., 142(2019), art. No. 105921. doi: 10.1016/j.mineng.2019.105921
      [76]
      T.N. Khmeleva, W. Skinner, D.A. Beattie, and T.V. Georgiev, The effect of sulphite on the xanthate-induced flotation of copper-activated pyrite, Physicochem. Probl. Miner. Process., 36(2002), p. 185.
      [77]
      G. Bulut, A. Ceylan, B. Soylu, and F. Goktepe, Role of starch and metabisuphite on pure pyrite and pyritic copper ore flotation, Physicochem. Probl. Miner. Process., 48(2012), No. 1, p. 39.
      [78]
      J.Z. Cai, J.S. Deng, L. Wang, et al., Reagent types and action mechanisms in ilmenite flotation: A review, Int. J. Miner. Metall. Mater., 29(2022), No. 9, p. 1656. doi: 10.1007/s12613-021-2380-5
      [79]
      A.L. Valdivieso, T.C. Cervantes, S. Song, A.R. Cabrera, and J.S. Laskowski, Dextrin as a non-toxic depressant for pyrite in flotation with xanthates as collector, Miner. Eng., 17(2004), No. 9-10, p. 1001. doi: 10.1016/j.mineng.2004.04.003
      [80]
      A.N. Buckley and R. Woods, The surface oxidation of pyrite, Appl. Surf. Sci., 27(1987), No. 4, p. 437. doi: 10.1016/0169-4332(87)90153-X
      [81]
      D. Fornasiero, V. Eijt, and J. Ralston, An electrokinetic study of pyrite oxidation, Colloids Surf., 62(1992), No. 1-2, p. 63. doi: 10.1016/0166-6622(92)80037-3
      [82]
      J. Bebie, M.A.A. Schoonen, M. Fuhrmann, and D.R. Strongin, Surface charge development on transition metal sulfides: An electrokinetic study, Geochim. Cosmochim. Acta, 62(1998), No. 4, p. 633. doi: 10.1016/S0016-7037(98)00058-1
      [83]
      E.C. Todd, D.M. Sherman, and J.A. Purton, Surface oxidation of pyrite under ambient atmospheric and aqueous (pH = 2 to 10) conditions: Electronic structure and mineralogy from X-ray absorption spectroscopy, Geochim. Cosmochim. Acta, 67(2003), No. 5, p. 881. doi: 10.1016/S0016-7037(02)00957-2
      [84]
      Q. Liu, J.S. Laskowski, Y. Li, and D.F. Wang, Synergistic effect of mineral surface constituents in dextrin adsorption, Int. J. Miner. Process., 42(1994), No. 3-4, p. 251. doi: 10.1016/0301-7516(94)00033-6
      [85]
      E. Bogusz, S.R. Brienne, I. Butler, S.R. Rao, and J.A. Finch, Metal ions and dextrin adsorption on pyrite, Miner. Eng., 10(1997), No. 4, p. 441. doi: 10.1016/S0892-6875(97)00020-4
      [86]
      D.Z. Liu, G.F. Zhang, Y.F. Chen, G.H. Huang, and Y.W. Gao, Investigations on the utilization of konjac glucomannan in the flotation separation of chalcopyrite from pyrite, Miner. Eng., 145(2020), art. No. 106098. doi: 10.1016/j.mineng.2019.106098
      [87]
      X.L. Zhang, X. Wang, Y.J. Li, Y.X. Han, X.T. Gu, and S.X. Wang, Adsorption mechanism of a new depressant on pyrite surfaces and its application to the selective separation of chalcopyrite from pyrite, Colloids Surf. A: Physicochem. Eng. Aspects, 625(2021), art. No. 126892. doi: 10.1016/j.colsurfa.2021.126892
      [88]
      O. Bicak, Z. Ekmekci, D.J. Bradshaw, and P.J. Harris, Adsorption of guar gum and CMC on pyrite, Miner. Eng., 20(2007), No. 10, p. 996. doi: 10.1016/j.mineng.2007.03.002
      [89]
      X.H. Qiu and C.Y. Sun, Influence of the addition orders of guar gum and tannic acid on sulfide flotation, J. Univ. Sci. Technol. Beijing, 36(2014), No. 3, p. 283.
      [90]
      W. Guo, B. Feng, J.X. Peng, W.P. Zhang, and X.W. Zhu, Depressant behavior of tragacanth gum and its role in the flotation separation of chalcopyrite from talc, J. Mater. Res. Technol., 8(2019), No. 1, p. 697. doi: 10.1016/j.jmrt.2018.05.015
      [91]
      Z.H. Shen, S.M. Wen, G. Han, Y.W. Zhou, X. Bai, and Q.C. Feng, Selective depression mechanism of locust bean gum in the flotation separation of chalcopyrite from pyrite in a low-alkalinity media, Miner. Eng., 170(2021), art. No. 107044. doi: 10.1016/j.mineng.2021.107044
      [92]
      T.K. Kirk, E. Schultz, W.J. Connors, L.F. Lorenz, and J.G. Zeikus, Influence of culture parameters on lignin metabolism by Phanerochaete chrysosporium, Arch. Microbiol., 117(1978), No. 3, p. 277.
      [93]
      B. Feng, L.Z. Zhang, W.P. Zhang, H.H. Wang, and Z.Y. Gao, Mechanism of calcium lignosulfonate in apatite and dolomite flotation system, Int. J. Miner. Metall. Mater., 29(2022), No. 9, p. 1697. doi: 10.1007/s12613-021-2313-3
      [94]
      R.Q. Liu, W. Sun, Y.H. Hu, and D.Z. Wang, Effect of organic depressant lignosulfonate calcium on separation of chalcopyrite from pyrite, J. Cent. South Univ. Technol., 16(2009), No. 5, p. 753. doi: 10.1007/s11771-009-0125-0
      [95]
      Y.F. Mu, Y.J. Peng, and R.A. Lauten, The depression of copper-activated pyrite in flotation by biopolymers with different compositions, Miner. Eng., 96-97(2016), p. 113. doi: 10.1016/j.mineng.2016.06.011
      [96]
      Y.F. Mu, Y.J. Peng, and R.A. Lauten, The mechanism of pyrite depression at acidic pH by lignosulfonate-based biopolymers with different molecular compositions, Miner. Eng., 92(2016), p. 37. doi: 10.1016/j.mineng.2016.02.007
      [97]
      B. Fletcher, W. Chimonyo, and Y.J. Peng, A comparison of native starch, oxidized starch and CMC as copper-activated pyrite depressants, Miner. Eng., 156(2020), art. No. 106532. doi: 10.1016/j.mineng.2020.106532
      [98]
      S.A. Khoso, Y.H. Hu, M.J. Tian, Z.Y. Gao, and W. Sun, Evaluation of green synthetic depressants for sulfide flotation: Synthesis, characterization and floatation performance to pyrite and chalcopyrite, Sep. Purif. Technol., 259(2021), art. No. 118138. doi: 10.1016/j.seppur.2020.118138
      [99]
      S.A. Khoso, Z.Y. Gao, M.J. Tian, Y.H. Hu, and W. Sun, Adsorption and depression mechanism of an environmentally friendly reagent in differential flotation of Cu–Fe sulphides, J. Mater. Res. Technol., 8(2019), No. 6, p. 5422. doi: 10.1016/j.jmrt.2019.09.009
      [100]
      S.A. Khoso, Y.H. Hu, F. Lyu, R.Q. Liu, and W. Sun, Selective separation of chalcopyrite from pyrite with a novel non-hazardous biodegradable depressant, J. Clean. Prod., 232(2019), p. 888. doi: 10.1016/j.jclepro.2019.06.008
      [101]
      S.A. Khoso, Z.Y. Gao, M.J. Tian, Y.H. Hu, and W. Sun, The synergistic depression phenomenon of an organic and inorganic reagent on FeS2 in Cu–S flotation scheme, J. Mol. Liq., 299(2020), art. No. 112198. doi: 10.1016/j.molliq.2019.112198
      [102]
      W.H. Xu, E.H. Han, and Z.Y. Wang, Effect of tannic acid on corrosion behavior of carbon steel in NaCl solution, J. Mater. Sci. Technol., 35(2019), No. 1, p. 64. doi: 10.1016/j.jmst.2018.09.001
      [103]
      G. Han, S.M. Wen, H. Wang, and Q.C. Feng, Interaction mechanism of tannic acid with pyrite surfaces and its response to flotation separation of chalcopyrite from pyrite in a low-alkaline medium, J. Mater. Res. Technol., 9(2020), No. 3, p. 4421. doi: 10.1016/j.jmrt.2020.02.067
      [104]
      J. Lu, K. Zhu, B. Hou, and Y.F. Zhao, General situation of the reaction mechanisms of humic substances with heavy metal ions in soil, Humic Acid, 2006, No. 5, p. 1.
      [105]
      Y.M. Han, Functions of sodium humate in flotation of the sulphide minerals containing low copper, J. Wuhan Univ. Sci. Technol. (Nat. Sci. Ed.), 25(2002), No. 4, p. 342.
      [106]
      J.H. Chen, Y.Q. Li, and Y. Chen, Cu–S flotation separation via the combination of sodium humate and lime in a low pH medium, Miner. Eng., 24(2011), No. 1, p. 58. doi: 10.1016/j.mineng.2010.09.021
      [107]
      W. Chen, Q.M. Feng, G.F. Zhang, C. Liu, and F.W. Meng, Utilization of pyrogallol in flotation separation of scheelite from calcite, Sep. Sci. Technol., 56(2021), No. 4, p. 738. doi: 10.1080/01496395.2017.1377249
      [108]
      J.D. Gao, W. Sun, Y.H. Hu, et al., Propyl gallate: A novel collector for flotation separation of fluorite from calcite, Chem. Eng. Sci., 193(2019), p. 255. doi: 10.1016/j.ces.2018.09.017
      [109]
      J.Y. He, Y.H. Hu, W. Sun, et al., Computational insights into the adsorption mechanism of Gallic acid-bearing reagents on calcium-bearing mineral surfaces, Miner. Eng., 156(2020), art. No. 106485. doi: 10.1016/j.mineng.2020.106485
      [110]
      G. Han, S.M. Wen, H. Wang, Q.C. Feng, and X. Bai, Pyrogallic acid as depressant for flotation separation of pyrite from chalcopyrite under low-alkalinity conditions, Sep. Purif. Technol., 267(2021), art. No. 118670. doi: 10.1016/j.seppur.2021.118670
      [111]
      G. Han, S.M. Wen, H. Wang, and Q.C. Feng, Selective adsorption mechanism of salicylic acid on pyrite surfaces and its application in flotation separation of chalcopyrite from pyrite, Sep. Purif. Technol., 240(2020), art. No. 116650. doi: 10.1016/j.seppur.2020.116650
      [112]
      G. Han, S.M. Wen, H. Wang, and Q.C. Feng, Lactic acid as selective depressant for flotation separation of chalcopyrite from pyrite and its depression mechanism, J. Mol. Liq., 296(2019), art. No. 111774. doi: 10.1016/j.molliq.2019.111774
      [113]
      Y.H. Zhang, Mirror symmetry rule for the interaction between flotation reagents and mineral interfaces, Nonferrous Met. Miner. Process. Sect., 2016, No. 4, p. 87.
      [114]
      Y.F. Cui, F. Jiao, W.Q. Qin, L.Y. Dong, and X. Wang, Synergistic depression mechanism of zinc sulfate and sodium dimethyl dithiocarbamate on sphalerite in Pb−Zn flotation system, Trans. Nonferrous Met. Soc. China, 30(2020), No. 9, p. 2547. doi: 10.1016/S1003-6326(20)65400-0
      [115]
      X. Bai, J. Liu, S.M. Wen, and Y.L. Lin, Selective separation of chalcopyrite and pyrite using a novel organic depressant at low alkalinity, Miner. Eng., 185(2022), art. No. 107677. doi: 10.1016/j.mineng.2022.107677
      [116]
      X. Bai, J. Liu, S.M. Wen, and Y.L. Lin, Effect and mechanism of organic depressant on the hydrophobicity of chalcopyrite and pyrite under weakly alkaline environment, J. Mater. Res. Technol., 15(2021), p. 4109. doi: 10.1016/j.jmrt.2021.10.052
      [117]
      E.A. Agorhom, W. Skinner, and M. Zanin, Diethylenetriamine depression of Cu-activated pyrite hydrophobised by xanthate, Miner. Eng., 57(2014), p. 36. doi: 10.1016/j.mineng.2013.12.010
      [118]
      M. Ahmadi, M. Gharabaghi, and H. Abdollahi, Effects of type and dosages of organic depressants on pyrite floatability in microflotation system, Adv. Powder Technol., 29(2018), No. 12, p. 3155. doi: 10.1016/j.apt.2018.08.015
      [119]
      A.K. Saim and F.K. Darteh, Eco-friendly and biodegradable depressants in chalcopyrite flotation: A review, Miner. Process. Extr. Metall. Rev., 44(2023), No. 7, p. 492. doi: 10.1080/08827508.2022.2091558
      [120]
      X. Tian, E. Furnell, and E.R. Bobicki, Predicting the fate of diethylenetriamine in pyrrhotite tailings management, Miner. Eng., 176(2022), art. No. 107335. doi: 10.1016/j.mineng.2021.107335

    Catalog


    • /

      返回文章
      返回