留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 2
Feb.  2024

图(12)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  383
  • HTML全文浏览量:  131
  • PDF下载量:  40
  • 被引次数: 0
Zihang Yan, Qing Zhao, Chengzhi Han, Xiaohui Mei, Chengjun Liu, and Maofa Jiang, Effects of iron oxide on crystallization behavior and spatial distribution of spinel in stainless steel slag, Int. J. Miner. Metall. Mater., 31(2024), No. 2, pp. 292-300. https://doi.org/10.1007/s12613-023-2713-7
Cite this article as:
Zihang Yan, Qing Zhao, Chengzhi Han, Xiaohui Mei, Chengjun Liu, and Maofa Jiang, Effects of iron oxide on crystallization behavior and spatial distribution of spinel in stainless steel slag, Int. J. Miner. Metall. Mater., 31(2024), No. 2, pp. 292-300. https://doi.org/10.1007/s12613-023-2713-7
引用本文 PDF XML SpringerLink
研究论文

氧化铁对不锈钢渣中尖晶石结晶行为和空间分布的影响



  • 通讯作者:

    赵青    E-mail: zhaoq@smm.neu.edu.cn

文章亮点

  • (1) 系统地研究对比分析了FeO、Fe2O3和Fe3O4对不锈钢渣中尖晶石结晶行为的影响。
  • (2) 重点研究了FeO含量对不锈钢渣中尖晶石相结晶行为和空间分布的影响。
  • (3) 揭示了FeO对不锈钢渣的改质作用机理。
  • 不锈钢渣中含有铬组元,对生态环境和人体健康具有极大危害。将铬赋存于尖晶石相,是提升铬稳定性,防止铬氧化和溶出的重要措施。为促进铬在尖晶石相富集,强化尖晶石晶体生长,本文研究了铁氧化物对尖晶石结晶行为和空间分布的影响。研究结果表明,与Fe2O3和Fe3O4相比,FeO更利于尖晶石的生长。尖晶石主要分布在炉渣的顶部和底部,底部的尖晶石随FeO含量的增加而减少,而顶部的尖晶石则呈相反趋势。在FeO含量为18wt%的炉渣中,尖晶石的平均粒径为12.8 µm。进一步提升FeO含量,尖晶石平均粒径变化不大。当FeO含量在8wt%–18wt%的范围内增加时,尖晶石的空间分布发生变化。在FeO含量为23wt%时,炉渣底部尖晶石明显降低。
  • Research Article

    Effects of iron oxide on crystallization behavior and spatial distribution of spinel in stainless steel slag

    + Author Affiliations
    • Chromium plays a vital role in stainless steel due to its ability to improve the corrosion resistance of the latter. However, the release of chromium from stainless steel slag (SSS) during SSS stockpiling causes detrimental environmental issues. To prevent chromium pollution, the effects of iron oxide on crystallization behavior and spatial distribution of spinel were investigated in this work. The results revealed that FeO was more conducive to the growth of spinels compared with Fe2O3 and Fe3O4. Spinels were found to be mainly distributed at the top and bottom of slag. The amount of spinel phase at the bottom decreased with the increasing FeO content, while that at the top increased. The average particle size of spinel in the slag with 18wt% FeO content was 12.8 µm. Meanwhile, no notable structural changes were observed with a further increase in FeO content. In other words, the spatial distribution of spinel changed when the content of iron oxide varied in the range of 8wt% to 18wt%. Finally, less spinel was found at the bottom of slag with a FeO content of 23wt%.
    • loading
    • Supplementary Information-10.1007s12613-023-2713-7.doc
    • [1]
      Q. Zhao, C.J. Liu, X.H. Mei, H. Saxén, and R. Zevenhoven, Research progress of steel slag-based carbon sequestration, Fundam. Res., 2022. https://doi.org/10.1016/j.fmre.2022.09.023
      [2]
      J. Xiong, Y.L. Tong, J.L. Peng, and S.H. Zhang, Strength–toughness improvement of 13Cr4NiMo martensitic stainless steel with thermal cyclic heat treatment, J. Iron Steel Res. Int., 30(2023), No. 8, p. 1499. doi: 10.1007/s42243-023-00960-2
      [3]
      C.Q. Wang, J. Li, H. Yang, and C.R. Li, Feasibility analysis of industrial waste acid treatment of stainless steel smelting slag, Mod. Metall., 38(2010), No. 1, p. 1.
      [4]
      X. Zhang, M. Zhang, and M. Guo, Advances and trends in high-temperature modification–crystallization control detoxification of stainless steel slag, Chin. J. Eng., 45(2023), No. 4, p. 577.
      [5]
      L.H. Cao, C.J. Liu, Q. Zhao, and M.F. Jiang, Analysis on the stability of chromium in mineral phases in stainless steel slag, Metall. Res. Technol., 115(2018), No. 1, art. No. 114. doi: 10.1051/metal/2017071
      [6]
      Y.M. Li, Q. Zhao, X.H. Mei, C.J. Liu, H. Saxén, and R. Zevenhoven, Effect of Ca/Mg molar ratio on the calcium-based sorbents, Int. J. Miner. Metall. Mater., 30(2023), No. 11, p. 2182. doi: 10.1007/s12613-023-2657-y
      [7]
      K. Pillay, H. von Blottnitz, and J. Petersen, Ageing of chromium(III)-bearing slag and its relation to the atmospheric oxidation of solid chromium(III)-oxide in the presence of calcium oxide, Chemosphere, 52(2003), No. 10, p. 1771. doi: 10.1016/S0045-6535(03)00453-3
      [8]
      W.L. Li and X.X Xue, Effect of cooling regime on phase transformation and chromium enrichment in stainless-steel slag, Ironmaking Steelmaking, 46(2019), No. 7, p. 642. doi: 10.1080/03019233.2018.1436890
      [9]
      Q. Zhao, K. Liu, L.F. Sun, et al., Towards carbon sequestration using stainless steel slag via phase modification and co-extraction of calcium and magnesium, Process. Saf. Environ. Prot., 133(2020), p. 73. doi: 10.1016/j.psep.2019.11.004
      [10]
      Q.Q. Mou, J.L. Li, Q. Zeng, and H.Y. Zhu, Effect of Fe2O3 on the size and components of spinel crystals in the CaO–SiO2–MgO–Al2O3–Cr2O3 system, Int. J. Miner. Metall. Mater., 26(2019), No. 9, p. 1113. doi: 10.1007/s12613-019-1822-9
      [11]
      H.T. Shen and E. Forssberg, An overview of recovery of metals from slags, Waste Manage., 23(2003), No. 10, p. 933. doi: 10.1016/S0956-053X(02)00164-2
      [12]
      F. Kukurugya, P. Nielsen, and L. Horckmans, Up-concentration of chromium in stainless steel slag and ferrochromium slags by magnetic and gravity separation, Minerals, 10(2020), No. 10, art. No. 906. doi: 10.3390/min10100906
      [13]
      M. Tossavainen, F. Engstrom, Q. Yang, et al., Characteristics of steel slag under different cooling conditions, Waste Manage., 27(2007), No. 10, p. 1335. doi: 10.1016/j.wasman.2006.08.002
      [14]
      F. Engström, D. Adolfsson, Q. Yang, C. Samuelsson, and B. Björkman, Crystallization behaviour of some steelmaking slags, Steel Res. Int., 81(2010), No. 5, p. 362. doi: 10.1002/srin.200900154
      [15]
      Z.J. Wang and I. Sohn, Understanding the solidification and leaching behavior of synthesized Cr-containing stainless steel slags with varying Al2O3/SiO2 mass ratios, Ceram. Int., 47(2021), No. 8, p. 10918. doi: 10.1016/j.ceramint.2020.12.211
      [16]
      Z.J. Wang and I. Sohn, Immobilizing chromium in stainless steel slags with MnO addition, J. Am. Ceram. Soc., 104(2021), No. 2, p. 697. doi: 10.1111/jace.17473
      [17]
      Y.M. Zhang, L.Y. Yi, L.N. Wang, et al., A novel process for the recovery of iron, titanium, and vanadium from vanadium-bearing titanomagnetite: Sodium modification–direct reduction coupled process, Int. J. Miner. Metall. Mater., 24(2017), No. 5, p. 504. doi: 10.1007/s12613-017-1431-4
      [18]
      S.K. Das, Quantitative mineralogical characterization of chrome ore beneficiation plant tailing and its beneficiated products, Int. J. Miner. Metall. Mater., 22(2015), No. 4, p. 335. doi: 10.1007/s12613-015-1078-y
      [19]
      Q. Zhao, J.Y. Li, K.W. You, and C.J. Liu, Recovery of calcium and magnesium bearing phases from iron–and steelmaking slag for CO2 sequestration, Process. Saf. Environ. Prot., 135(2020), p. 81. doi: 10.1016/j.psep.2019.12.012
      [20]
      L.H. Cao, C.J. Liu, Q. Zhao, and M.F. Jiang, Effect of Al2O3 modification on enrichment and stabilization of chromium in stainless steel slag, J. Iron Steel Res. Int., 24(2017), No. 3, p. 258. doi: 10.1016/S1006-706X(17)30038-9
      [21]
      L. Holappa, M. Kekkonen, A. Jokilaakso, and J. Koskinen, A review of circular economy prospects for stainless steelmaking slags, J. Sustain. Metall., 7(2021), No. 3, p. 806. doi: 10.1007/s40831-021-00392-w
      [22]
      L. Liu, M.L. Hu, C.G. Bai, X.W. Lü, Y.Z. Xu, and Q.Y. Deng, Effect of cooling rate on the crystallization behavior of perovskite in high titanium-bearing blast furnace slag, Int. J. Miner. Metall. Mater., 21(2014), No. 11, p. 1052. doi: 10.1007/s12613-014-1009-3
      [23]
      Q. Zhao, C.J. Liu, L.H. Cao, et al., Shear-force based stainless steel slag modification for chromium immobilization, ISIJ Int., 59(2019), No. 3, p. 583. doi: 10.2355/isijinternational.ISIJINT-2017-678
      [24]
      X.R. Wu, X.M. Dong, R.T. Wang, H.H. Lu, F.B. Cao, and X.M. Shen, Crystallization behaviour of chromium in stainless steel slag: Effect of feo and basicity, J. Residuals Sci. Technol., 13(2016), Suppl. 1, p. S57.
      [25]
      T.X. Yu, T. Jiang, J. Wen, H.Y. Sun, M. Li, and Y. Peng, Effect of chemical composition on the element distribution, phase composition and calcification roasting process of vanadium slag, Int. J. Miner. Metall. Mater., 29(2022), No. 12, p. 2144. doi: 10.1007/s12613-021-2334-y
      [26]
      S. Zhang, Y.L. Zhang, and S.W. Wu, Effects of ZnO, FeO and Fe2O3 on the spinel formation, microstructure and physicochemical properties of augite-based glass ceramics, Int. J. Miner. Metall. Mater., 30(2023), No. 6, p. 1207. doi: 10.1007/s12613-022-2489-1
      [27]
      Q. Zeng, J.L. Li, Q.Q. Mou, H.Y. Zhu, and Z.L. Xue, Effect of FeO on spinel crystallization and chromium stability in stainless steel-making slag, JOM, 71(2019), No. 7, p. 2331. doi: 10.1007/s11837-019-03465-0
      [28]
      Z.J. Wang and I. Sohn, Selective elemental concentration during the solidification of stainless steel slags for increased Cr recovery with MnO addition, J. Am. Ceram. Soc., 103(2020), No. 10, p. 6012. doi: 10.1111/jace.17296
      [29]
      Z.J. Wang, J. Yang, D.A. Pan, B. Liu, J.J. Tian, and S.G. Zhang, Present state of stainless steel slag resources disposal technique, J. Iron Steel Res., 27(2015), No. 2, p. 1.
      [30]
      J. Diao, B. Xie, Y. Wang, and C.Q. Ji, Mineralogical characterisation of vanadium slag under different treatment conditions, Ironmaking Steelmaking, 36(2009), No. 6, p. 476. doi: 10.1179/174328109X410622
      [31]
      S.W. Wu, Y.L. Zhang, and S. Zhang, Chromium enrichment in different crystalline phases of Cr-containing slag under various basicities and equilibrium temperatures, J. Iron Steel Res. Int., 29(2022), No. 9, p. 1412. doi: 10.1007/s42243-021-00737-5
      [32]
      X. Lu, X.L. Huang, R.F. Wei, et al., Novel method for improving iron recovery from electric arc furnace slag: On-site hot modification, J. Iron Steel Res. Int., 29(2022), No. 8, p. 1224. doi: 10.1007/s42243-021-00713-z
      [33]
      Q. Zhao, C.J. Liu, L.H. Cao, X. Zheng, and M.F. Jiang, Stability of chromium in stainless steel slag during cooling, Minerals, 8(2018), No. 10, art. No. 445. doi: 10.3390/min8100445
      [34]
      T.X. Nguyen, J. Patra, J.K. Chang, and J.M. Ting, High entropy spinel oxide nanoparticles for superior lithiation–delithiation performance, J. Mater. Chem. A, 8(2020), No. 36, p. 18963. doi: 10.1039/D0TA04844E
      [35]
      K.H. Tian, C.Q. Duan, Q. Ma, et al., High-entropy chemistry stabilizing spinel oxide (CoNiZnXMnLi)3O4 (X = Fe, Cr) for high-performance anode of Li-ion batteries, Rare Met., 41(2022), No. 4, p. 1265. doi: 10.1007/s12598-021-01872-4
      [36]
      H.F. Shang and D.G. Xia, Spinel LiMn2O4 integrated with coating and doping by Sn self-segregation, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 909. doi: 10.1007/s12613-022-2482-8
      [37]
      F. Yuan, Z. Zhao, Y.L. Zhang, and T. Wu, Effect of Al2O3 content on the viscosity and structure of CaO–SiO2–Cr2O3–Al2O3 slags, Int. J. Miner. Metall. Mater., 29(2022), No. 8, p. 1522. doi: 10.1007/s12613-021-2306-2
      [38]
      W.S. Dong, X.K. Wang, and S.Y. Peng, Preparation properties and use in catalysis of spinels, J. Petrochem. Univ. Sinopec, 9(1996), No. 4, p. 10.
      [39]
      Z.Y. Tang, J.J. Feng, and G.X. Xu, Study on multiple doping of spinel LiMn2O4, Acta Chim. Sin., 61(2003), No. 8, p. 1316.
      [40]
      Q. Zhao, C.J. Liu, B. Zhang, M.F. Jiang, J. Qi, H. Saxén, and R. Zevenhoven, Study on extraction of iron from chromite, Steel Res. Int., 86(2015), No. 12, p. 1541. doi: 10.1002/srin.201400521
      [41]
      Y.Z. Huo, H.Z. Gu, A. Huang, et al., Characterization and mechanism of dissolution behavior of Al2O3/MgO oxides in molten slags, J. Iron Steel Res. Int., 29(2022), No. 11, p. 1711. doi: 10.1007/s42243-022-00847-8
      [42]
      Q. Zhao, C.J. Liu, T.C. Gao, L. Gao, H. Saxén, and R. Zevenhoven, Remediation of stainless steel slag with MnO for CO2 mineralization, Process. Saf. Environ. Prot., 127(2019), p. 1. doi: 10.1016/j.psep.2019.04.025
      [43]
      J.L. Li, A.J. Xu, D.F. He, Q.X. Yang, and N.Y. Tian, Effect of FeO on the formation of spinel phases and chromium distribution in the CaO–SiO2–MgO–Al2O3–Cr2O3 system, Int. J. Miner. Metall. Mater., 20(2013), No. 3, p. 253. doi: 10.1007/s12613-013-0720-9

    Catalog


    • /

      返回文章
      返回