留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 12
Dec.  2023

图(9)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  967
  • HTML全文浏览量:  311
  • PDF下载量:  55
  • 被引次数: 0
Shaolong Sheng, Yanxin Qiao, Ruzong Zhai, Mingyue Sun,  and Bin Xu, Processing map and dynamic recrystallization behaviours of 316LN-Mn austenitic stainless steel, Int. J. Miner. Metall. Mater., 30(2023), No. 12, pp. 2386-2396. https://doi.org/10.1007/s12613-023-2714-6
Cite this article as:
Shaolong Sheng, Yanxin Qiao, Ruzong Zhai, Mingyue Sun,  and Bin Xu, Processing map and dynamic recrystallization behaviours of 316LN-Mn austenitic stainless steel, Int. J. Miner. Metall. Mater., 30(2023), No. 12, pp. 2386-2396. https://doi.org/10.1007/s12613-023-2714-6
引用本文 PDF XML SpringerLink
研究论文

316LN-Mn奥氏体不锈钢的热加工图和动态再结晶行为


  • 通讯作者:

    乔岩欣    E-mail: yxqiao@just.edu.cn

    孙明月    E-mail: mysun@imr.ac.cn

文章亮点

  • (1) 系统地研究了热变形参数对316LN-Mn奥氏体不锈钢流变行为和微观组织的影响规律
  • (2) 构建了316LN-Mn奥氏体不锈钢的热加工图,并获得了该材料的最佳热加工窗口
  • (3) 归纳了316LN-Mn奥氏体不锈钢在热变性过程中的动态再结晶机制
  • 316LN-Mn奥氏体不锈钢因其优越的低温力学性能,成为了制造聚变工程实验堆线圈外壳的最佳材料。然而,其在高温加工时的变形抗力很大,在锻造过程中很容易发生开裂现象,对实际生产造成了很大的挑战。本文旨在通过热压缩实验,分析变形温度和应变速率等变形参数对高温变形条件下材料流变行为的影响,建立热变形本构方程和动态再结晶的数学模型,绘制不同变形条件下316LN-Mn奥氏体不锈钢的热加工图。借助各种表征方式对不同变形条件下的样品进行组织观察,分析各参数对该材料微观组织的影响,从而揭示材料在热变形过程中的软化机制。研究结果表明,流变应力随着变形温度的升高和应变速率的降低而不断下降。本构方程建立了各变形参数之间的关系,并得出该材料的变形激活能为497.92 kJ/mol。通过热加工图的构建,发现316LN-Mn奥氏体不锈钢的最佳热加工窗口是:变形温度为1107–1160°C、应变速率为0.005–0.026 s-1。该材料的动态再结晶行为是以不连续动态再结晶(discontinuous dynamic recrystallization , DDRX)为主,并伴有连续动态再结晶(continuous dynamic recrystallization , CDRX))为机制的,而且组织中孪晶界的形成也促进了动态再结晶的形核。
  • Research Article

    Processing map and dynamic recrystallization behaviours of 316LN-Mn austenitic stainless steel

    + Author Affiliations
    • The hot deformation behaviours of 316LN-Mn austenitic stainless steel were investigated by uniaxial isothermal compression tests at different temperatures and strain rates. The microstructural evolutions were also studied using electron backscatter diffraction. The flow stress decreases with the increasing temperature and decreasing strain rate. A constitutive equation was established to characterize the relationship among the deformation parameters, and the deformation activation energy was calculated to be 497.92 kJ/mol. Processing maps were constructed to describe the appropriate processing window, and the optimum processing parameters were determined at a temperature of 1107–1160°C and a strain rate of 0.005–0.026 s−1. Experimental results showed that the main nucleation mechanism is discontinuous dynamic recrystallization (DDRX), followed by continuous dynamic recrystallization (CDRX). In addition, the formation of twin boundaries facilitated the nucleation of dynamic recrystallization.
    • loading
    • [1]
      B.F. Guo, H.P. Ji, X.G. Liu, et al., Research on flow stress during hot deformation process and processing map for 316LN austenitic stainless steel, J. Mater. Eng. Perform., 21(2012), No. 7, p. 1455. doi: 10.1007/s11665-011-0031-0
      [2]
      Y.X. Qiao, Z.B. Zheng, H.K. Yang, J. Long, and P.X. Han, Recent progress in microstructural evolution, mechanical and corrosion properties of medium-Mn steel, J. Iron Steel Res. Int., 30(2023), No. 8, p. 1463. doi: 10.1007/s42243-023-00974-w
      [3]
      K. Hamada, H. Nakajima, K. Kawano, K. Takano, F. Tsutsumi, and K. Okuno, Demonstration of full scale JJ1 and 316LN fabrication for ITER TF coil structure, Fusion Eng. Des., 82(2007), No. 5-14, p. 1481. doi: 10.1016/j.fusengdes.2007.07.032
      [4]
      Y.S. Li, Y.W. Dong, Z.H. Jiang, Q.F. Tang, S.Y. Du, and Z.W. Hou, Influence of rare earth Ce on hot deformation behavior of as-cast Mn18Cr18N high nitrogen austenitic stainless steel, Int. J. Miner. Metall. Mater., 30(2023), No. 2, p. 324. doi: 10.1007/s12613-021-2355-6
      [5]
      L.B. Yang, X.N. Ren, C. Cai, et al., Effect of the capsule on deformation and densification behavior of nickel-based superalloy compact during hot isostatic pressing, Int. J. Miner. Metall. Mater., 30(2023), No. 1, p. 122. doi: 10.1007/s12613-021-2349-4
      [6]
      Z.X. Yu, B.J. Xie, Z.W. Zhu, B. Xu, and M.Y. Sun, High-temperature deformation behavior and processing maps of a novel AlNbTi3VZr1.5 refractory high entropy alloy, J. Alloys Compd., 912(2022), art. No. 165220. doi: 10.1016/j.jallcom.2022.165220
      [7]
      C.M. Li, L. Huang, M.J. Zhao, S.Q. Guo, Y. Su, and J.J. Li, Characterization of hot workability of Ti–6Cr–5Mo–5V–4Al alloy based on hot processing map and microstructure evolution, J. Alloys Compd., 905(2022), art. No. 164161. doi: 10.1016/j.jallcom.2022.164161
      [8]
      B.N. Sahoo and S.K. Panigrahi, Deformation behavior and processing map development of AZ91 Mg alloy with and without addition of hybrid in-situ TiC+TiB2 reinforcement, J. Alloys Compd., 776(2019), p. 865. doi: 10.1016/j.jallcom.2018.10.276
      [9]
      M. Chegini, M.R. Aboutalebi, S.H. Seyedein, G.R. Ebrahimi, and M. Jahazi, Study on hot deformation behavior of AISI 414 martensitic stainless steel using 3D processing map, J. Manuf. Process., 56(2020), p. 916. doi: 10.1016/j.jmapro.2020.05.008
      [10]
      S. Venugopal, S. Venugopal, P.V. Sivaprasad, et al., Validation of processing maps for 304L stainless steel using hot forging, rolling and extrusion, J. Mater. Process. Technol., 59(1996), No. 4, p. 343. doi: 10.1016/0924-0136(95)02160-4
      [11]
      Y. Han, G.W. Liu, D.N. Zou, R. Liu, and G.J. Qiao, Deformation behavior and microstructural evolution of as-cast 904L austenitic stainless steel during hot compression, Mater. Sci. Eng. A, 565(2013), p. 342. doi: 10.1016/j.msea.2012.12.043
      [12]
      T. Xi, C.G. Yang, M. Babar Shahzad, and K. Yang, Study of the processing map and hot deformation behavior of a Cu-bearing 317LN austenitic stainless steel, Mater. Des., 87(2015), p. 303. doi: 10.1016/j.matdes.2015.08.011
      [13]
      H.Y. Sun, Y.D. Sun, R.Q. Zhang, M. Wang, R. Tang, and Z.J. Zhou, Study on hot workability and optimization of process parameters of a modified 310 austenitic stainless steel using processing maps, Mater. Des., 67(2015), p. 165. doi: 10.1016/j.matdes.2014.11.041
      [14]
      X.G. Liu, H.P. Ji, H. Guo, M. Jin, B.F. Guo, and L. Gao, Study on hot deformation behaviour of 316LN austenitic stainless steel based on hot processing map, Mater. Sci. Technol., 29(2013), No. 1, p. 24. doi: 10.1179/1743284712Y.0000000083
      [15]
      S. Venugopal and P.V. Sivaprasad, A journey with prasad’s processing maps, J. Mater. Eng. Perform., 12(2003), No. 6, p. 674. doi: 10.1361/105994903322692475
      [16]
      M.L. Saucedo-Muñoz and V.M. Lopez-Hirata, Precipitation in aged N-containing steels, Solid State Phenom., 172-174(2011), p. 437. doi: 10.4028/www.scientific.net/SSP.172-174.437
      [17]
      M.L. Saucedo-Muñoz, T. Hashida, Y. Watanabe, T. Shoji, and V.M. Lopez-Hirata, Effect of precipitation on cryogenic toughness in N-containing austenitic stainless steels, Mater. Sci. Forum, 539-543(2007), p. 4914. doi: 10.4028/www.scientific.net/MSF.539-543.4914
      [18]
      X. Hu, Z.Y. Wang, L. Wang, C. Chen, F.C. Zhang, and W. Zhang, Effect of pre-deformation on hot workability of super austenitic stainless steel, J. Mater. Res. Technol., 16(2022), p. 238. doi: 10.1016/j.jmrt.2021.11.163
      [19]
      D.J. Long, S.Y. Qiu, W.B. Liu, et al., Hot deformation behavior and microstructure features of FeCrAl–ODS alloy, J. Iron Steel Res. Int., 29(2022), No. 9, p. 1455. doi: 10.1007/s42243-021-00733-9
      [20]
      H.K. Yang, Y.Z. Tian, Z.J. Zhang, and Z.F. Zhang, Simultaneously improving the strength and ductility of Fe–22Mn–0.6C twinning-induced plasticity steel via nitrogen addition, Mater. Sci. Eng. A, 715(2018), p. 276. doi: 10.1016/j.msea.2018.01.019
      [21]
      K.L. Murty, F.A. Mohamed, and J.E. Dorn, Viscous glide, dislocation climb and Newtonian viscous deformation mechanisms of high temperature creep in Al–3Mg, Acta Metall., 20(1972), No. 8, p. 1009. doi: 10.1016/0001-6160(72)90135-6
      [22]
      S.L. Wang, M.X. Zhang, H.C. Wu, and B. Yang, Study on the dynamic recrystallization model and mechanism of nuclear grade 316LN austenitic stainless steel, Mater. Charact., 118(2016), p. 92. doi: 10.1016/j.matchar.2016.05.015
      [23]
      S.I. Kim, Y. Lee, and B.L. Jang, Modeling of recrystallization and austenite grain size for AISI 316 stainless steel and its application to hot bar rolling, Mater. Sci. Eng. A, 357(2003), No. 1-2, p. 235. doi: 10.1016/S0921-5093(03)00165-5
      [24]
      Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, et al., Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242, Metall. Trans. A, 15(1984), No. 10, p. 1883. doi: 10.1007/BF02664902
      [25]
      K. Ma, Z.Y. Liu, S. Bi, X.X. Zhang, B.L. Xiao, and Z.Y. Ma, Microstructure evolution and hot deformation behavior of carbon nanotube reinforced 2009Al composite with bimodal grain structure, J. Mater. Sci. Technol., 70(2021), p. 73. doi: 10.1016/j.jmst.2020.09.003
      [26]
      L. Wang, Z.Y. Li, X. Hu, B. Lv, C. Chen, and F.C. Zhang, Hot deformation behavior and 3D processing map of super austenitic stainless steel containing 7Mo-0.46N–0.02Ce: Effect of the solidification direction orientation of columnar crystal to loading direction, J. Mater. Res. Technol., 13(2021), p. 618. doi: 10.1016/j.jmrt.2021.05.006
      [27]
      M.H. Jang, J.Y. Kang, J.H. Jang, T.H. Lee, and C. Lee, Hot deformation behavior and microstructural evolution of alumina-forming austenitic heat-resistant steels during hot compression, Mater. Charact., 123(2017), p. 207. doi: 10.1016/j.matchar.2016.11.038
      [28]
      R. Mahdavi, E. Emadoddin, and S.M. Abbasi, Effect of initial microstructure and strain rate on the hot deformation behavior of ATI425 alloy in two-phase α/β region, J. Mater. Eng. Perform., 31(2022), No. 6, p. 5118. doi: 10.1007/s11665-022-06600-2
      [29]
      S.P. Xi, X.L. Gao, W. Liu, et al., Hot deformation behavior and processing map of low-alloy offshore steel, J. Iron Steel Res. Int., 29(2022), No. 3, p. 474. doi: 10.1007/s42243-021-00603-4
      [30]
      S.V.S. Narayana Murty and B. Nageswara Rao, Ziegler’s criterion on the instability regions in processing maps, J. Mater. Sci. Lett., 17(1998), p. 1203. doi: 10.1023/A:1006541710533
      [31]
      Y.B. Tan, Y.H. Ma, and F. Zhao, Hot deformation behavior and constitutive modeling of fine grained Inconel 718 superalloy, J. Alloys Compd., 741(2018), p. 85. doi: 10.1016/j.jallcom.2017.12.265
      [32]
      Y.B. Tan, L.H. Yang, C. Tian, W.C. Liu, R.P. Liu, and X.Y. Zhang, Processing maps for hot working of 47Zr–45Ti–5Al–3V alloy, Mater. Sci. Eng. A, 597(2014), p. 171. doi: 10.1016/j.msea.2013.12.085
      [33]
      G.X. Chen, X.Y. Lu, J. Yan, H.W. Liu, and B.G. Sang, High-temperature deformation behavior of M50 steel, Metals, 12(2022), No. 4, art. No. 541. doi: 10.3390/met12040541
      [34]
      Z.M. Cai, H.C. Ji, W.C. Pei, et al., An investigation into the dynamic recrystallization (DRX) behavior and processing map of 33Cr23Ni8Mn3N based on an artificial neural network (ANN), Materials, 13(2020), No. 6, art. No. 1282. doi: 10.3390/ma13061282
      [35]
      Z.C. Sun, L.S. Zheng, and H. Yang, Softening mechanism and microstructure evolution of as-extruded 7075 aluminum alloy during hot deformation, Mater. Charact., 90(2014), p. 71. doi: 10.1016/j.matchar.2014.01.019
      [36]
      K. Babu, S. Mandal, C.N. Athreya, B. Shakthipriya, and V.S. Sarma, Hot deformation characteristics and processing map of a phosphorous modified super austenitic stainless steel, Mater. Des., 115(2017), p. 262. doi: 10.1016/j.matdes.2016.11.054
      [37]
      A. Dehghan-Manshadi, M.R. Barnett, and P.D. Hodgson, Recrystallization in AISI 304 austenitic stainless steel during and after hot deformation, Mater. Sci. Eng. A, 485(2008), No. 1-2, p. 664. doi: 10.1016/j.msea.2007.08.026
      [38]
      S. Mandal, A.K. Bhaduri, and V. Subramanya Sarma, A study on microstructural evolution and dynamic recrystallization during isothermal deformation of a Ti-modified austenitic stainless steel, Metall. Mater. Trans. A, 42(2011), No. 4, p. 1062. doi: 10.1007/s11661-010-0517-7
      [39]
      D.F. Li, Q.M. Guo, S.L. Guo, H.J. Peng, and Z.G. Wu, The microstructure evolution and nucleation mechanisms of dynamic recrystallization in hot-deformed Inconel 625 superalloy, Mater. Des., 32(2011), No. 2, p. 696. doi: 10.1016/j.matdes.2010.07.040
      [40]
      W.J. Liu, B. Jiang, H.C. Xiang, et al., High-temperature mechanical properties of as-extruded AZ80 magnesium alloy at different strain rates, Int. J. Miner. Metall. Mater., 29(2022), No. 7, p. 1373. doi: 10.1007/s12613-022-2456-x
      [41]
      L.M. Tan, Z.W. Huang, F. Liu, et al., Effects of strain amount and strain rate on grain structure of a novel high Co nickel-based polycrystalline superalloy, Mater. Des., 131(2017), p. 60. doi: 10.1016/j.matdes.2017.06.004
      [42]
      E.I. Galindo-Nava and P.E.J. Rivera-Díaz-del-Castillo, Thermostatistical modelling of hot deformation in FCC metals, Int. J. Plast., 47(2013), p. 202. doi: 10.1016/j.ijplas.2013.02.002
      [43]
      Y. Cho, H. Gwon, and S.J. Kim, Effects of C and N on high-temperature deformation behavior of 15Cr–15Mn–4Ni austenitic stainless steels, Mater. Sci. Eng. A, 819(2021), art. No. 141463. doi: 10.1016/j.msea.2021.141463
      [44]
      D.L. Zhu, M. Zhang, and Y. Wang, Electron backscattered diffraction study of microstructural evolution during isothermal deformation of high-N Mn18Cr18 alloy, Metall. Mater. Trans. B, 50(2019), No. 4, p. 1662. doi: 10.1007/s11663-019-01606-z
      [45]
      L. Li, Y.X. Qiao, L.M. Zhang, et al., Effect of cavitation erosion induced surface damage on the corrosion behavior of TA31 titanium alloy, Ultrason. Sonochem., 98(2023), art. No. 106498. doi: 10.1016/j.ultsonch.2023.106498
      [46]
      N.R. Jaladurgam and A.K. Kanjarla, Hot deformation characteristics and microstructure evolution of Hastelloy C-276, Mater. Sci. Eng. A, 712(2018), p. 240. doi: 10.1016/j.msea.2017.11.056
      [47]
      D. Jia, W.R. Sun, D.S. Xu, et al., Abnormal dynamic recrystallization behavior of a nickel based superalloy during hot deformation, J. Alloys Compd., 787(2019), p. 196. doi: 10.1016/j.jallcom.2019.02.055
      [48]
      S. Mandal, M. Jayalakshmi, A.K. Bhaduri, and V.S. Sarma, Effect of strain rate on the dynamic recrystallization behavior in a nitrogen-enhanced 316L(N), Metall. Mater. Trans. A, 45(2014), No. 12, p. 5645. doi: 10.1007/s11661-014-2480-1
      [49]
      W. Roberts and B. Ahlblom, A nucleation criterion for dynamic recrystallization during hot working, Acta Metall., 26(1978), No. 5, p. 801. doi: 10.1016/0001-6160(78)90030-5
      [50]
      Y. Chen, X.M. Zhang, Z.H. Cai, H. Ding, M.M. Pan, and H.S. Li, Hot deformation behavior of a high-Mn austenitic steel for cryogenic liquified natural gas applications, J. Mater. Eng. Perform., 29(2020), No. 8, p. 5503. doi: 10.1007/s11665-020-05011-5
      [51]
      G.A. He, Y.F. Zhao, B. Gan, X.F. Sheng, Y. Liu, and L.M. Tan, Mechanism of grain refinement in an equiatomic medium-entropy alloy CrCoNi during hot deformation, J. Alloys Compd., 815(2020), art. No. 152382. doi: 10.1016/j.jallcom.2019.152382
      [52]
      C.M. Li, Y.B. Tan, and F. Zhao, Dynamic recrystallization behaviour of H13-mod steel, J. Iron Steel Res. Int., 27(2020), No. 9, p. 1073. doi: 10.1007/s42243-020-00462-5
      [53]
      K. Huang and R.E. Logé, A review of dynamic recrystallization phenomena in metallic materials, Mater. Des., 111(2016), p. 548. doi: 10.1016/j.matdes.2016.09.012
      [54]
      J.E. Bailey and P.B. Hirsch, The recrystallization process in some polycrystalline metals, Proc. R. Soc. Lond. Ser. A:Math. Phys. Sci., 267(1962), p. 11.
      [55]
      S. Mandal, A.K. Bhaduri, and V. Subramanya Sarma, Role of twinning on dynamic recrystallization and microstructure during moderate to high strain rate hot deformation of a Ti-modified austenitic stainless steel, Metall. Mater. Trans. A, 43(2012), No. 6, p. 2056. doi: 10.1007/s11661-011-1012-5
      [56]
      H. Beladi, P. Cizek, and P.D. Hodgson, Dynamic recrystallization of austenite in Ni-30 pct Fe model alloy: Microstructure and texture evolution, Metall. Mater. Trans. A, 40(2009), No. 5, p. 1175. doi: 10.1007/s11661-009-9799-z
      [57]
      D. Jia, W.R. Sun, D.S. Xu, and F. Liu, Dynamic recrystallization behavior of GH4169G alloy during hot compressive deformation, J. Mater. Sci. Technol., 35(2019), No. 9, p. 1851. doi: 10.1016/j.jmst.2019.04.018
      [58]
      N. Dudova, A. Belyakov, T. Sakai, and R. Kaibyshev, Dynamic recrystallization mechanisms operating in a Ni–20%Cr alloy under hot-to-warm working, Acta Mater., 58(2010), No. 10, p. 3624. doi: 10.1016/j.actamat.2010.02.032
      [59]
      Y.C. Lin, X.Y. Wu, X.M. Chen, et al., EBSD study of a hot deformed nickel-based superalloy, J. Alloys Compd., 640(2015), p. 101. doi: 10.1016/j.jallcom.2015.04.008
      [60]
      H.B. Zhang, K.F. Zhang, H.P. Zhou, Z. Lu, C.H. Zhao, and X.L. Yang, Effect of strain rate on microstructure evolution of a nickel-based superalloy during hot deformation, Mater. Des., 80(2015), p. 51. doi: 10.1016/j.matdes.2015.05.004
      [61]
      X.Y. Wang, D.K. Wang, J.S. Jin, and J.J. Li, Effects of strain rates and twins evolution on dynamic recrystallization mechanisms of austenite stainless steel, Mater. Sci. Eng. A, 761(2019), art. No. 138044. doi: 10.1016/j.msea.2019.138044

    Catalog


    • /

      返回文章
      返回