留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 2
Feb.  2024

图(10)  / 表(4)

数据统计

分享

计量
  • 文章访问数:  327
  • HTML全文浏览量:  83
  • PDF下载量:  12
  • 被引次数: 0
Kerui Song, Zhou Li, Mei Fang, Zhu Xiao, and Qian Lei, Structural and magnetic properties of micropolycrystalline cobalt thin films fabricated by direct current magnetron sputtering, Int. J. Miner. Metall. Mater., 31(2024), No. 2, pp. 384-394. https://doi.org/10.1007/s12613-023-2715-5
Cite this article as:
Kerui Song, Zhou Li, Mei Fang, Zhu Xiao, and Qian Lei, Structural and magnetic properties of micropolycrystalline cobalt thin films fabricated by direct current magnetron sputtering, Int. J. Miner. Metall. Mater., 31(2024), No. 2, pp. 384-394. https://doi.org/10.1007/s12613-023-2715-5
引用本文 PDF XML SpringerLink
研究论文

磁控溅射制备的微晶钴薄膜的组织结构及磁性能


  • 通讯作者:

    肖柱    E-mail: xiaozhumse@163.com

文章亮点

  • (1) 系统地研究了磁控溅射压强及功率对纯钴薄膜微观组织的影响规律;
  • (2) 发现了改变溅射压强及功率可调控纯钴薄膜磁各向异性,磁滞回线方度,和矫顽力;
  • (3) 通过微观组织将溅射压强及功率与纯钴薄膜电磁性能相联系。
  • 通过直流磁控溅射法制备了纯钴薄膜,研究了溅射功率和压强对薄膜微观组织结构和电磁性能的影响。随着溅射功率从15 W增加到60 W,钴薄膜由非晶转变为了微晶,同时晶间孔隙宽度显著增加。这导致了电阻率降低65%,矫顽力从162 Oe上升至293 Oe,以及单轴磁各向异性消失。随着溅射压强从1.6 Pa降低至0.2 Pa,晶粒尺寸显著增加,电阻率从377 μΩ⋅cm大幅度降低至37 μΩ⋅cm。同时由于缺陷宽度的增加,矫顽力从67 Oe大幅上升至280 Oe,由此建立了一个通过面缺陷宽度定量计算纯钴薄膜的矫顽力的模型。此外,在0.2 Pa和0.4 Pa的溅射压强下,制备了具有明显的单轴磁各向异性的多晶纯钴薄膜,这种本因在非晶薄膜中出现的现象的产生被归因于高的微观内应力。
  • Research Article

    Structural and magnetic properties of micropolycrystalline cobalt thin films fabricated by direct current magnetron sputtering

    + Author Affiliations
    • Pure cobalt (Co) thin films were fabricated by direct current magnetron sputtering, and the effects of sputtering power and pressure on the microstructure and electromagnetic properties of the films were investigated. As the sputtering power increases from 15 to 60 W, the Co thin films transition from an amorphous to a polycrystalline state, accompanied by an increase in the intercrystal pore width. Simultaneously, the resistivity decreases from 276 to 99 μΩ·cm, coercivity increases from 162 to 293 Oe, and in-plane magnetic anisotropy disappears. As the sputtering pressure decreases from 1.6 to 0.2 Pa, grain size significantly increases, resistivity significantly decreases, and the coercivity significantly increases (from 67 to 280 Oe), which can be attributed to the increase in defect width. Correspondingly, a quantitative model for the coercivity of Co thin films was formulated. The polycrystalline films sputtered under pressures of 0.2 and 0.4 Pa exhibit significant in-plane magnetic anisotropy, which is primarily attributable to increased microstress.
    • loading
    • [1]
      A.E. Kaloyeros, Y.L. Pan, J. Goff, and B. Arkles, Editors’ choice—Review—Cobalt thin films: Trends in processing technologies and emerging applications, ECS J. Solid State Sci. Technol., 8(2019), No. 2, p. 119. doi: 10.1149/2.0051902jss
      [2]
      J. Mohapatra, M.Y. Xing, J. Elkins, and J.P. Liu, Hard and semi-hard magnetic materials based on cobalt and cobalt alloys, J. Alloys Compd., 824(2020), art. No. 153874. doi: 10.1016/j.jallcom.2020.153874
      [3]
      E. Abualgassem, M. Maarouf, A. Bake, D. Cortie, K. Alam, and M.B. Haider, Optical and magnetic properties of cobalt doped TiN thin films grown by RF/DC magnetron sputtering, J. Magn. Magn. Mater., 550(2022), art. No. 169023. doi: 10.1016/j.jmmm.2022.169023
      [4]
      G.D. Soria, K. Freindl, J.E. Prieto, et al., Growth and characterization of ultrathin cobalt ferrite films on Pt(111), Appl. Surf. Sci., 586(2022), art. No. 152672. doi: 10.1016/j.apsusc.2022.152672
      [5]
      V. Shukla, C. Mukherjee, R. Chari, S. Rai, K.S. Bindra, and A. Banerjee, Uniaxial magnetic anisotropy of cobalt thin films on different substrates using CW-MOKE technique, J. Magn. Magn. Mater., 370(2014), p. 100. doi: 10.1016/j.jmmm.2014.06.061
      [6]
      Y. Shiratsuchi, T. Murakami, Y. Endo, and M. Yamamoto, Evolution of magnetic state of ultrathin co films with volmer–weber growth, Jpn. J. Appl. Phys., 44(2005), No. 12R, art. No. 8456. doi: 10.1143/JJAP.44.8456
      [7]
      C.Y. Hsu, C.H.T. Chang, W.H. Chen, J.L. Tsai, and J.S. Tsay, Comparative studies of magnetic properties of Co films on annealed and unannealed rubrene/Si(100), J. Alloys Compd., 576(2013), p. 393. doi: 10.1016/j.jallcom.2013.06.002
      [8]
      S.D. Elliott, G. Dey, and Y. Maimaiti, Classification of processes for the atomic layer deposition of metals based on mechanistic information from density functional theory calculations, J. Chem. Phys., 146(2017), No. 5, art. No. 052822. doi: 10.1063/1.4975085
      [9]
      T. Kuschel, T. Becker, D. Bruns, et al., Uniaxial magnetic anisotropy for thin Co films on glass studied by magnetooptic Kerr effect, J. Appl. Phys., 109(2011), No. 9, art. No. 093907. doi: 10.1063/1.3576135
      [10]
      D. Kumar and A. Gupta, Evolution of structural and magnetic properties of sputtered nanocrystalline Co thin films with thermal annealing, J. Magn. Magn. Mater., 308(2007), No. 2, p. 318. doi: 10.1016/j.jmmm.2006.06.008
      [11]
      R. Gupta, A. Khandelwal, D.K. Avasthi, K.G.M. Nair, and A. Gupta, Phase transitions in Co thin film induced by low energy and high energy ion beam irradiation, J. Appl. Phys., 107(2010), No. 3, art. No. 033902. doi: 10.1063/1.3294609
      [12]
      A. Jaiswal, S. Rai, M.K. Tiwari, V.R. Reddy, G.S. Lodha, and R.V. Nandedkar, Effect of Si layer thickness on the structural properties of a Co/Si multilayer system, J. Phys.: Condens. Matter, 19(2007), No. 1, art. No. 016001. doi: 10.1088/0953-8984/19/1/016001
      [13]
      N. Pandey, M. Gupta, R. Gupta, S. Chakravarty, N. Shukla, and A. Devishvili, Structural and magnetic properties of Co-N thin films deposited using magnetron sputtering at 523 K, J. Alloys Compd., 694(2017), p. 1209. doi: 10.1016/j.jallcom.2016.10.095
      [14]
      Q.Y. Qian, F. Wang, X.K. Zhang, and Q.P. Zhao, Direct electro-phosphorization of nickel and cobalt films in hypophosphite solution for efficient hydrogen evolution, Inorg. Chem. Commun., 127(2021), art. No. 108555. doi: 10.1016/j.inoche.2021.108555
      [15]
      R. Hippler, M. Cada, P. Ksirova, et al., Deposition of cobalt oxide films by reactive pulsed magnetron sputtering, Surf. Coat. Technol., 405(2021), art. No. 126590. doi: 10.1016/j.surfcoat.2020.126590
      [16]
      L.B. Gao, S.W. Jiang, and R.G. Li, Effect of sputtering pressure on structure and dielectric properties of bismuth magnesium niobate thin films prepared by RF magnetron sputtering, Thin Solid Films, 603(2016), p. 391. doi: 10.1016/j.tsf.2016.02.059
      [17]
      J. Xu, M. Gao, L.L. Lu, Y.L. Wang, and X. Liu, Study on the resistivity and infrared emissivity of TiNx films at different sputtering power, Infrared Phys. Technol., 119(2021), art. No. 103946. doi: 10.1016/j.infrared.2021.103946
      [18]
      A. Sharma, S. Mohan, and S. Suwas, The effect of the deposition rate on the crystallographic texture, microstructure evolution and magnetic properties in sputter deposited Ni–Mn–Ga thin films, Thin Solid Films, 616(2016), p. 530. doi: 10.1016/j.tsf.2016.08.033
      [19]
      S. Bose, S. Mandal, A.K. Barua, and S. Mukhopadhyay, Properties of boron doped ZnO films prepared by reactive sputtering method: Application to amorphous silicon thin film solar cells, J. Mater. Sci. Technol., 55(2020), p. 136. doi: 10.1016/j.jmst.2019.12.004
      [20]
      C.D. Dai, Y. Fu, J.X. Guo, and C.W. Du, Effects of substrate temperature and deposition time on the morphology and corrosion resistance of FeCoCrNiMo0.3 high-entropy alloy coating fabricated by magnetron sputtering, Int. J. Miner. Metall. Mater., 27(2020), No. 10, p. 1388. doi: 10.1007/s12613-020-2149-2
      [21]
      F.Y. Liang, J.R. Yang, H.Q. Wang, and J.W. Wu, Fabrication of Gd2O3-doped CeO2 thin films through DC reactive sputtering and their application in solid oxide fuel cells, Int. J. Miner. Metall. Mater., 30(2023), No. 6, p. 1190. doi: 10.1007/s12613-023-2620-y
      [22]
      X.Z. Zhang, Y.P. Xia, X. Liu, Y.M. Zhong, H.B. Zhao, and P.H. Wang, Effect of annealing temperature on the microstructure and optoelectrical properties of ZnO thin films and their application in self-powered accelerometers, Int. J. Miner. Metall. Mater., 26(2019), No. 9, p. 1186. doi: 10.1007/s12613-019-1828-3
      [23]
      M.A. Basha, C.L. Prajapat, S. Singh, and S. Basu, Optimization and characterization of cobalt & gadolinium films using X-ray scattering, [in] AIP Conference Proceedings, Bhubaneswar, 2017.
      [24]
      Y. Wang, Study on Microstructure and Properties of Co and CoTaZr Thin films by Magnetron Sputtering [Dissertation], Guangdong University of Technology, Guangzhou, 2012.
      [25]
      K. Bukharia, P. Karmakar, D. Kumar, V.R. Reddy, and A. Gupta, Evolution of magnetic anisotropy in cobalt film on nanopatterned silicon substrate studied in situ using MOKE, J. Magn. Magn. Mater., 497(2020), art. No. 165934. doi: 10.1016/j.jmmm.2019.165934
      [26]
      M.O. Liedke, M. Körner, K. Lenz, et al., Crossover in the surface anisotropy contributions of ferromagnetic films on rippled Si surfaces, Phys. Rev. B, 87(2013), No. 2, art. No. 024424. doi: 10.1103/PhysRevB.87.024424
      [27]
      J. W. Huang and Z. Li, X-ray Diffraction of Polycrystalline Materials: Experimental Principles, Methods and Applications, Metallurgical Industry Press, Beijing, 2012, p. 119.
      [28]
      D.W. Hoffman and J.A. Thornton, The compressive stress transition in Al, V, Zr, Nb and W metal films sputtered at low working pressures, Thin Solid Films, 45(1977), No. 2, p. 387. doi: 10.1016/0040-6090(77)90276-0
      [29]
      J.H. Cha, K. Ashok, N.J. Suthan Kissinger, et al., Effect of thermal annealing on the structure, morphology, and electrical properties of Mo bottom electrodes for solar cell applications, J. Korean Phy. Soc., 59(2011), No. 3, p. 2280. doi: 10.3938/jkps.59.2280
      [30]
      H. Ahn, D.C. Lee, and Y. Um, Substrate temperature effects on DC sputtered Mo thin film, Appl. Sci. Converg. Technol., 26(2017), No. 1, p. 11. doi: 10.5757/ASCT.2017.26.1.11
      [31]
      M. Kumar, A. Kumar, and A.C. Abhyankar, Influence of texture coefficient on surface morphology and sensing properties of W-doped nanocrystalline tin oxide thin films, ACS Appl. Mater. Interfaces, 7(2015), No. 6, p. 3571. doi: 10.1021/am507397z
      [32]
      Y. Kajikawa, S. Noda, and H. Komiyama, Comprehensive perspective on the mechanism of preferred orientation in reactive-sputter-deposited nitrides, J. Vac. Sci. Technol. A: Vac. Surf. Films, 21(2003), No. 6, p. 1943. doi: 10.1116/1.1619414
      [33]
      D.D. Wang, Theoretical Analysis About the Surface Structure and Energy Anisotropy of Crystal [Dissertation], Shanxi Normal University, Shanxi, 2007.
      [34]
      S. Mahieu and D. Depla, Reactive sputter deposition of TiN layers: Modelling the growth by characterization of particle fluxes towards the substrate, J. Phys. D: Appl. Phys., 42(2009), No. 5, art. No. 053002. doi: 10.1088/0022-3727/42/5/053002
      [35]
      G. Regmi and S. Velumani, Impact of target power on the properties of sputtered intrinsic zinc oxide (i-ZnO) thin films and its thickness dependence performance on CISe solar cells, Opt. Mater., 119(2021), art. No. 111350. doi: 10.1016/j.optmat.2021.111350
      [36]
      M.B. Tian and Z.C. Li, Material Technology and Thin Film Materials, 5th, Tsinghua University Press, Beijing, 2018.
      [37]
      N. Daichakomphu, S. Abbas, T.L. Chou, et al., Understanding the effect of sputtering pressures on the thermoelectric properties of GeTe films, J. Alloys Compd., 893(2022), art. No. 162342. doi: 10.1016/j.jallcom.2021.162342
      [38]
      D.T.S. Perkins and R.A. Smith, Drude conductivity of a granular metal, Ann. Phys., 418(2020), art. No. 168170. doi: 10.1016/j.aop.2020.168170
      [39]
      J.H. Yoon, S. Cho, W.M. Kim, et al., Optical analysis of the microstructure of a Mo back contact for Cu(In, Ga)Se2 solar cells and its effects on Mo film properties and Na diffusivity, Sol. Energy Mater. Sol. Cells, 95(2011), No. 11, p. 2959. doi: 10.1016/j.solmat.2011.02.030
      [40]
      A.K. Battu, N. Makeswaran, and C.V. Ramana, Fabrication, characterization and optimization of high conductivity and high quality nanocrystalline molybdenum thin films, J. Mater. Sci. Technol., 35(2019), No. 11, p. 2734. doi: 10.1016/j.jmst.2019.05.023
      [41]
      X.M. Liu and G. Zangari, Easy axis dispersion and micromagnetic structure of electrodeposited, high moment Fe–Co–Ni films, J. Appl. Phys., 90(2001), No. 10, p. 5247. doi: 10.1063/1.1412278
      [42]
      G. Durin and S. Zapperi, The barkhausen effect, [in] G. Bertotti and I.D. Mayergoyz, eds., The Science of Hysteresis, Elsevier, Amsterdam, (2006), p. 181.
      [43]
      J. D. Livingston and M. D. McConnell, Domain-wall energy in cobalt-rare-earth compounds, J. Appl. Phys., 43(1972), No. 11, p. 4756. doi: 10.1063/1.1661003
      [44]
      R. Friedberg and D.I. Paul, New theory of coercive force of ferromagnetic materials, Phys. Rev. Lett., 34(1975), No. 19, p. 1234. doi: 10.1103/PhysRevLett.34.1234
      [45]
      B. Ma, X.Q. Bao, A.Z. Sun, J.H. Li, and X.X. Gao, Microstructure evolution and coercivity mechanism of hydrogenation-disproportionation-desorption-recombination (HDDR) treated Nd-Fe-B strip cast alloys, J. Rare Earths, 40(2022), No. 5, p. 792. doi: 10.1016/j.jre.2021.03.018

    Catalog


    • /

      返回文章
      返回