留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 1
Jan.  2024

图(12)

数据统计

分享

计量
  • 文章访问数:  1051
  • HTML全文浏览量:  206
  • PDF下载量:  15
  • 被引次数: 0
Xu Wang, Zhengquan Zhang, Yanfang Cui, Wei Li, Congren Yang, Hao Song, Wenqing Qin, and Fen Jiao, Alkyl dimethyl betaine activates the low-temperature collection capacity of sodium oleate for scheelite, Int. J. Miner. Metall. Mater., 31(2024), No. 1, pp. 71-80. https://doi.org/10.1007/s12613-023-2718-2
Cite this article as:
Xu Wang, Zhengquan Zhang, Yanfang Cui, Wei Li, Congren Yang, Hao Song, Wenqing Qin, and Fen Jiao, Alkyl dimethyl betaine activates the low-temperature collection capacity of sodium oleate for scheelite, Int. J. Miner. Metall. Mater., 31(2024), No. 1, pp. 71-80. https://doi.org/10.1007/s12613-023-2718-2
引用本文 PDF XML SpringerLink
研究论文

烷基二甲基甜菜碱提高油酸钠对白钨矿的低温捕收能力



  • 通讯作者:

    覃文庆    E-mail: qinwenqing369@126.com

    焦芬    E-mail: jfen0601@126.com

文章亮点

  • (1) 甜菜碱提高了油酸钠的低温捕收能力。
  • (2) 十八烷基二甲基甜菜碱优化了油酸钠在低温下的分散性和起泡性。
  • (3) 十八烷基二甲基甜菜碱和油酸钠的组合使用提高了低温下栾川白钨矿的回收率。
  • 提高低温环境下白钨矿的回收率一直都是矿物加工领域研究的热点。本研究通过不同规模的浮选试验评估了不同碳链长度的烷基二甲基甜菜碱提高油酸钠对白钨矿低温捕收能力的效果。并结合红外光谱、X射线光电子能谱、表面张力测量、泡沫性能测试和浮选药剂分散性测试,探究了低温下烷基二甲基甜菜碱和油酸钠的协同作用机制。浮选试验结果表明,当十八烷基二甲基甜菜碱和油酸钠按质量比4:96混合使用时,对白钨矿表现出最优的捕收能力。在8-12°C的低温环境下,可以将栾川低品位白钨矿的粗选回收率提高3.48%,大幅度提升了白钨矿回收的经济效益。机理研究结果表明,十八烷基二甲基甜菜碱不能直接对白钨矿产生捕收作用,而是通过改善油酸钠在低温环境下的分散性和起泡能力,间接提高了低温环境下油酸钠对白钨矿的捕收能力。甜菜碱可以作为一种添加剂的选择引入到油酸钠中,以改善油酸钠的低温捕收性能。
  • Research Article

    Alkyl dimethyl betaine activates the low-temperature collection capacity of sodium oleate for scheelite

    + Author Affiliations
    • The impact of alkyl dimethyl betaine (ADB) on the collection capacity of sodium oleate (NaOl) at low temperatures was evaluated using flotation tests at various scales. The low-temperature synergistic mechanism of ADB and NaOl was explored by infrared spectroscopy, X-ray photoelectron spectroscopy, surface tension measurement, foam performance test, and flotation reagent size measurement. The flotation tests revealed that the collector mixed with octadecyl dimethyl betaine (ODB) and NaOl in a mass ratio of 4:96 exhibited the highest collection capacity. The combined collector could increase the scheelite recovery by 3.48% at low temperatures of 8–12°C. This is particularly relevant in the Luanchuan area, which has the largest scheelite concentrate output in China. The results confirmed that ODB enhanced the collection capability of NaOl by improving the dispersion and foaming performance. Betaine can be introduced as an additive to NaOl to improve the recovery of scheelite at low temperatures.
    • loading
    • Supplementary Information-10.1007s12613-023-2718-2.docx
    • [1]
      Q.B. Cao, J.H. Cheng, S.M. Wen, C.X. Li, S.J. Bai, and D. Liu, A mixed collector system for phosphate flotation, Miner. Eng., 78(2015), p. 114. doi: 10.1016/j.mineng.2015.04.020
      [2]
      F. Zhou, T. Chen, C.J. Yan, et al., The flotation of low-grade manganese ore using a novel linoleate hydroxamic acid, Colloids Surf. A: Physicochem. Eng. Aspects, 466(2015), p. 1. doi: 10.1016/j.colsurfa.2014.10.055
      [3]
      H.M. Yu, H.J. Wang, and C.Y. Sun, Comparative studies on phosphate ore flotation collectors prepared by hogwash oil from different regions, Int. J. Min. Sci. Technol., 28(2018), No. 3, p. 453. doi: 10.1016/j.ijmst.2018.04.010
      [4]
      X.M. Luo, W.Z. Yin, Y.F. Wang, C.Y. Sun, Y.Q. Ma, and J. Liu, Effect and mechanism of dolomite with different size fractions on hematite flotation using sodium oleate as collector, J. Cent. South Univ., 23(2016), No. 3, p. 529. doi: 10.1007/s11771-016-3099-8
      [5]
      X. Wang, W.Q. Qin, F. Jiao, et al., Review of tungsten resource reserves, tungsten concentrate production and tungsten beneficiation technology in China, Trans. Nonferrous Met. Soc. China, 32(2022), No. 7, p. 2318. doi: 10.1016/S1003-6326(22)65950-8
      [6]
      N. Kupka and M. Rudolph, Froth flotation of scheelite—A review, Int. J. Min. Sci. Technol., 28(2018), No. 3, p. 373. doi: 10.1016/j.ijmst.2017.12.001
      [7]
      W.H. Jia, W.Q. Qin, C. Chen, H.L. Zhu, and F. Jiao, Collecting performance of vegetable oils in scheelite flotation and differential analysis, J. Cent. South Univ., 26(2019), No. 4, p. 787. doi: 10.1007/s11771-019-4048-0
      [8]
      W.D. Guo, Y.X. Han, Y.M. Zhu, Y.J. Li, and Z.D. Tang, Effect of amide group on the flotation performance of lauric acid, Appl. Surf. Sci., 505(2020), art. No. 144627. doi: 10.1016/j.apsusc.2019.144627
      [9]
      H. Zhang, W.G. Liu, C. Han, and H.Q. Hao, Effects of monohydric alcohols on the flotation of magnesite and dolomite by sodium oleate, J. Mol. Liq., 249(2018), p. 1060. doi: 10.1016/j.molliq.2017.11.148
      [10]
      J.F. He, C.G. Liu, and Y.K. Yao, Flotation intensification of the coal slime using a new compound collector and the interaction mechanism between the reagent and coal surface, Powder Technol., 325(2018), p. 333. doi: 10.1016/j.powtec.2017.11.034
      [11]
      T. Coward, J.G.M. Lee, and G.S. Caldwell, Harvesting microalgae by CTAB-aided foam flotation increases lipid recovery and improves fatty acid methyl ester characteristics, Biomass Bioenergy, 67(2014), p. 354. doi: 10.1016/j.biombioe.2014.05.019
      [12]
      M. Krasowska, J. Zawala, B.H. Bradshaw-Hajek, J.K. Ferri, and D.A. Beattie, Interfacial characterisation for flotation: 1. solid-liquid interface, Curr. Opin. Colloid Interface Sci., 37(2018), p. 61. doi: 10.1016/j.cocis.2018.06.004
      [13]
      A. Vidyadhar, N. Kumari, and R.P. Bhagat, Adsorption mechanism of mixed collector systems on hematite flotation, Miner. Eng., 26(2012), p. 102. doi: 10.1016/j.mineng.2011.11.005
      [14]
      J. Tian, L.H. Xu, W. Deng, H. Jiang, Z.Y. Gao, and Y.H. Hu, Adsorption mechanism of new mixed anionic/cationic collectors in a spodumene-feldspar flotation system, Chem. Eng. Sci., 164(2017), p. 99. doi: 10.1016/j.ces.2017.02.013
      [15]
      D. López-Díaz, I. García-Mateos, and M.M. Velázquez, Synergism in mixtures of zwitterionic and ionic surfactants, Colloids Surf. A: Physicochem. Eng. Aspects, 270-271(2005), p. 153. doi: 10.1016/j.colsurfa.2005.05.054
      [16]
      W.H. Jia, F. Jiao, H.L. Zhu, L. Xu, and W.Q. Qin, Mitigating the negative effects of feldspar slime on spodumene flotation using mixed anionic/cationic collector, Miner. Eng., 168(2021), art. No. 106813. doi: 10.1016/j.mineng.2021.106813
      [17]
      L.O. Filippov, I.V. Filippova, Z. Lafhaj, and D. Fornasiero, The role of a fatty alcohol in improving calcium minerals flotation with oleate, Colloids Surf. A: Physicochem. Eng. Aspects, 560(2019), p. 410. doi: 10.1016/j.colsurfa.2018.10.022
      [18]
      H. Sis and S. Chander, Improving froth characteristics and flotation recovery of phosphate ores with nonionic surfactants, Miner. Eng., 16(2003), No. 7, p. 587. doi: 10.1016/S0892-6875(03)00137-7
      [19]
      K. Theander and R.J. Pugh, Synergism and foaming properties in mixed nonionic/fatty acid soap surfactant systems, J. Colloid Interface Sci., 267(2003), No. 1, p. 9. doi: 10.1016/S0021-9797(03)00482-X
      [20]
      C. Chen, H.L. Zhu, W. Sun, Y.H. Hu, W.Q. Qin, and R.Q. Liu, Synergetic effect of the mixed anionic/non-ionic collectors in low temperature flotation of scheelite, Minerals, 7(2017), No. 6, art. No. 87. doi: 10.3390/min7060087
      [21]
      W.H. Sun, W.G. Liu, S.J. Dai, T. Yang, H. Duan, and W.B. Liu, Effect of Tween 80 on flotation separation of magnesite and dolomite using NaOL as the collector, J. Mol. Liq., 315(2020), art. No. 113712. doi: 10.1016/j.molliq.2020.113712
      [22]
      Z.Y. Liu, Z.C. Xu, H. Zhou, et al., Interfacial behaviors of betaine and binary betaine/carboxylic acid mixtures in molecular dynamics simulation, J. Mol. Liq., 240(2017), p. 412. doi: 10.1016/j.molliq.2017.05.094
      [23]
      J.B. Yang and J.R. Hou, Synthesis of erucic amide propyl betaine compound fracturing fluid system, Colloids Surf. A: Physicochem. Eng. Aspects, 602(2020), art. No. 125098. doi: 10.1016/j.colsurfa.2020.125098
      [24]
      X.L. Lu, M. Zhang, L. Xie, and Q. Zhou, Coagulative colloidal gas aphrons generated from polyaluminum chloride (PACl)/dodecyl dimethyl betaine (BS-12) solution: Interfacial characteristics and flotation potential, Colloids Surf. A: Physicochem. Eng. Aspects, 530(2017), p. 209. doi: 10.1016/j.colsurfa.2017.07.058
      [25]
      Z.H. Zhou, D.S. Ma, Q. Zhang, et al., Surface dilational rheology of betaine surfactants: Effect of molecular structures, Colloids Surf. A: Physicochem. Eng. Aspects, 538(2018), p. 739. doi: 10.1016/j.colsurfa.2017.11.064
      [26]
      W.Y. Shao, J.Y. Zhang, K. Wang, C.R. Liu, and S.M. Cui, Cocamidopropyl betaine-assisted foam separation of freshwater microalgae Desmodesmus brasiliensis, Biochem. Eng. J., 140(2018), p. 38.
      [27]
      X. Wang, W.Q. Qin, F. Jiao, et al., Review on development of low-grade scheelite recovery from molybdenum tailings in Luanchuan, China: A case study of Luoyang Yulu Mining Company, Trans. Nonferrous Met. Soc. China, 32(2022), No. 3, p. 980. doi: 10.1016/S1003-6326(22)65848-5
      [28]
      X. Wang, W.H. Jia, C.R. Yang, et al., Innovative application of sodium tripolyphosphate for the flotation separation of scheelite from calcite, Miner. Eng., 170(2021), art. No. 106981. doi: 10.1016/j.mineng.2021.106981
      [29]
      N. Kupka and M. Rudolph, Role of sodium carbonate in scheelite flotation—A multi-faceted reagent, Miner. Eng., 129(2018), p. 120. doi: 10.1016/j.mineng.2018.09.005
      [30]
      Y. Foucaud, L. Filippov, I. Filippova, and M. Badawi, The challenge of tungsten skarn processing by froth flotation: A review, Front. Chem., 8(2020), art. No. 230. doi: 10.3389/fchem.2020.00230
      [31]
      X. Wang, H. Song, F. Jiao, et al., Utilization of wastewater from zeolite production in synthesis of flotation reagents, Trans. Nonferrous Met. Soc. China, 30(2020), No. 11, p. 3093. doi: 10.1016/S1003-6326(20)65445-0
      [32]
      T. Gaudin, P. Rotureau, I. Pezron, and G. Fayet, Investigating the impact of sugar-based surfactants structure on surface tension at critical micelle concentration with structure-property relationships, J. Colloid Interface Sci., 516(2018), p. 162. doi: 10.1016/j.jcis.2018.01.051
      [33]
      E. Calvo, R. Bravo, A. Amigo, and J. Gracia-Fadrique, Dynamic surface tension, critical micelle concentration, and activity coefficients of aqueous solutions of nonyl phenol ethoxylates, Fluid Phase Equilib., 282(2009), No. 1, p. 14. doi: 10.1016/j.fluid.2009.04.016
      [34]
      J. Church, M.R. Willner, B.R. Renfro, et al., Impact of interfacial tension and critical micelle concentration on bilgewater oil separation, J. Water Process. Eng., 39(2021), art. No. 101684. doi: 10.1016/j.jwpe.2020.101684
      [35]
      A. Pal, R. Punia, and G.P. Dubey, Formation of mixed micelles in an aqueous mixture of a biamphiphilic surface active ionic liquid and an anionic surfactant: Experimental and theoretical study, J. Mol. Liq., 337(2021), art. No. 116355. doi: 10.1016/j.molliq.2021.116355
      [36]
      S.M.S. Hussain, M.S. Kamal, and L.T. Fogang, Synthesis and physicochemical investigation of betaine type polyoxyethylene zwitterionic surfactants containing different ionic headgroups, J. Mol. Struct., 1178(2019), p. 83. doi: 10.1016/j.molstruc.2018.09.094
      [37]
      A. Atrafi and M. Pawlik, Foamability of fatty acid solutions and surfactant transfer between foam and solution phases, Miner. Eng., 100(2017), p. 99. doi: 10.1016/j.mineng.2016.10.012
      [38]
      Y.F. Cui, F. Jiao, Q. Wei, X. Wang, and L.Y. Dong, Flotation separation of fluorite from calcite using sulfonated lignite as depressant, Sep. Purif. Technol., 242(2020), art. No. 116698. doi: 10.1016/j.seppur.2020.116698
      [39]
      X. Wang, F. Jiao, W.Q. Qin, et al., Sulfonated brown coal: A novel depressant for the selective flotation of scheelite from calcite, Colloids Surf. A: Physicochem. Eng. Aspects, 602(2020), art. No. 125006. doi: 10.1016/j.colsurfa.2020.125006
      [40]
      Q.Y. Meng, Q.M. Feng, and L.M. Ou, Flotation behavior and adsorption mechanism of fine wolframite with octyl hydroxamic acid, J. Cent. South Univ., 23(2016), No. 6, p. 1339. doi: 10.1007/s11771-016-3185-y
      [41]
      G. Güler, R.M. Gärtner, C. Ziegler, and W. Mäntele, Lipid-protein interactions in the regulated betaine symporter BetP probed by infrared spectroscopy, J. Biol. Chem., 291(2016), No. 9, p. 4295. doi: 10.1074/jbc.M114.621979
      [42]
      C. Harbeck, R. Faurie, and T. Scheper, Application of near-infrared spectroscopy in the sugar industry for the detection of betaine, Anal. Chim. Acta, 501(2004), No. 2, p. 249. doi: 10.1016/j.aca.2003.09.032
      [43]
      H. Kumar, J. Kaur, and P. Awasthi, Scrutinizing the micellization behaviour of 14-2-14 gemini surfactant and tetradecyltrimethylammonium bromide in aqueous solutions of betaine hydrochloride drug, J. Mol. Liq., 338(2021), art. No. 116642. doi: 10.1016/j.molliq.2021.116642
      [44]
      C.H. Zhang, Y.H. Hu, W. Sun, J.H. Zhai, Z.G. Yin, and Q.J. Guan, Effect of phytic acid on the surface properties of scheelite and fluorite for their selective flotation, Colloids Surf. A: Physicochem. Eng. Aspects, 573(2019), p. 80. doi: 10.1016/j.colsurfa.2019.04.044
      [45]
      W.P. Yan, C. Liu, G.H. Ai, Q.M. Feng, and W.C. Zhang, Flotation separation of scheelite from calcite using mixed collectors, Int. J. Miner. Process., 169(2017), p. 106. doi: 10.1016/j.minpro.2017.10.009
      [46]
      C. Wang, S. Ren, W. Sun, et al., Selective flotation of scheelite from calcite using a novel self-assembled collector, Miner. Eng., 171(2021), art. No. 107120. doi: 10.1016/j.mineng.2021.107120
      [47]
      Z.Y. Gao, Z.Y. Jiang, W. Sun, et al., New role of the conventional foamer sodium N-lauroylsarcosinate as a selective collector for the separation of calcium minerals, J. Mol. Liq., 318(2020), art. No. 114031. doi: 10.1016/j.molliq.2020.114031
      [48]
      F. Jiao, L.Y. Dong, W.Q. Qin, W. Liu, and C.Q. Hu, Flotation separation of scheelite from calcite using pectin as depressant, Miner. Eng., 136(2019), p. 120. doi: 10.1016/j.mineng.2019.03.019
      [49]
      Q. Wei, L.Y. Dong, F. Jiao, and W.Q. Qin, Selective flotation separation of fluorite from calcite by using sesbania gum as depressant, Miner. Eng., 174(2021), art. No. 107239. doi: 10.1016/j.mineng.2021.107239
      [50]
      S.F. Burlatsky, V.V. Atrazhev, D.V. Dmitriev, et al., Surface tension model for surfactant solutions at the critical micelle concentration, J. Colloid Interface Sci., 393(2013), p. 151. doi: 10.1016/j.jcis.2012.10.020
      [51]
      Q. Lin, K.H. Liu, Z.G. Cui, X.M. Pei, J.Z. Jiang, and B.L. Song, pH-Responsive Pickering foams stabilized by silica nanoparticles in combination with trace amount of dodecyl dimethyl carboxyl betaine, Colloids Surf. A: Physicochem. Eng. Aspects, 544(2018), p. 44. doi: 10.1016/j.colsurfa.2018.02.027
      [52]
      A. Atrafi, C.O. Gomez, J.A. Finch, and M. Pawlik, Frothing behavior of aqueous solutions of oleic acid, Miner. Eng., 36-38(2012), p. 138. doi: 10.1016/j.mineng.2012.03.020
      [53]
      C. Da, S. Alzobaidi, G.Q. Jian, et al., Carbon dioxide/water foams stabilized with a zwitterionic surfactant at temperatures up to 150°C in high salinity brine, J. Petrol. Sci. Eng., 166(2018), p. 880. doi: 10.1016/j.petrol.2018.03.071

    Catalog


    • /

      返回文章
      返回