留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 3
Mar.  2024

图(6)

数据统计

分享

计量
  • 文章访问数:  273
  • HTML全文浏览量:  117
  • PDF下载量:  22
  • 被引次数: 0
Kangzhe Cao, Sitian Wang, Yanan He, Jiahui Ma, Ziwei Yue, and Huiqiao Liu, Constructing Al@C–Sn pellet anode without passivation layer for lithium-ion battery, Int. J. Miner. Metall. Mater., 31(2024), No. 3, pp. 552-561. https://doi.org/10.1007/s12613-023-2720-8
Cite this article as:
Kangzhe Cao, Sitian Wang, Yanan He, Jiahui Ma, Ziwei Yue, and Huiqiao Liu, Constructing Al@C–Sn pellet anode without passivation layer for lithium-ion battery, Int. J. Miner. Metall. Mater., 31(2024), No. 3, pp. 552-561. https://doi.org/10.1007/s12613-023-2720-8
引用本文 PDF XML SpringerLink
研究论文

构筑无钝化层的Al@Sn–C作为锂离子电池负极材料



  • 通讯作者:

    刘会俏    E-mail: liuhq@xynu.edu.cn

文章亮点

  • (1) 提出了加减法构筑无钝化层铝负极的简易策略
  • (2) 研究了无钝化层的Al@Sn–C的制备机理
  • (3) 阐明了无钝化层的Al@Sn–C负极储锂性能提升的原因
  • 铝因其高理论容量和适当的锂化-脱锂电位而被视为一种有前途的锂离子电池负极材料。然而,基于合金反应机制,铝负极在储锂过程中会发生剧烈的体积膨胀,导致电极结构不稳定性,引起容量衰减和较差的循环稳定性。更糟糕的是,由于铝的活性强,铝颗粒的表层有氧化铝钝化层。作为电子的绝缘体,氧化铝钝化层会导致铝负极锂化过程中存在电压降,降低电极可逆容量。本研究通过加减法策略合成了无钝化层的核-壳结构Al@C–Sn颗粒,并用作锂离子电池负极材料。在该策略中,经过聚多巴胺包覆的商业铝颗粒与氯化亚锡充分混合后在惰性气氛中进行热处理。在此过程中,天然的氧化铝钝化层被原位生成的酸性气体刻蚀消除,同时,聚多巴胺衍生的碳被引入作为双功能外壳,它既保护了无钝化层的铝核被再次氧化,又作为缓冲基质缓解了材料在锂化过程中的体积变化张力。由于C–Sn外壳的引入和氧化铝钝化层的消除,所制备的Al@C–Sn颗粒电极表现出很小的电压降,并在0.1 A·g–1电流密度下展现出1018.7 mAh·g–1的可逆容量,在2.0 A·g–1电流密度下经过1000个循环后电极的可逆比容量为295.0 mAh·g–1。此外,该电极的扩散控制比容量得到了显著提高,证实了精心设计的纳米结构有助于锂离子快速扩散,并进一步增强了锂储存活性。
  • Research Article

    Constructing Al@C–Sn pellet anode without passivation layer for lithium-ion battery

    + Author Affiliations
    • Al is considered as a promising lithium-ion battery (LIBs) anode materials owing to its high theoretical capacity and appropriate lithation/de-lithation potential. Unfortunately, its inevitable volume expansion causes the electrode structure instability, leading to poor cyclic stability. What’s worse, the natural Al2O3 layer on commercial Al pellets is always existed as a robust insulating barrier for electrons, which brings the voltage dip and results in low reversible capacity. Herein, this work synthesized core–shell Al@C–Sn pellets for LIBs by a plus-minus strategy. In this proposal, the natural Al2O3 passivation layer is eliminated when annealing the pre-introduced SnCl2, meanwhile, polydopamine-derived carbon is introduced as dual functional shell to liberate the fresh Al core from re-oxidization and alleviate the volume swellings. Benefiting from the addition of C–Sn shell and the elimination of the Al2O3 passivation layer, the as-prepared Al@C–Sn pellet electrode exhibits little voltage dip and delivers a reversible capacity of 1018.7 mAh·g–1 at 0.1 A·g–1 and 295.0 mAh·g–1 at 2.0 A·g–1 (after 1000 cycles), respectively. Moreover, its diffusion-controlled capacity is muchly improved compared to those of its counterparts, confirming the well-designed nanostructure contributes to the rapid Li-ion diffusion and further enhances the lithium storage activity.
    • loading
    • Supplementary Information-s12613-023-2720-8.docx
    • [1]
      P. Shi, Z.H. Fu, M.Y. Zhou, et al., Inhibiting intercrystalline reactions of anode with electrolytes for long-cycling lithium batteries, Sci. Adv., 8(2022), No. 33, art. No. eabq3445. doi: 10.1126/sciadv.abq3445
      [2]
      S.C. Zhang, S.Y. Li, and Y.Y. Lu, Designing safer lithium-based batteries with nonflammable electrolytes: A review, eScience, 1(2021), No. 2, p. 163. doi: 10.1016/j.esci.2021.12.003
      [3]
      M.Q. Peng, K. Shin, L.X. Jiang, et al., Alloy-type anodes for high-performance rechargeable batteries, Angew. Chem. Int. Ed., 61(2022), No. 33, art. No. e202206770. doi: 10.1002/anie.202206770
      [4]
      L. Xie, W. Zhang, X. Chen, et al., Bimetallic cobalt–nickel selenide nanocubes embedded in a nitrogen-doped carbon matrix as an excellent Li-ion battery anode, ACS Appl. Mater. Interfaces, 15(2023), No. 21, p. 25536. doi: 10.1021/acsami.3c02865
      [5]
      H.Q. Liu, Y.N. He, H. Zhang, et al., Lowering the voltage-hysteresis of CuS anode for Li-ion batteries via constructing heterostructure, Chem. Eng. J., 425(2021), art. No. 130548. doi: 10.1016/j.cej.2021.130548
      [6]
      B.T. Heligman and A. Manthiram, Elemental foil anodes for lithium-ion batteries, ACS Energy Lett., 6(2021), No. 8, p. 2666. doi: 10.1021/acsenergylett.1c01145
      [7]
      G.L. Xia, H.Y. Zhang, M. Liang, et al., Unlocking the lithium storage capacity of aluminum by molecular immobilization and purification, Adv. Mater., 31(2019), No. 24, art. No. e1901372. doi: 10.1002/adma.201901372
      [8]
      H.M. Fan, S. Li, Y. Yu, et al., Air-stable Li x Al foil as free-standing electrode with improved electrochemical ductility by shot-peening treatment, Adv. Funct. Mater., 31(2021), No. 29, art. No. 2100978. doi: 10.1002/adfm.202100978
      [9]
      M.N. Obrovac and V.L. Chevrier, Alloy negative electrodes for Li-ion batteries, Chem. Rev., 114(2014), No. 23, p. 11444. doi: 10.1021/cr500207g
      [10]
      T.Y. Zheng, D. Kramer, R. Mönig, and S.T. Boles, Aluminum foil anodes for Li-ion rechargeable batteries: The role of Li solubility within β-LiAl, ACS Sustainable Chem. Eng., 10(2022), No. 10, p. 3203. doi: 10.1021/acssuschemeng.1c07242
      [11]
      D. Rehnlund, F. Lindgren, S. Böhme, et al., Lithium trapping in alloy forming electrodes and current collectors for lithium based batteries, Energy Environ. Sci., 10(2017), No. 6, p. 1350. doi: 10.1039/C7EE00244K
      [12]
      B.S. Qin, T. Diemant, H. Zhang, et al., Revisiting the electrochemical lithiation mechanism of aluminum and the role of Li-rich phases (Li1+ x Al) on capacity fading, ChemSusChem, 12(2019), No. 12, p. 2609. doi: 10.1002/cssc.201900597
      [13]
      M.Z. Ghavidel, M.R. Kupsta, J. Le, E. Feygin, A. Espitia, and M.D. Fleischauer, Electrochemical formation of four Al–Li phases (β-AlLi, Al2Li3, AlLi2– x , Al4Li9) at intermediate temperatures, J. Electrochem. Soc., 166(2019), No. 16, p. A4034. doi: 10.1149/2.0061916jes
      [14]
      Y. Liu, N.S. Hudak, D.L. Huber, S.J. Limmer, J.P. Sullivan, and J.Y. Huang, In situ transmission electron microscopy observation of pulverization of aluminum nanowires and evolution of the thin surface Al2O3 layers during lithiation–delithiation cycles, Nano Lett., 11(2011), No. 10, p. 4188. doi: 10.1021/nl202088h
      [15]
      Y. Jin, S. Li, A. Kushima, et al., Self-healing SEI enables full-cell cycling of a silicon-majority anode with a coulombic efficiency exceeding 99.9%, Energy Environ. Sci., 10(2017), No. 2, p. 580. doi: 10.1039/C6EE02685K
      [16]
      X.W. Ou, G. Zhang, S.Q. Zhang, X.Y. Tong, and Y.B. Tang, Simultaneously pre-alloying and artificial solid electrolyte interface towards highly stable aluminum anode for high-performance Li hybrid capacitor, Energy Storage Mater., 28(2020), p. 357. doi: 10.1016/j.ensm.2020.03.021
      [17]
      S. Li, J. Niu, Y.C. Zhao, et al., High-rate aluminium yolk–shell nanoparticle anode for Li-ion battery with long cycle life and ultrahigh capacity, Nat. Commun., 6(2015), art. No. 7872. doi: 10.1038/ncomms8872
      [18]
      H.Q. Liu, Y.N. He, K.Z. Cao, et al., Activating commercial Al pellets by replacing the passivation layer for high-performance half/full Li-ion batteries, Chem. Eng. J., 433(2022), art. No. 133572. doi: 10.1016/j.cej.2021.133572
      [19]
      I. Offen-Polak, M. Auinat, N. Sezin, Y. Ein-Eli, and M. Balaish, A binary carbon-free aluminum anode for lithium-ion batteries, J. Power Sources, 498(2021), art. No. 229902. doi: 10.1016/j.jpowsour.2021.229902
      [20]
      X.H. Chang, Z.W. Xie, Z.L. Liu, X.Y. Zheng, J. Zheng, and X.G. Li, Enabling high performance lithium storage in aluminum: The double edged surface oxide, Nano Energy, 41(2017), p. 731. doi: 10.1016/j.nanoen.2017.10.017
      [21]
      X.H. Chang, Z.W. Xie, Z.L. Liu, X.Y. Zheng, J. Zheng, and X.G. Li, Aluminum: An underappreciated anode material for lithium-ion batteries, Energy Storage Mater., 25(2020), p. 93. doi: 10.1016/j.ensm.2019.10.027
      [22]
      H.Q. Liu, K.Z. Cao, W.Y. Li, et al., Constructing hierarchical MnO2/Co3O4 heterostructure hollow spheres for high-performance Li-ion batteries, J. Power Sources, 437(2019), art. No. 226904. doi: 10.1016/j.jpowsour.2019.226904
      [23]
      H. Lee, S.M. Dellatore, W.M. Miller, and P.B. Messersmith, Mussel-inspired surface chemistry for multifunctional coatings, Science, 318(2007), No. 5849, p. 426. doi: 10.1126/science.1147241
      [24]
      Y.G. Zhang, Y.G. Wang, R.J. Luo, et al., A 3D porous FeP/rGO modulated separator as a dual-function polysulfide barrier for high-performance lithium sulfur batteries, Nanoscale Horiz., 5(2020), No. 3, p. 530. doi: 10.1039/C9NH00532C
      [25]
      X.F. Tong, F. Zhang, B.F. Ji, M.H. Sheng, and Y.B. Tang, Carbon-coated porous aluminum foil anode for high-rate, long-term cycling stability, and high energy density dual-ion batteries, Adv. Mater., 28(2016), No. 45, p. 9979. doi: 10.1002/adma.201603735
      [26]
      D. Sui, M. Yao, L.Q. Si, et al., Biomass-derived carbon coated SiO2 nanotubes as superior anode for lithium-ion batteries, Carbon, 205(2023), p. 510. doi: 10.1016/j.carbon.2023.01.039
      [27]
      H.Q. Liu, Y.N. He, J. Jia, Z.H. Gao, Y. Jiang, and K.Z. Cao, Construction and K ion storage property of B-doping porous carbon, J. Xinyang Normal Univ.Nat. Sci., 34(2021), No. 2, p. 272.
      [28]
      K.Z. Cao, S.D. Wang, Y.H. Jia, et al., Promoting K ion storage property of SnS2 anode by structure engineering, Chem. Eng. J., 406(2021), art. No. 126902. doi: 10.1016/j.cej.2020.126902
      [29]
      Y.M. Huang, C. Liu, F.Y. Wei, et al., Chemical prelithiation of Al for use as an ambient air compatible and polysulfide resistant anode for Li-ion/S batteries, J. Mater. Chem. A, 8(2020), No. 36, p. 18715. doi: 10.1039/D0TA06694J
      [30]
      B. Qin, S. Jeong, H. Zhang, et al., Enabling reversible (de)lithiation of aluminum by using bis(fluorosulfonyl)imide-based electrolytes, ChemSusChem, 12(2019), No. 1, p. 208. doi: 10.1002/cssc.201801806
      [31]
      Z.L. Li, Y.Z. Yang, J. Wang, Z. Yang, and H.L. Zhao, Sandwich-like structure C/SiO x @graphene anode material with high electrochemical performance for lithium ion batteries, Int. J. Miner. Metall. Mater., 29(2022), No. 11, p. 1947. doi: 10.1007/s12613-022-2526-0
      [32]
      J. Sun, Q.C. Zeng, R.T. Lv, et al., A Li-ion sulfur full cell with ambient resistant Al–Li alloy anode, Energy Storage Mater., 15(2018), p. 209. doi: 10.1016/j.ensm.2018.04.003
      [33]
      T.C. Lin, A. Dawson, S.C. King, et al., Understanding stabilization in nanoporous intermetallic alloy anodes for Li-ion batteries using Operando transmission X-ray microscopy, ACS Nano, 14(2020), No. 11, p. 14820. doi: 10.1021/acsnano.0c03756
      [34]
      N. Zhang, C.C. Sun, Y.Q. Huang, et al., Tuning electrolyte enables microsized Sn as an advanced anode for Li-ion batteries, J. Mater. Chem. A, 9(2021), No. 3, p. 1812. doi: 10.1039/D0TA10861H
      [35]
      X.Y. Chen, N. Cheng, L.S. Zhang, G.H. Xiang, Y.L. Ding, and Z.G. Liu, Flower-like spherical FeCoS2 coated by reduced graphene oxide as anode for high performance potassium ion storage, J. Alloys Compd., 861(2021), art. No. 158458. doi: 10.1016/j.jallcom.2020.158458
      [36]
      G.S. Dong, Y.Z. Fang, S.Q. Liao, et al., 3D tremella-like nitrogen-doped carbon encapsulated few-layer MoS2 for lithium-ion batteries, J. Colloid Interface Sci., 601(2021), p. 594. doi: 10.1016/j.jcis.2021.05.150
      [37]
      Y.X. Zhao, C. Chang, F. Teng, et al., Water splitting: Defect-engineered ultrathin δ-MnO2 nanosheet arrays as bifunctional electrodes for efficient overall water splitting, Adv. Energy Mater., 7(2017), No. 18, art. No. 1770102.
      [38]
      Z.H. Yan, J.D. Liu, H. Wei, et al., Embedding FeS nanodots into carbon nanosheets to improve the electrochemical performance of anode in potassium ion batteries, J. Colloid Interface Sci., 593(2021), p. 408. doi: 10.1016/j.jcis.2021.03.015
      [39]
      M.Y. Pan, S.T. Lu, Y.Y. Li, and Y. Fan, Synthetic hureaulite as anode material for lithium-ion batteries, J. Appl. Electrochem., 53(2023), No. 5, p. 1015. doi: 10.1007/s10800-022-01831-6
      [40]
      Z.Y. Chen, J.G. Hu, S.J. Liu, et al., Dual defects boosting zinc ion storage of hierarchical vanadium oxide fibers, Chem. Eng. J., 404(2021), art. No. 126536. doi: 10.1016/j.cej.2020.126536
      [41]
      C. Li, Q. Liu, L. Liu, et al., Engineering hierarchical manganese molybdenum sulfide nanosheet integrated cathodes for high-energy density hybrid supercapacitors, New J. Chem., 47(2023), No. 29, p. 13820. doi: 10.1039/D3NJ02300A
      [42]
      D. Zhang, C.Y. Zhang, X. Zheng, et al., Facile synthesis of the Mn3O4 polyhedron grown on N-doped honeycomb carbon as high-performance negative material for lithium-ion batteries, Int. J. Miner. Metall. Mater., 30(2023), No. 6, p. 1152. doi: 10.1007/s12613-022-2590-5

    Catalog


    • /

      返回文章
      返回