Cite this article as: |
Kangzhe Cao, Sitian Wang, Yanan He, Jiahui Ma, Ziwei Yue, and Huiqiao Liu, Constructing Al@C–Sn pellet anode without passivation layer for lithium-ion battery, Int. J. Miner. Metall. Mater., 31(2024), No. 3, pp. 552-561. https://doi.org/10.1007/s12613-023-2720-8 |
刘会俏 E-mail: liuhq@xynu.edu.cn
Supplementary Information-s12613-023-2720-8.docx |
[1] |
P. Shi, Z.H. Fu, M.Y. Zhou, et al., Inhibiting intercrystalline reactions of anode with electrolytes for long-cycling lithium batteries, Sci. Adv., 8(2022), No. 33, art. No. eabq3445. doi: 10.1126/sciadv.abq3445
|
[2] |
S.C. Zhang, S.Y. Li, and Y.Y. Lu, Designing safer lithium-based batteries with nonflammable electrolytes: A review, eScience, 1(2021), No. 2, p. 163. doi: 10.1016/j.esci.2021.12.003
|
[3] |
M.Q. Peng, K. Shin, L.X. Jiang, et al., Alloy-type anodes for high-performance rechargeable batteries, Angew. Chem. Int. Ed., 61(2022), No. 33, art. No. e202206770. doi: 10.1002/anie.202206770
|
[4] |
L. Xie, W. Zhang, X. Chen, et al., Bimetallic cobalt–nickel selenide nanocubes embedded in a nitrogen-doped carbon matrix as an excellent Li-ion battery anode, ACS Appl. Mater. Interfaces, 15(2023), No. 21, p. 25536. doi: 10.1021/acsami.3c02865
|
[5] |
H.Q. Liu, Y.N. He, H. Zhang, et al., Lowering the voltage-hysteresis of CuS anode for Li-ion batteries via constructing heterostructure, Chem. Eng. J., 425(2021), art. No. 130548. doi: 10.1016/j.cej.2021.130548
|
[6] |
B.T. Heligman and A. Manthiram, Elemental foil anodes for lithium-ion batteries, ACS Energy Lett., 6(2021), No. 8, p. 2666. doi: 10.1021/acsenergylett.1c01145
|
[7] |
G.L. Xia, H.Y. Zhang, M. Liang, et al., Unlocking the lithium storage capacity of aluminum by molecular immobilization and purification, Adv. Mater., 31(2019), No. 24, art. No. e1901372. doi: 10.1002/adma.201901372
|
[8] |
H.M. Fan, S. Li, Y. Yu, et al., Air-stable Li x Al foil as free-standing electrode with improved electrochemical ductility by shot-peening treatment, Adv. Funct. Mater., 31(2021), No. 29, art. No. 2100978. doi: 10.1002/adfm.202100978
|
[9] |
M.N. Obrovac and V.L. Chevrier, Alloy negative electrodes for Li-ion batteries, Chem. Rev., 114(2014), No. 23, p. 11444. doi: 10.1021/cr500207g
|
[10] |
T.Y. Zheng, D. Kramer, R. Mönig, and S.T. Boles, Aluminum foil anodes for Li-ion rechargeable batteries: The role of Li solubility within β-LiAl, ACS Sustainable Chem. Eng., 10(2022), No. 10, p. 3203. doi: 10.1021/acssuschemeng.1c07242
|
[11] |
D. Rehnlund, F. Lindgren, S. Böhme, et al., Lithium trapping in alloy forming electrodes and current collectors for lithium based batteries, Energy Environ. Sci., 10(2017), No. 6, p. 1350. doi: 10.1039/C7EE00244K
|
[12] |
B.S. Qin, T. Diemant, H. Zhang, et al., Revisiting the electrochemical lithiation mechanism of aluminum and the role of Li-rich phases (Li1+ x Al) on capacity fading, ChemSusChem, 12(2019), No. 12, p. 2609. doi: 10.1002/cssc.201900597
|
[13] |
M.Z. Ghavidel, M.R. Kupsta, J. Le, E. Feygin, A. Espitia, and M.D. Fleischauer, Electrochemical formation of four Al–Li phases (β-AlLi, Al2Li3, AlLi2– x , Al4Li9) at intermediate temperatures, J. Electrochem. Soc., 166(2019), No. 16, p. A4034. doi: 10.1149/2.0061916jes
|
[14] |
Y. Liu, N.S. Hudak, D.L. Huber, S.J. Limmer, J.P. Sullivan, and J.Y. Huang, In situ transmission electron microscopy observation of pulverization of aluminum nanowires and evolution of the thin surface Al2O3 layers during lithiation–delithiation cycles, Nano Lett., 11(2011), No. 10, p. 4188. doi: 10.1021/nl202088h
|
[15] |
Y. Jin, S. Li, A. Kushima, et al., Self-healing SEI enables full-cell cycling of a silicon-majority anode with a coulombic efficiency exceeding 99.9%, Energy Environ. Sci., 10(2017), No. 2, p. 580. doi: 10.1039/C6EE02685K
|
[16] |
X.W. Ou, G. Zhang, S.Q. Zhang, X.Y. Tong, and Y.B. Tang, Simultaneously pre-alloying and artificial solid electrolyte interface towards highly stable aluminum anode for high-performance Li hybrid capacitor, Energy Storage Mater., 28(2020), p. 357. doi: 10.1016/j.ensm.2020.03.021
|
[17] |
S. Li, J. Niu, Y.C. Zhao, et al., High-rate aluminium yolk–shell nanoparticle anode for Li-ion battery with long cycle life and ultrahigh capacity, Nat. Commun., 6(2015), art. No. 7872. doi: 10.1038/ncomms8872
|
[18] |
H.Q. Liu, Y.N. He, K.Z. Cao, et al., Activating commercial Al pellets by replacing the passivation layer for high-performance half/full Li-ion batteries, Chem. Eng. J., 433(2022), art. No. 133572. doi: 10.1016/j.cej.2021.133572
|
[19] |
I. Offen-Polak, M. Auinat, N. Sezin, Y. Ein-Eli, and M. Balaish, A binary carbon-free aluminum anode for lithium-ion batteries, J. Power Sources, 498(2021), art. No. 229902. doi: 10.1016/j.jpowsour.2021.229902
|
[20] |
X.H. Chang, Z.W. Xie, Z.L. Liu, X.Y. Zheng, J. Zheng, and X.G. Li, Enabling high performance lithium storage in aluminum: The double edged surface oxide, Nano Energy, 41(2017), p. 731. doi: 10.1016/j.nanoen.2017.10.017
|
[21] |
X.H. Chang, Z.W. Xie, Z.L. Liu, X.Y. Zheng, J. Zheng, and X.G. Li, Aluminum: An underappreciated anode material for lithium-ion batteries, Energy Storage Mater., 25(2020), p. 93. doi: 10.1016/j.ensm.2019.10.027
|
[22] |
H.Q. Liu, K.Z. Cao, W.Y. Li, et al., Constructing hierarchical MnO2/Co3O4 heterostructure hollow spheres for high-performance Li-ion batteries, J. Power Sources, 437(2019), art. No. 226904. doi: 10.1016/j.jpowsour.2019.226904
|
[23] |
H. Lee, S.M. Dellatore, W.M. Miller, and P.B. Messersmith, Mussel-inspired surface chemistry for multifunctional coatings, Science, 318(2007), No. 5849, p. 426. doi: 10.1126/science.1147241
|
[24] |
Y.G. Zhang, Y.G. Wang, R.J. Luo, et al., A 3D porous FeP/rGO modulated separator as a dual-function polysulfide barrier for high-performance lithium sulfur batteries, Nanoscale Horiz., 5(2020), No. 3, p. 530. doi: 10.1039/C9NH00532C
|
[25] |
X.F. Tong, F. Zhang, B.F. Ji, M.H. Sheng, and Y.B. Tang, Carbon-coated porous aluminum foil anode for high-rate, long-term cycling stability, and high energy density dual-ion batteries, Adv. Mater., 28(2016), No. 45, p. 9979. doi: 10.1002/adma.201603735
|
[26] |
D. Sui, M. Yao, L.Q. Si, et al., Biomass-derived carbon coated SiO2 nanotubes as superior anode for lithium-ion batteries, Carbon, 205(2023), p. 510. doi: 10.1016/j.carbon.2023.01.039
|
[27] |
H.Q. Liu, Y.N. He, J. Jia, Z.H. Gao, Y. Jiang, and K.Z. Cao, Construction and K ion storage property of B-doping porous carbon, J. Xinyang Normal Univ.Nat. Sci., 34(2021), No. 2, p. 272.
|
[28] |
K.Z. Cao, S.D. Wang, Y.H. Jia, et al., Promoting K ion storage property of SnS2 anode by structure engineering, Chem. Eng. J., 406(2021), art. No. 126902. doi: 10.1016/j.cej.2020.126902
|
[29] |
Y.M. Huang, C. Liu, F.Y. Wei, et al., Chemical prelithiation of Al for use as an ambient air compatible and polysulfide resistant anode for Li-ion/S batteries, J. Mater. Chem. A, 8(2020), No. 36, p. 18715. doi: 10.1039/D0TA06694J
|
[30] |
B. Qin, S. Jeong, H. Zhang, et al., Enabling reversible (de)lithiation of aluminum by using bis(fluorosulfonyl)imide-based electrolytes, ChemSusChem, 12(2019), No. 1, p. 208. doi: 10.1002/cssc.201801806
|
[31] |
Z.L. Li, Y.Z. Yang, J. Wang, Z. Yang, and H.L. Zhao, Sandwich-like structure C/SiO x @graphene anode material with high electrochemical performance for lithium ion batteries, Int. J. Miner. Metall. Mater., 29(2022), No. 11, p. 1947. doi: 10.1007/s12613-022-2526-0
|
[32] |
J. Sun, Q.C. Zeng, R.T. Lv, et al., A Li-ion sulfur full cell with ambient resistant Al–Li alloy anode, Energy Storage Mater., 15(2018), p. 209. doi: 10.1016/j.ensm.2018.04.003
|
[33] |
T.C. Lin, A. Dawson, S.C. King, et al., Understanding stabilization in nanoporous intermetallic alloy anodes for Li-ion batteries using Operando transmission X-ray microscopy, ACS Nano, 14(2020), No. 11, p. 14820. doi: 10.1021/acsnano.0c03756
|
[34] |
N. Zhang, C.C. Sun, Y.Q. Huang, et al., Tuning electrolyte enables microsized Sn as an advanced anode for Li-ion batteries, J. Mater. Chem. A, 9(2021), No. 3, p. 1812. doi: 10.1039/D0TA10861H
|
[35] |
X.Y. Chen, N. Cheng, L.S. Zhang, G.H. Xiang, Y.L. Ding, and Z.G. Liu, Flower-like spherical FeCoS2 coated by reduced graphene oxide as anode for high performance potassium ion storage, J. Alloys Compd., 861(2021), art. No. 158458. doi: 10.1016/j.jallcom.2020.158458
|
[36] |
G.S. Dong, Y.Z. Fang, S.Q. Liao, et al., 3D tremella-like nitrogen-doped carbon encapsulated few-layer MoS2 for lithium-ion batteries, J. Colloid Interface Sci., 601(2021), p. 594. doi: 10.1016/j.jcis.2021.05.150
|
[37] |
Y.X. Zhao, C. Chang, F. Teng, et al., Water splitting: Defect-engineered ultrathin δ-MnO2 nanosheet arrays as bifunctional electrodes for efficient overall water splitting, Adv. Energy Mater., 7(2017), No. 18, art. No. 1770102.
|
[38] |
Z.H. Yan, J.D. Liu, H. Wei, et al., Embedding FeS nanodots into carbon nanosheets to improve the electrochemical performance of anode in potassium ion batteries, J. Colloid Interface Sci., 593(2021), p. 408. doi: 10.1016/j.jcis.2021.03.015
|
[39] |
M.Y. Pan, S.T. Lu, Y.Y. Li, and Y. Fan, Synthetic hureaulite as anode material for lithium-ion batteries, J. Appl. Electrochem., 53(2023), No. 5, p. 1015. doi: 10.1007/s10800-022-01831-6
|
[40] |
Z.Y. Chen, J.G. Hu, S.J. Liu, et al., Dual defects boosting zinc ion storage of hierarchical vanadium oxide fibers, Chem. Eng. J., 404(2021), art. No. 126536. doi: 10.1016/j.cej.2020.126536
|
[41] |
C. Li, Q. Liu, L. Liu, et al., Engineering hierarchical manganese molybdenum sulfide nanosheet integrated cathodes for high-energy density hybrid supercapacitors, New J. Chem., 47(2023), No. 29, p. 13820. doi: 10.1039/D3NJ02300A
|
[42] |
D. Zhang, C.Y. Zhang, X. Zheng, et al., Facile synthesis of the Mn3O4 polyhedron grown on N-doped honeycomb carbon as high-performance negative material for lithium-ion batteries, Int. J. Miner. Metall. Mater., 30(2023), No. 6, p. 1152. doi: 10.1007/s12613-022-2590-5
|