留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 12
Dec.  2023

图(9)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  433
  • HTML全文浏览量:  173
  • PDF下载量:  35
  • 被引次数: 0
Hua Zhang, Tuoxiao Wang, Guoyang Zhang, Wenjie Wu, Long Zhao, Tao Liu, Shuai Mo, and Hongwei Ni, Clean production of Fe-based amorphous soft magnetic alloys via smelting reduction of high-phosphorus iron ore and apatite, Int. J. Miner. Metall. Mater., 30(2023), No. 12, pp. 2356-2363. https://doi.org/10.1007/s12613-023-2722-6
Cite this article as:
Hua Zhang, Tuoxiao Wang, Guoyang Zhang, Wenjie Wu, Long Zhao, Tao Liu, Shuai Mo, and Hongwei Ni, Clean production of Fe-based amorphous soft magnetic alloys via smelting reduction of high-phosphorus iron ore and apatite, Int. J. Miner. Metall. Mater., 30(2023), No. 12, pp. 2356-2363. https://doi.org/10.1007/s12613-023-2722-6
引用本文 PDF XML SpringerLink
研究论文

高磷铁矿和磷灰石熔融还原清洁生产铁基非晶软磁合金



  • 通讯作者:

    刘涛    E-mail: liutao111@wust.edu.cn

    倪红卫    E-mail: nihongwei@wust.edu.cn

文章亮点

  • (1) 提出了高磷铁矿和磷灰石熔融还原直接制备铁基非晶合金新方法。
  • (2) 通过控制磷灰石添加量和C/O比实现了合金中P和C元素有效调控。
  • (2) 成功制备了FePC非晶带材和棒材样品。
  • (3) 提出的铁基非晶合金制备新方法生产节能达30%。
  • 铁基非晶合金传统制备工艺中合金原料和非晶带材制备过程分割,导致:(1) 矿物中有益元素脱除后再添加,资源浪费;(2) 还原合金凝固后再重熔合金化,能量浪费。本文提出了一种利用高磷铁矿和磷灰石熔融还原直接制备FePC非晶合金新方法。利用FactSage计算了高磷铁矿碳热还原的热力学条件和平衡状态下合金中的元素含量,并实验研究了不同Ca3(PO4)2添加量对还原合金物相结构和元素迁移富集的影响;然后采用单辊旋淬和铜模铸造技术成功制备了FePC合金带材和棒材样品。研究结果表明,Ca3(PO4)2的添加使得还原合金中P元素明显富集,先后析出Fe3P和Fe2P相。控制Ca3(PO4)2添加量0~50 g和C/O摩尔比0.8~1.1的条件,还原合金中P和C元素的含量分别在1.52wt%~14.63wt%和0.62wt%~2.47wt%范围内可调控,与计算结果吻合较好。制备的带材和棒材样品均表现出非晶特征的单一漫散型峰,而且棒材的结构和元素分布均匀,没有相分离和元素偏聚,充分证明了提出工艺的可行性。与铁基非晶合金常规生产流程相比,提出的利用高磷铁矿和磷灰石熔融还原直接制备FePC非晶合金具有矿物资源综合利用和节能减排的突出优势,生产节能达30%,为铁基非晶合金的清洁生产提供了新方法。
  • Research Article

    Clean production of Fe-based amorphous soft magnetic alloys via smelting reduction of high-phosphorus iron ore and apatite

    + Author Affiliations
    • Separated preparation of prealloys and amorphous alloys results in severe solidification–remelting and beneficial element removal–readdition contradictions, which markedly increase energy consumption and emissions. This study offered a novel strategy for the direct production of FePC amorphous soft magnetic alloys via smelting reduction of high-phosphorus iron ore (HPIO) and apatite. First, the thermodynamic conditions and equilibrium states of the carbothermal reduction reactions in HPIO were calculated, and the element content in reduced alloys was theoretically determined. The phase and structural evolutions, as well as element migration and enrichment behaviors during the smelting reduction of HPIO and Ca3(PO4)2, were then experimentally verified. The addition of Ca3(PO4)2 in HPIO contributes to the enrichment of the P element in reduced alloys and the subsequent development of Fe3P and Fe2P phases. The content of P and C elements in the range of 1.52wt%–14.63wt% and 0.62wt%–2.47wt%, respectively, can be well tailored by adding 0–50 g Ca3(PO4)2 and controlling the C/O mole ratio of 0.8–1.1, which is highly consistent with the calculated results. These FePC alloys were then successfully formed into amorphous ribbons and rods. The energy consumption of the proposed strategy was estimated to be 2.00 × 108 kJ/t, which is reduced by 30% when compared with the conventional production process. These results are critical for the comprehensive utilization of mineral resources and pave the way for the clean production of Fe-based amorphous soft magnetic alloys.
    • loading
    • Supplementary Information-s12613-023-2722-6.docx
    • [1]
      H. Li, A.D. Wang, T. Liu, et al., Design of Fe-based nanocrystalline alloys with superior magnetization and manufacturability, Mater. Today, 42(2021), p. 49. doi: 10.1016/j.mattod.2020.09.030
      [2]
      J.C. Qiao, Q. Wang, J.M. Pelletier, et al., Structural heterogeneities and mechanical behavior of amorphous alloys, Prog. Mater. Sci., 104(2019), p. 250. doi: 10.1016/j.pmatsci.2019.04.005
      [3]
      Y.H. Liu, T. Fujita, D.P.B. Aji, M. Matsuura, and M.W. Chen, Structural origins of Johari–Goldstein relaxation in a metallic glass, Nat. Commun., 5(2014), art. No. 3238. doi: 10.1038/ncomms4238
      [4]
      Z. Li, Z. Huang, F. Sun, X. Li, and J. Ma, Forming of metallic glasses: Mechanisms and processes, Mater. Today Adv., 7(2020), art. No. 100077. doi: 10.1016/j.mtadv.2020.100077
      [5]
      H.X. Li, Z.C. Lu, S.L. Wang, Y. Wu, and Z.P. Lu, Fe-based bulk metallic glasses: Glass formation, fabrication, properties and applications, Prog. Mater. Sci., 103(2019), p. 235. doi: 10.1016/j.pmatsci.2019.01.003
      [6]
      F.C. Li, T. Liu, J.Y. Zhang, et al., Amorphous-nanocrystalline alloys: Fabrication, properties, and applications, Mater. Today Adv., 4(2019), art. No. 100027. doi: 10.1016/j.mtadv.2019.100027
      [7]
      J.M. Silveyra, E. Ferrara, D.L. Huber, and T.C. Monson, Soft magnetic materials for a sustainable and electrified world, Science, 362(2018), No. 6413, art. No. eaao0195. doi: 10.1126/science.aao0195
      [8]
      E.A. Périgo, B. Weidenfeller, P. Kollár, and J. Füzer, Past, present, and future of soft magnetic composites, Appl. Phys. Rev., 5(2018), No. 3, art. No. 031301. doi: 10.1063/1.5027045
      [9]
      A. Inoue, A. Katsuya, K. Amiya, and T. Masumoto, Preparation of amorphous Fe–Si–B and Co–Si-B alloy wires by a melt extraction method and their mechanical and magnetic properties, Mater. Trans., JIM, 36(1995), No. 7, p. 802. doi: 10.2320/matertrans1989.36.802
      [10]
      Y. Ogawa, M. Naoe, Y. Yoshizawa, and R. Hasegawa, Magnetic properties of high Fe-based amorphous material, J. Magn. Magn. Mater., 304(2006), No. 2, p. e675. doi: 10.1016/j.jmmm.2006.02.167
      [11]
      J.F. Wang, R. Li, N.B. Hua, L. Huang, and T. Zhang, Ternary Fe–P–C bulk metallic glass with good soft-magnetic and mechanical properties, Scripta Mater., 65(2011), No. 6, p. 536. doi: 10.1016/j.scriptamat.2011.06.020
      [12]
      H. Zhang, S. Mo, L. Yang, T. Liu, Y.N. Wu, and H.W. Ni, Evolution and removal of inclusions in Fe-based amorphous alloys, Metall. Mater. Trans. A, 53(2022), No. 10, p. 3565. doi: 10.1007/s11661-022-06749-4
      [13]
      H. Jalkanen, Theory of ferroalloys processing, [in] M. Gasik, ed., Handbook of Ferroalloys: Theory and Technology, Butterworth-Heinemann, Oxford, 2013, p. 29.
      [14]
      S.C. Wu, T.C. Sun, and J. Kou, A novel and clean utilization of converter sludge by co-reduction roasting with high-phosphorus iron ore to produce powdery reduced iron, J. Clean. Prod., 363(2022), art. No. 132362. doi: 10.1016/j.jclepro.2022.132362
      [15]
      G.Y. Zhang, H. Zhang, S.Q. Yue, et al., Ultra-low cost and energy-efficient production of FePCSi amorphous alloys with pretreated molten iron from a blast furnace, J. Non Cryst. Solids, 514(2019), p. 108. doi: 10.1016/j.jnoncrysol.2019.03.045
      [16]
      N. Mahata, A. Banerjee, P.K. Rai, et al., Glassy blast furnace pig iron and design of other glassy compositions using thermodynamic calculations, J. Non Cryst. Solids, 484(2018), p. 95. doi: 10.1016/j.jnoncrysol.2018.01.029
      [17]
      P. Murugaiyan, A. Mitra, R.K. Roy, et al., Glass forming ability and soft-magnetic properties of Fe-based glassy alloys developed using high phosphorous pig Iron, J. Alloys Compd., 821(2020), art. No. 153255. doi: 10.1016/j.jallcom.2019.153255
      [18]
      K. Quast, A review on the characterisation and processing of oolitic iron ores, Miner. Eng., 126(2018), p. 89. doi: 10.1016/j.mineng.2018.06.018
      [19]
      W.T. Zhou, Y.X. Han, Y.S. Sun, and Y.J. Li, Strengthening iron enrichment and dephosphorization of high-phosphorus oolitic hematite using high-temperature pretreatment, Int. J. Miner. Metall. Mater., 27(2020), No. 4, p. 443. doi: 10.1007/s12613-019-1897-3
      [20]
      S.K. Roy, D. Nayak, and S.S. Rath, A review on the enrichment of iron values of low-grade Iron ore resources using reduction roasting-magnetic separation, Powder Technol., 367(2020), p. 796. doi: 10.1016/j.powtec.2020.04.047
      [21]
      G.Y. Zhang, H.W. Ni, Y. Li, T. Liu, A.D. Wang, and H. Zhang, Resource-saving production of Fe-based amorphous alloys from carbothermal reduction of high-phosphorus oolitic iron ore, J. Non Cryst. Solids, 579(2022), art. No. 121365. doi: 10.1016/j.jnoncrysol.2021.121365
      [22]
      B.B. Liu, Y.B. Xue, G.H. Han, et al., An alternative and clean utilisation of refractory high-phosphorus oolitic hematite: P for crop fertiliser and Fe for ferrite ceramic, J. Clean. Prod., 299(2021), art. No. 126889. doi: 10.1016/j.jclepro.2021.126889
      [23]
      Y.B. Chen and H. Zuo, Gasification behavior of phosphorus during pre-reduction sintering of medium-high phosphorus iron ore, ISIJ Int., 61(2021), No. 5, p. 1459. doi: 10.2355/isijinternational.ISIJINT-2020-564
      [24]
      M. Tangstad, Ferrosilicon and silicon technology, [in] M. Gasik, ed., Handbook of Ferroalloys: Theory and Technology, Butterworth-Heinemann, Oxford, 2013, p. 179.
      [25]
      L.X. Shi, X.Y. Hu, Y.H. Li, G.T. Yuan, and K.F. Yao, The complementary effects of Fe and metalloids on the saturation magnetization of Fe-based amorphous alloys, Intermetallics, 131(2021), art. No. 107116. doi: 10.1016/j.intermet.2021.107116
      [26]
      H. Zhang, Y.N. Wu, J. Zeng, T. Liu, S. Mo, and H.W. Ni, Calculation assisted composition design of Fe-based amorphous alloys, J. Non Cryst. Solids, 600(2023), art. No. 122011. doi: 10.1016/j.jnoncrysol.2022.122011
      [27]
      K.I. Ohno, T. Miki, Y. Sasaki, and M. Hino, Carburization degree of iron nugget produced by rapid heating of powdery iron, iron oxide in slag and carbon mixture, ISIJ Int., 48(2008), No. 10, p. 1368. doi: 10.2355/isijinternational.48.1368
      [28]
      T. Murakami, M. Ohno, K. Suzuki, K. Owaki, and E. Kasai, Acceleration of carburization and melting of reduced iron in iron ore–carbon composite using different types of carbonaceous materials, ISIJ Int., 57(2017), No. 11, p. 1928. doi: 10.2355/isijinternational.ISIJINT-2017-249
      [29]
      J.G. Kang, J.H. Shin, Y. Chung, and J.H. Park, Effect of slag chemistry on the desulfurization kinetics in secondary refining processes, Metall. Mater. Trans. B, 48(2017), No. 4, p. 2123. doi: 10.1007/s11663-017-0948-2
      [30]
      S.C. Wu, Z.Y. Li, T.C. Sun, J. Kou, and X.H. Li, Effect of additives on iron recovery and dephosphorization by reduction roasting-magnetic separation of refractory high-phosphorus iron ore, Int. J. Miner. Metall. Mater., 28(2021), No. 12, p. 1908. doi: 10.1007/s12613-021-2329-8
      [31]
      Y.S. Sun, Y.F. Li, Y.X. Han, and Y.J. Li, Migration behaviors and kinetics of phosphorus during coal-based reduction of high-phosphorus oolitic iron ore, Int. J. Miner. Metall. Mater., 26(2019), No. 8, p. 938. doi: 10.1007/s12613-019-1810-0
      [32]
      G.R. Surup, A. Trubetskaya, and M. Tangstad, Charcoal as an alternative reductant in ferroalloy production: A review, Processes, 8(2020), No. 11, art. No. 1432. doi: 10.3390/pr8111432
      [33]
      J. Zhao, H.B. Zuo, Y.J. Wang, J.S. Wang, and Q.G. Xue, Review of green and low-carbon ironmaking technology, Ironmaking Steelmaking, 47(2020), No. 3, p. 296. doi: 10.1080/03019233.2019.1639029
      [34]
      A. Hasanbeigi, M. Arens, and L. Price, Alternative emerging ironmaking technologies for energy-efficiency and carbon dioxide emissions reduction: A technical review, Renewable Sustainable Energy Rev., 33(2014), p. 645. doi: 10.1016/j.rser.2014.02.031
      [35]
      C.Z. Cao, Y.J. Meng, F.X. Yan, D.W. Zhang, X. Li, and F.M. Zhang, Analysis on energy efficiency and optimization of HISMElt process, [in] T. Wang, X.B. Chen, D.P. Guillen, et al., eds., Energy Technology 2019: Carbon Dioxide Management and Other Technologies, Springer, Switzerland, 2019, p. 3.
      [36]
      R.Y. An, B.Y. Yu, R. Li, and Y.M. Wei, Potential of energy savings and CO2 emission reduction in China’s iron and steel industry, Appl. Energy, 226(2018), p. 862. doi: 10.1016/j.apenergy.2018.06.044

    Catalog


    • /

      返回文章
      返回