留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 12
Dec.  2023

图(14)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  801
  • HTML全文浏览量:  311
  • PDF下载量:  85
  • 被引次数: 0
Yang Xue, Xiaoming Liu, Na Zhang, Yang Shao,  and Chunbao (Charles) Xu, Enhanced photocatalytic performance of iron oxides@HTCC fabricated from zinc extraction tailings for methylene blue degradation: Investigation of the photocatalytic mechanism, Int. J. Miner. Metall. Mater., 30(2023), No. 12, pp. 2364-2374. https://doi.org/10.1007/s12613-023-2723-5
Cite this article as:
Yang Xue, Xiaoming Liu, Na Zhang, Yang Shao,  and Chunbao (Charles) Xu, Enhanced photocatalytic performance of iron oxides@HTCC fabricated from zinc extraction tailings for methylene blue degradation: Investigation of the photocatalytic mechanism, Int. J. Miner. Metall. Mater., 30(2023), No. 12, pp. 2364-2374. https://doi.org/10.1007/s12613-023-2723-5
引用本文 PDF XML SpringerLink
研究论文

电炉灰提锌尾渣制备光催化剂iron oxides@HTCC用于亚甲基蓝降解:光催化机理研究



  • 通讯作者:

    刘晓明    E-mail: liuxm@ustb.edu.cn

    张娜    E-mail: nazhang@cugb.edu.cn

    徐春保    E-mail: cxu6@uwo.ca

文章亮点

  • (1) 深入探究了iron oxides@HTCC在光芬顿体系中的催化性能。
  • (2) 全面分析了iron oxides@HTCC的稳定性、可回收性和重复利用性。
  • (3) 通过光电化学测试和第一性原理计算揭示了在可见光激发下iron oxides@HTCC催化活性的增强机理。
  • 光催化技术是解决水污染问题的有效方法之一,尤其在染料废水的处理领域。然而,高效光催化剂通常价格昂贵并且具有重金属污染的风险。本研究团队利用电炉灰氧压硫酸浸出所得的提锌尾渣和碳水化合物共水热技术制备了复合催化剂iron oxides@HTCC。在该过程中碳水化合物水热碳化生成富含含氧基团的水热炭(HTCC),提锌尾渣中的Fe(OH)SO4水热反应转化为Fe2O3,同时HTCC还原Fe2O3产生了磁性铁氧体,并且该磁性铁氧体与HTCC复合改善了其内部sp2杂化结构从而提高了其催化活性。本文利用亚甲基蓝对iron oxides@HTCC的光催化性能进行了验证,并通过理论计算和光电化学测试研究了其催化活性增强机理。Iron oxides@HTCC在光催化和类芬顿反应之间显示出优异的协同作用。Iron oxides@HTCC可以被可见光激发产生光电子和空穴,它们与H2O2反应产生了具有高氧化活性的·OH。Iron oxides@HTCC对亚甲基蓝的去除效率是HTCC的2.86倍,这主要得益于氧化铁的改性使其禁带宽度变窄,改善了其光激发活性,同时sp2杂化结构的弯曲提升了其内部光电子的转移效率。此外,该催化剂在宽pH范围内均表现出较高的催化活性,并且在循环使用四次后该催化剂对亚甲基蓝的去除率仍高于95%。Iron oxides@HTCC的制备可以为含铁尾渣的利用和可见光催化剂的制备提供新的思路。
  • Research Article

    Enhanced photocatalytic performance of iron oxides@HTCC fabricated from zinc extraction tailings for methylene blue degradation: Investigation of the photocatalytic mechanism

    + Author Affiliations
    • Photocatalytic processes are efficient methods to solve water contamination problems, especially considering dyeing wastewater disposal. However, high-efficiency photocatalysts are usually very expensive and have the risk of heavy metal pollution. Recently, an iron oxides@hydrothermal carbonation carbon (HTCC) heterogeneous catalyst was prepared by our group through co-hydrothermal treatment of carbohydrates and zinc extraction tailings of converter dust. Herein, the catalytic performance of the iron oxides@HTCC was verified by a non-biodegradable dye, methylene blue (MB), and the catalytic mechanism was deduced from theoretical simulations and spectroscopic measurements. The iron oxides@HTCC showed an excellent synergy between photocatalysis and Fenton-like reactions. Under visible-light illumination, the iron oxides@HTCC could be excited to generate electrons and holes, reacting with H2O2 to produce $\cdot\mathrm{O}\mathrm{H}$ radicals to oxidize and decompose organic pollutants. The removal efficiency of methylene blue over iron oxides@HTCC at 140 min was 2.86 times that of HTCC. The enhanced catalytic performance was attributed to the advantages of iron oxides modification: (1) promoting the excitation induced by photons; (2) improving the charge transfer. Furthermore, the iron oxides@HTCC showed high catalytic activity in a wide pH value range of 2.3–10.4, and the MB removal efficiency remained higher than 95% after the iron oxides@HTCC was recycled 4 times. The magnetically recyclable iron oxides@HTCC may provide a solution for the treatment of wastewater from the textile industry.
    • loading
    • Supplementary Information-10.1007s12613-023-2723-5.docx
    • [1]
      M. Munoz, Z.M. de Pedro, J.A. Casas, and J.J. Rodriguez, Preparation of magnetite-based catalysts and their application in heterogeneous Fenton oxidation - A review, Appl. Catal. B, 176-177(2015), p. 249. doi: 10.1016/j.apcatb.2015.04.003
      [2]
      P.O. Agboola and I. Shakir, Facile fabrication of SnO2/MoS2/rGO ternary composite for solar light-mediated photocatalysis for water remediation, J. Mater. Res. Technol., 18(2022), p. 4303. doi: 10.1016/j.jmrt.2022.04.109
      [3]
      Y.M. Dong, T. Wang, X.J. Wan, and D.N. He, Washing and dyeing wastewater treatment by combined nano flocculation and photocatalysis processes, J. Geosci. Environ. Prot., 3(2015), No. 2, p. 66.
      [4]
      X.P. Zhang, D. Liu, L. Yang, L.M. Zhou, and T.Y. You, Self-assembled three-dimensional graphene-based materials for dye adsorption and catalysis, J. Mater. Chem. A, 3(2015), No. 18, p. 10031. doi: 10.1039/C5TA00355E
      [5]
      A. Muthukrishnaraj, S. Vadivel, V.P. Kamalakannan, and N. Balasubramanian, α-Fe2O3/reduced graphene oxide nanorod as efficient photocatalyst for methylene blue degradation, Mater. Res. Innov., 19(2015), No. 4, p. 258. doi: 10.1179/1433075X14Y.0000000251
      [6]
      Q.Q. Jin, S. Zhang, T. Wen, et al., Simultaneous adsorption and oxidative degradation of Bisphenol A by zero-valent iron/iron carbide nanoparticles encapsulated in N-doped carbon matrix, Environ. Pollut., 243(2018), p. 218. doi: 10.1016/j.envpol.2018.08.061
      [7]
      B. García-Leiva, L.A.C. Teixeira, and M.L. Torem, Degradation of xanthate in waters by hydrogen peroxide, Fenton and simulated solar photo-Fenton processes, J. Mater. Res. Technol., 8(2019), No. 6, p. 5698. doi: 10.1016/j.jmrt.2019.09.037
      [8]
      A. Almahri, The solid-state synthetic performance of bentonite stacked manganese ferrite nanoparticles: Adsorption and photo-Fenton degradation of MB dye and antibacterial applications, J. Mater. Res. Technol., 17(2022), p. 2935. doi: 10.1016/j.jmrt.2022.02.052
      [9]
      S. Elkhalifa, T. Al-Ansari, H.R. Mackey, and G. McKay, Food waste to biochars through pyrolysis: A review, Resour. Conserv. Recycl., 144(2019), p. 310. doi: 10.1016/j.resconrec.2019.01.024
      [10]
      P. Bhavani, M. Hussain, and Y.K. Park, Recent advancements on the sustainable biochar based semiconducting materials for photocatalytic applications: A state of the art review, J. Clean. Prod., 330(2022), art. No. 129899. doi: 10.1016/j.jclepro.2021.129899
      [11]
      Z.F. Hu, Z.R. Shen, and J.C. Yu, Converting carbohydrates to carbon-based photocatalysts for environmental treatment, Environ. Sci. Technol., 51(2017), No. 12, p. 7076. doi: 10.1021/acs.est.7b00118
      [12]
      G.L. Wang, W.X. Bi, Q.M. Zhang, X.L. Dong, and X.F. Zhang, Hydrothermal carbonation carbon-based photocatalysis under visible light: Modification for enhanced removal of organic pollutant and novel insight into the photocatalytic mechanism, J. Hazard. Mater., 426(2022), art. No. 127821. doi: 10.1016/j.jhazmat.2021.127821
      [13]
      Y. Xue, X.M. Liu, N. Zhang, S. Guo, Z.Q. Xie, and C.B. Xu, A novel process for the treatment of steelmaking converter dust: Selective leaching and recovery of zinc sulfate and synthesis of iron oxides@HTCC photocatalysts by carbonizing carbohydrates, Hydrometallurgy, 217(2023), art. No. 106039. doi: 10.1016/j.hydromet.2023.106039
      [14]
      O. Kazak and A. Tor, In situ preparation of magnetic hydrochar by co-hydrothermal treatment of waste vinasse with red mud and its adsorption property for Pb(II) in aqueous solution, J. Hazard. Mater., 393(2020), art. No. 122391. doi: 10.1016/j.jhazmat.2020.122391
      [15]
      F.F. Wang, X.L. Yu, M.F. Ge, et al., Facile self-assembly synthesis of γ-Fe2O3/graphene oxide for enhanced photo-Fenton reaction, Environ. Pollut., 248(2019), p. 229. doi: 10.1016/j.envpol.2019.01.018
      [16]
      C. Lai, X.X. Shi, L. Li, et al., Enhancing iron redox cycling for promoting heterogeneous Fenton performance: A review, Sci. Total Environ., 775(2021), art. No. 145850. doi: 10.1016/j.scitotenv.2021.145850
      [17]
      W.M. Alamier, N. Hasan, M.S. Nawaz, K.S. Ismail, M. Shkir, M. Ahmad Malik, and M.D.Y. Oteef, Biosynthesis of NiFe2O4 nanoparticles using Murayya koenigii for photocatalytic dye degradation and antibacterial application, J. Mater. Res. Technol., 22(2023), p. 1331. doi: 10.1016/j.jmrt.2022.11.181
      [18]
      U. Mahanta, M. Khandelwal, and A.S. Deshpande, TiO2@SiO2 nanoparticles for methylene blue removal and photocatalytic degradation under natural sunlight and low-power UV light, Appl. Surf. Sci., 576(2022), art. No. 151745. doi: 10.1016/j.apsusc.2021.151745
      [19]
      H.X. Yan, Y.S. Pan, X.B. Liao, et al., Enhancement of Fe2+/Fe3+ cycles by the synergistic effect between photocatalytic and co-catalytic of ZnxCd1−xS on photo-Fenton system, Appl. Surf. Sci., 576(2022), art. No. 151881. doi: 10.1016/j.apsusc.2021.151881
      [20]
      S. Lu, G.L. Wang, S. Chen, H.T. Yu, F. Ye, and X. Quan, Heterogeneous activation of peroxymonosulfate by LaCo1−xCuxO3 perovskites for degradation of organic pollutants, J. Hazard. Mater., 353(2018), p. 401. doi: 10.1016/j.jhazmat.2018.04.021
      [21]
      M.M. Ding, W. Chen, H. Xu, et al., Novel α-Fe2O3/MXene nanocomposite as heterogeneous activator of peroxymonosulfate for the degradation of salicylic acid, J. Hazard. Mater., 382(2020), art. No. 121064. doi: 10.1016/j.jhazmat.2019.121064
      [22]
      R. Luo, C. Liu, J.S. Li, et al., Nanostructured CoP: An efficient catalyst for degradation of organic pollutants by activating peroxymonosulfate, J. Hazard. Mater., 329(2017), p. 92. doi: 10.1016/j.jhazmat.2017.01.032
      [23]
      T. Li, X.M. Wang, Y.M. Chen, J.R. Liang, and L.X. Zhou, Producing $ \cdot\mathrm{O}\mathrm{H} $, $ {\mathrm{S}\mathrm{O}}_{4}^{\cdot{-}} $ and $ {\cdot\mathrm{O}}_{2}^{-} $ in heterogeneous Fenton reaction induced by Fe3O4-modified schwertmannite, Chem. Eng. J., 393(2020), art. No. 124735. doi: 10.1016/j.cej.2020.124735
      [24]
      Y.J. Choe, J.S. Kim, H. Kim, and J. Kim, Open Ni site coupled with $ {\mathrm{S}\mathrm{O}}_{4}^{2-} $ functionality to prompt the radical interconversion of $ \cdot \mathrm{O}\mathrm{H} $ ↔ $ {\mathrm{S}\mathrm{O}}_{4}^{\cdot{-}} $ exploited to decompose refractory pollutants, Chem. Eng. J., 400(2020), art. No. 125971. doi: 10.1016/j.cej.2020.125971
      [25]
      B. Yang, Z. Tian, L. Zhang, Y.P. Guo, and S.Q. Yan, Enhanced heterogeneous Fenton degradation of Methylene Blue by nanoscale zero valent iron (nZVI) assembled on magnetic Fe3O4/reduced graphene oxide, J. Water Process. Eng., 5(2015), p. 101. doi: 10.1016/j.jwpe.2015.01.006
      [26]
      J. Zhou, D.D. Nie, X.B. Jin, and W. Xiao, Controllable nitridation of Ta2O5 in molten salts for enhanced photocatalysis, Int. J. Miner. Metall. Mater., 27(2020), No. 12, p. 1703. doi: 10.1007/s12613-020-2050-z
      [27]
      H. Esmaili, A. Kotobi, S. Sheibani, and F. Rashchi, Photocatalytic degradation of methylene blue by nanostructured Fe/FeS powder under visible light, Int. J. Miner. Metall. Mater., 25(2018), No. 2, p. 244. doi: 10.1007/s12613-018-1567-x
      [28]
      M. Kitano, M. Takeuchi, M. Matsuoka, J.M. Thomas, and M. Anpo, Photocatalytic water splitting using Pt-loaded visible light-responsive TiO2 thin film photocatalysts, Catal. Today, 120(2007), No. 2, p. 133. doi: 10.1016/j.cattod.2006.07.043
      [29]
      G.J. Ai, H.X. Li, S.P. Liu, R. Mo, and J.X. Zhong, Solar water splitting by TiO2/CdS/Co–Pi nanowire array photoanode enhanced with Co–Pi as hole transfer relay and CdS as light absorber, Adv. Funct. Mater., 25(2015), No. 35, p. 5706. doi: 10.1002/adfm.201502461
      [30]
      C. Han, M. Pelaez, V. Likodimos, et al., Innovative visible light-activated sulfur doped TiO2 films for water treatment, Appl. Catal. B, 107(2011), No. 1-2, p. 77. doi: 10.1016/j.apcatb.2011.06.039
      [31]
      R.D. Su, S.H. Ge, H. Li, et al., Synchronous synthesis of Cu2O/Cu/rGO@carbon nanomaterials photocatalysts via the sodium alginate hydrogel template method for visible light photocatalytic degradation, Sci. Total Environ., 693(2019), art. No. 133657. doi: 10.1016/j.scitotenv.2019.133657
      [32]
      R. Gao, Z.Y. Wang, S. Liu, G.J. Shao, and X.P. Gao, Metal phosphides and borides as the catalytic host of sulfur cathode for lithium–sulfur batteries, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 990. doi: 10.1007/s12613-022-2451-2
      [33]
      Z.X. Cui, L. Zhang, Y.Q. Xue, et al., Effects of shape and particle size on the photocatalytic kinetics and mechanism of nano-CeO2, Int. J. Miner. Metall. Mater., 29(2022), No. 12, p. 2221. doi: 10.1007/s12613-021-2332-0
      [34]
      S.Y. Luo, S.P. Li, S. Zhang, Z.Y. Cheng, T.T. Nguyen, and M.H. Guo, Visible-light-driven Z-scheme protonated g-C3N4/wood flour biochar/BiVO4 photocatalyst with biochar as charge-transfer channel for enhanced RhB degradation and Cr(VI) reduction, Sci. Total Environ., 806(2022), art. No. 150662. doi: 10.1016/j.scitotenv.2021.150662
      [35]
      Y.P. Li, X. Bian, X. Jin, P. Cen, W.Y. Wu, and G.F. Fu, Characterization and ultraviolet—Visible shielding property of samarium—Cerium compounds containing Sm2O2S prepared by co-precipitation method, Int. J. Miner. Metall. Mater., 29(2022), No. 9, p. 1809. doi: 10.1007/s12613-021-2309-z
      [36]
      X.H. Zhang, B.Y. Lin, X.Y. Li, X. Wang, K.Z. Huang, and Z.H. Chen, MOF-derived magnetically recoverable Z-scheme ZnFe2O4/Fe2O3 perforated nanotube for efficient photocatalytic ciprofloxacin removal, Chem. Eng. J., 430(2022), art. No. 132728. doi: 10.1016/j.cej.2021.132728
      [37]
      G.F. Liao, Y. Gong, L. Zhang, H.Y. Gao, G.J. Yang, and B.Z. Fang, Semiconductor polymeric graphitic carbon nitride photocatalysts: The “holy grail” for the photocatalytic hydrogen evolution reaction under visible light, Energy Environ. Sci., 12(2019), No. 7, p. 2080. doi: 10.1039/C9EE00717B
      [38]
      Q.H. Zhu, K. Zhang, D.Q. Li, et al., Polarization-enhanced photocatalytic activity in non-centrosymmetric materials based photocatalysis: A review, Chem. Eng. J., 426(2021), art. No. 131681. doi: 10.1016/j.cej.2021.131681
      [39]
      T. Zhang, Y.W. Zhang, S.Z. Zhang, G.Q. Chen, and Z.L. Hong, Research and applications of visible light responsive narrow band gap semiconductor photocatalytic materials, Mater. Rev., 23(2009), No. 3, p. 24.
      [40]
      Q. Liu, X.L. Wang, Q. Yang, Z.G. Zhang, and X.M. Fang, A novel route combined precursor-hydrothermal pretreatment with microwave heating for preparing holey g-C3N4 nanosheets with high crystalline quality and extended visible light absorption, Appl. Catal. B, 225(2018), p. 22. doi: 10.1016/j.apcatb.2017.11.044
      [41]
      L. Qian, F.D. Kopinke, and A. Georgi, Photodegradation of perfluorooctanesulfonic acid on Fe–zeolites in water, Environ. Sci. Technol., 55(2021), No. 1, p. 614. doi: 10.1021/acs.est.0c04558
      [42]
      B. Zhang, J.S. Xiao, S.Q. Jiao, and H.M. Zhu, Thermodynamic and thermoelectric properties of titanium oxycarbide with metal vacancy, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 787. doi: 10.1007/s12613-022-2421-8
      [43]
      X.C. Wang, K. Maeda, A. Thomas, et al., A metal-free polymeric photocatalyst for hydrogen production from water under visible light, Nat. Mater., 8(2009), No. 1, p. 76. doi: 10.1038/nmat2317
      [44]
      Y.W. Pan, R. Qin, M.H. Hou, et al., The interactions of polyphenols with Fe and their application in Fenton/Fenton-like reactions, Sep. Purif. Technol., 300(2022), art. No. 121831. doi: 10.1016/j.seppur.2022.121831
      [45]
      Y. Xue and X.M. Liu, Detoxification, solidification and recycling of municipal solid waste incineration fly ash: A review, Chem. Eng. J., 420(2021), art. No. 130349. doi: 10.1016/j.cej.2021.130349
      [46]
      C. Miao, L.X. Liang, F. Zhang, et al., Review of the fabrication and application of porous materials from silicon-rich industrial solid waste, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 424. doi: 10.1007/s12613-021-2360-9

    Catalog


    • /

      返回文章
      返回