留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 1
Jan.  2024

图(5)

数据统计

分享

计量
  • 文章访问数:  218
  • HTML全文浏览量:  85
  • PDF下载量:  18
  • 被引次数: 0
Junjie Zhangand Xiang Wu, Dual-ion carrier storage through Mg2+ addition for high-energy and long-life zinc-ion hybrid capacitor, Int. J. Miner. Metall. Mater., 31(2024), No. 1, pp. 179-185. https://doi.org/10.1007/s12613-023-2724-4
Cite this article as:
Junjie Zhangand Xiang Wu, Dual-ion carrier storage through Mg2+ addition for high-energy and long-life zinc-ion hybrid capacitor, Int. J. Miner. Metall. Mater., 31(2024), No. 1, pp. 179-185. https://doi.org/10.1007/s12613-023-2724-4
引用本文 PDF XML SpringerLink
研究论文

通过添加 Mg2+ 实现双离子载流子存储,制备高能量长寿命的锌离子混合电容器


  • 通讯作者:

    武祥    E-mail: wuxiang05@163.com

文章亮点

  • (1) 设计了高能量密度和长寿命的锌离子混合电容器并研究了其充放电机理。
  • (2) 通过向电解液添加Mg2+实现了对电解液改性并研究其对锌离子电容器电化学性能的影响。
  • (3) 发现并总结了充放电过程中双离子电解液改善电化学性能的机制。
  • 锌离子混合电容器(ZHCs)作为新一代锌离子储能系统,由于将电池和超级电容器完美结合,近年来引起了研究者的极大兴趣。然而,其较低的能量密度和循环能力需要进一步提高。因此,构建一种可行的储能系统对提高ZHCs的电化学性能至关重要。本文制备了以活性炭(AC)作阴极,商用锌箔作阳极,硫酸锌做电解液的AC//Zn混合电容器。通过添加不同浓度的硫酸镁调控电解液,并采用显微组织观察、电化学测量和恒电流放电试验研究了电解液中不同Mg2+含量与充放电性能的关系。结果表明,适当的增加Mg2+可以有效地提升电化学性能。加入1 M Mg2+的AC//Zn在1A/g电流密度下,比容量可达82 mAh·g−1,并且在10000圈充放电循环后容量保持率达到91%。 这些优异的性能由于Mg2+的加入展示了一种自我修复的静电屏蔽效应,以抑制阳极表面的锌枝晶和副产物的生成,它还促进了电子的转移,使法拉第氧化还原反应得以进行,从而产生大的比电容。因此,AC//Zn系统由于其优异的充放电性能和循环稳定性,在未来的储能器件中显示出潜在的应用前景。

  • Research Article

    Dual-ion carrier storage through Mg2+ addition for high-energy and long-life zinc-ion hybrid capacitor

    + Author Affiliations
    • Cation additives can efficiently enhance the total electrochemical capabilities of zinc-ion hybrid capacitors (ZHCs). However, their energy storage mechanisms in zinc-based systems are still under debate. Herein, we modulate the electrolyte and achieve dual-ion storage by adding magnesium ions. And we assemble several Zn//activated carbon devices with different electrolyte concentrations and investigate their electrochemical reaction dynamic behaviors. The zinc-ion capacitor with Mg2+ mixed solution delivers 82 mAh·g−1 capacity at 1 A·g−1 and maintains 91% of the original capacitance after 10000 cycling. It is superior to the other assembled zinc-ion devices in single-component electrolytes. The finding demonstrates that the double-ion storage mechanism enables the superior rate performance and long cycle lifetime of ZHCs.

    • loading
    • [1]
      X.H. Chen, X.D. Shi, P.C. Ruan, et al., Construction of an artificial interfacial layer with porous structure toward stable zinc-metal anodes, Small Sci., 3(2023), No. 6, art. No. 2300007. doi: 10.1002/smsc.202300007
      [2]
      Y. Liu, Y. Liu, and X. Wu, Defect engineering of vanadium-based electrode materials for zinc ion battery, Chin. Chem. Lett., 34(2023), No. 7, art. No. 107839. doi: 10.1016/j.cclet.2022.107839
      [3]
      X.Y. Deng, J.J. Li, Z. Shan, J.W. Sha, L.Y. Ma, and N.Q. Zhao, A N, O co-doped hierarchical carbon cathode for high-performance Zn-ion hybrid supercapacitors with enhanced pseudocapacitance, J. Mater. Chem. A, 8(2020), No. 23, p. 11617. doi: 10.1039/D0TA02770G
      [4]
      Y.C. Sun, X.W. Wang, and X. Wu, High-performance flexible hybrid capacitors by regulating NiCoMoS@Mo0.75-LDH electrode structure, Mater. Res. Bull., 158(2023), art. No. 112073. doi: 10.1016/j.materresbull.2022.112073
      [5]
      Y. Liu, A. Umar, and X. Wu, Metal-organic framework derived porous cathode materials for hybrid zinc ion capacitor, Rare Met., 41(2022), No. 9, p. 2985. doi: 10.1007/s12598-022-02030-0
      [6]
      L.B. Dong, X.P. Ma, Y. Li, et al., Extremely safe, high-rate and ultralong-life zinc-ion hybrid supercapacitors, Energy Storage Mater., 13(2018), p. 96. doi: 10.1016/j.ensm.2018.01.003
      [7]
      L.B. Dong, C.J. Xu, Y. Li, et al., Breathable and wearable energy storage based on highly flexible paper electrodes, Adv. Mater., 28(2016), No. 42, p. 9313. doi: 10.1002/adma.201602541
      [8]
      X.W. Wang, Y.C. Sun, W.C. Zhang, J. Liu, and X. Wu, Hierarchical Cu0.92Co2.08O4@NiCo-layered double hydroxide nanoarchitecture for asymmetric flexible storage device, Mater. Today Sustain., 17(2022), art. No. 100097. doi: 10.1016/j.mtsust.2021.100097
      [9]
      Q.B. Zhang, Y.C. Liu, and X.B. Ji, Editorial for special issue on advanced materials for energy storage and conversion, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1545. doi: 10.1007/s12613-021-2354-7
      [10]
      Z.D. Huang, T.R. Wang, H. Song, et al., Effects of anion carriers on capacitance and self-discharge behaviors of zinc ion capacitors, Angew. Chem. Int. Ed., 60(2021), No. 2, p. 1011. doi: 10.1002/anie.202012202
      [11]
      P. Kantichaimongkol, J. Cao, D.D. Zhang, Z.Y. Zeng, X.Y. Zhang, and J.Q. Qin, Navajoite phase V5O12·6H2O nanorods with ultra-long lifespan for aqueous zinc-ion batteries, J. Alloys Compd., 937(2023), art. No. 168335. doi: 10.1016/j.jallcom.2022.168335
      [12]
      S.P. Jiang, S.L. Yun, H.J. Cao, Z.Q. Zhang, H.B. Feng, and H.C. Chen, Porous carbon matrix-encapsulated MnO in situ derived from metal–organic frameworks as advanced anode materials for Li-ion capacitors, Sci. China Mater., 65(2022), No. 1, p. 59. doi: 10.1007/s40843-021-1727-3
      [13]
      Y. Liu, Y. Liu, Y. Yamauchi, Z.A. Alothman, Y.V. Kaneti, and X. Wu, Enhanced zinc ion storage capability of V2O5 electrode materials with hollow interior cavities, Batteries Supercaps, 4(2021), No. 12, p. 1867. doi: 10.1002/batt.202100172
      [14]
      L.B. Dong, W. Yang, W. Yang, Y. Li, W.J. Wu, and G.X. Wang, Multivalent metal ion hybrid capacitors: A review with a focus on zinc-ion hybrid capacitors, J. Mater. Chem. A, 7(2019), No. 23, p. 13810. doi: 10.1039/C9TA02678A
      [15]
      S.Q. Zhao, Y. Liu, and X. Wu, Rose-shaped VS2 nanosheets as cathode materials for rechargeable zinc ion batteries, CrystEngComm, 25(2023), No. 13, p. 1986. doi: 10.1039/D3CE00053B
      [16]
      Y. Liu and X. Wu, Recent advances of transition metal chalcogenides as cathode materials for aqueous zinc-ion batteries, Nanomaterials, 12(2022), No. 19, art. No. 3298. doi: 10.3390/nano12193298
      [17]
      J.J. Zhong, L. Qin, J.L. Li, Z. Yang, K. Yang, and M.J. Zhang, MOF-derived molybdenum selenide on Ti3C2Tx with superior capacitive performance for lithium-ion capacitors, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 1061. doi: 10.1007/s12613-022-2469-5
      [18]
      Y.G. Lee and G.H. An, Synergistic effects of phosphorus and boron co-incorporated activated carbon for ultrafast zinc-ion hybrid supercapacitors, ACS Appl. Mater. Interfaces, 12(2020), No. 37, p. 41342. doi: 10.1021/acsami.0c10512
      [19]
      Y. Liu, Y. Liu, X. Wu, and Y.R. Cho, High performance aqueous zinc battery enabled by potassium ion stabilization, J. Colloid Interface Sci., 628(2022), p. 33. doi: 10.1016/j.jcis.2022.08.046
      [20]
      P.G. Liu, Y. Gao, Y.Y. Tan, et al., Rational design of nitrogen doped hierarchical porous carbon for optimized zinc-ion hybrid supercapacitors, Nano Res., 12(2019), No. 11, p. 2835. doi: 10.1007/s12274-019-2521-6
      [21]
      Q.Y. Liu, H.Z. Zhang, J.H. Xie, X.Q. Liu, and X.H. Lu, Recent progress and challenges of carbon materials for Zn-ion hybrid supercapacitors, Carbon Energy, 2(2020), No. 4, p. 521. doi: 10.1002/cey2.69
      [22]
      X. Liu, Y.J. Sun, Y. Tong, et al., Exploration in materials, electrolytes and performance towards metal ion (Li, Na, K, Zn and Mg)-based hybrid capacitors: A review, Nano Energy, 86(2021), art. No. 106070. doi: 10.1016/j.nanoen.2021.106070
      [23]
      Y. Liu, Y. Liu, X. Wu, and Y.R. Cho, Enhanced electrochemical performance of Zn/VOx batteries by a carbon-encapsulation strategy, ACS Appl. Mater. Interfaces, 14(2022), No. 9, p. 11654. doi: 10.1021/acsami.2c00001
      [24]
      R.W. Cui, Z.W. Zhang, H.J. Zhang, Z.H. Tang, Y.H. Xue, and G.Z. Yang, Aqueous organic zinc-ion hybrid supercapacitors prepared by 3D vertically aligned graphene-polydopamine composite electrode, Nanomaterials, 12(2022), No. 3, art. No. 386. doi: 10.3390/nano12030386
      [25]
      J.N. Hao, J. Long, B. Li, et al., Toward high-performance hybrid Zn-based batteries via deeply understanding their mechanism and using electrolyte additive, Adv. Funct. Mater., 29(2019), No. 34, art. No. 1903605. doi: 10.1002/adfm.201903605
      [26]
      Y. Liu, P.F. Hu, H.Q. Liu, J.R. Song, A. Umar, and X. Wu, Toward a high performance asymmetric hybrid capacitor by electrode optimization, Inorg. Chem. Front., 6(2019), No. 10, p. 2824. doi: 10.1039/C9QI00927B
      [27]
      D. Sui, M.M. Wu, K.Y. Shi, et al., Recent progress of cathode materials for aqueous zinc-ion capacitors: Carbon-based materials and beyond, Carbon, 185(2021), p. 126. doi: 10.1016/j.carbon.2021.08.084
      [28]
      H. Tang, J.J. Yao, and Y.R. Zhu, Recent developments and future prospects for zinc-ion hybrid capacitors: A review, Adv. Energy Mater., 11(2021), No. 14, art. No. 2003994. doi: 10.1002/aenm.202003994
      [29]
      C.W. Wang, M.J. O’Connell, and C.K. Chan, Facile one-pot synthesis of highly porous carbon foams for high-performance supercapacitors using template-free direct pyrolysis, ACS Appl. Mater. Interfaces, 7(2015), No. 16, p. 8952. doi: 10.1021/acsami.5b02453
      [30]
      C. Wang, Z.X. Pei, Q.Q. Meng, et al., Toward flexible zinc-ion hybrid capacitors with superhigh energy density and ultralong cycling life: The pivotal role of ZnCl2 salt-based electrolytes, Angew. Chem. Int. Ed., 60(2021), No. 2, p. 990. doi: 10.1002/anie.202012030
      [31]
      X.W. Wang, Y.C. Sun, W.C. Zhang, and X. Wu, Flexible CuCo2O4@Ni–Co–S hybrids as electrode materials for high-performance energy storage devices, Chin. Chem. Lett., 34(2023), No. 3, art. No. 107593. doi: 10.1016/j.cclet.2022.06.016
      [32]
      R.J. Yi, X.D. Shi, Y. Tang, et al., Carboxymethyl chitosan-modified zinc anode for high-performance zinc-iodine battery with narrow operating voltage, Small Struct., 4(2023), No. 9, art. No. 2300020. doi: 10.1002/sstr.202300020
      [33]
      P.J. Wang, X.S. Xie, Z.Y. Xing, et al., Mechanistic insights of Mg2+-electrolyte additive for high-energy and long-life zinc-ion hybrid capacitors, Adv. Energy Mater., 11(2021), No. 30, art. No. 2101158. doi: 10.1002/aenm.202101158
      [34]
      K. Xia, X.G. Zeng, H.F. Zhu, J. Gong, and H. Luo, Mg-doped Li2ZnTi3O8/C as high-performance anode materials for lithium-ion batteries, Vacuum, 207(2023), art. No. 111614. doi: 10.1016/j.vacuum.2022.111614
      [35]
      K.L. Wang and Y. Xiao, Inhibiting dendrite growth of electrodeposited zinc via an applied capacitor, J. Electroanal. Chem., 920(2022), art. No. 116597. doi: 10.1016/j.jelechem.2022.116597
      [36]
      S. Aksoy, Y. Caglar, S. Ilican, and M. Caglar, Sol−gel derived Li−Mg co-doped ZnO films: Preparation and characterization via XRD, XPS, FESEM, J. Alloys Compd., 512(2012), No. 1, p. 171. doi: 10.1016/j.jallcom.2011.09.058

    Catalog


    • /

      返回文章
      返回