留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 2
Feb.  2024

图(9)  / 表(7)

数据统计

分享

计量
  • 文章访问数:  711
  • HTML全文浏览量:  262
  • PDF下载量:  58
  • 被引次数: 0
Han Dang, Runsheng Xu, Jianliang Zhang, Mingyong Wang, and Jinhua Li, Cross-upgrading of biomass hydrothermal carbonization and pyrolysis for high quality blast furnace injection fuel production: Physicochemical characteristics and gasification kinetics analysis, Int. J. Miner. Metall. Mater., 31(2024), No. 2, pp. 268-281. https://doi.org/10.1007/s12613-023-2728-0
Cite this article as:
Han Dang, Runsheng Xu, Jianliang Zhang, Mingyong Wang, and Jinhua Li, Cross-upgrading of biomass hydrothermal carbonization and pyrolysis for high quality blast furnace injection fuel production: Physicochemical characteristics and gasification kinetics analysis, Int. J. Miner. Metall. Mater., 31(2024), No. 2, pp. 268-281. https://doi.org/10.1007/s12613-023-2728-0
引用本文 PDF XML SpringerLink
研究论文

水热与热解交叉炭化生物质制备高品质高炉喷吹燃料:理化特性和气化动力学分析


  • 通讯作者:

    徐润生    E-mail: xu_runsheng@163.com

    李进华    E-mail: 1304503396@qq.com

文章亮点

  • (1) 提出了热解和水热炭化交叉升级制备生物质炭的工艺。
  • (2) 处理后的生物质炭可以接近无烟煤的等级。
  • (3) 生物质炭的最佳制备路线是先水热炭化后热解。
  • (4) 提出了生物质炭制备和高炉喷吹的耦合工艺。
  • 本文提出了一种生物质交叉升级工艺,将水热炭化和热解相结合,生产出高质量的高炉喷吹燃料。结果表明,升级后的生物炭挥发物含量在 16.19% 至 45.35% 之间,碱金属含量、灰分含量和比表面积显著降低。生物质炭生产的最佳途径是先水热炭化后热解,从而获得热值更高、芳香结构更合理、石墨化程度更高的生物质炭。样品的表观活化能(E)范围为 199.1 至 324.8 kJ/mol,其中水热–热解(P-HC)的 E 为 277.8 kJ/mol,低于原生物质、初级生物质炭和无烟煤。这使得 P-HC 更适合用作高炉喷吹燃料。此外,论文还提出了在高炉中喷吹 P-HC 的工艺路线,并计算了潜在的环境效益。当取代 40wt% 的喷煤时,P-HC 具有最大的碳减排潜力,可减少 96.04 kg/t 的排放量。
  • Research Article

    Cross-upgrading of biomass hydrothermal carbonization and pyrolysis for high quality blast furnace injection fuel production: Physicochemical characteristics and gasification kinetics analysis

    + Author Affiliations
    • The paper proposes a biomass cross-upgrading process that combines hydrothermal carbonization and pyrolysis to produce high-quality blast furnace injection fuel. The results showed that after upgrading, the volatile content of biochar ranged from 16.19% to 45.35%, and the alkali metal content, ash content, and specific surface area were significantly reduced. The optimal route for biochar production is hydrothermal carbonization–pyrolysis (P-HC), resulting in biochar with a higher calorific value, C=C structure, and increased graphitization degree. The apparent activation energy (E) of the sample ranges from 199.1 to 324.8 kJ/mol, with P-HC having an E of 277.8 kJ/mol, lower than that of raw biomass, primary biochar, and anthracite. This makes P-HC more suitable for blast furnace injection fuel. Additionally, the paper proposes a path for P-HC injection in blast furnaces and calculates potential environmental benefits. P-HC offers the highest potential for carbon emission reduction, capable of reducing emissions by 96.04 kg/t when replacing 40wt% coal injection.
    • loading
    • [1]
      J.L. Zhang, H.Y. Fu, Y.X. Liu, et al., Review on biomass metallurgy: Pretreatment technology, metallurgical mechanism and process design, Int. J. Miner. Metall. Mater., 29(2022), No. 6, p. 1133. doi: 10.1007/s12613-022-2501-9
      [2]
      J. Zhao, H.B. Zuo, J.S. Wang, et al., The mechanism and products for co-thermal extraction of biomass and low-rank coal with NMP, Int. J. Miner. Metall. Mater., 26(2019), No. 12, p. 1512. doi: 10.1007/s12613-019-1872-z
      [3]
      J.L. Zhang, J. Guo, G.W. Wang, et al., Kinetics of petroleum coke/biomass blends during co-gasification, Int. J. Miner. Metall. Mater., 23(2016), No. 9, p. 1001. doi: 10.1007/s12613-016-1317-x
      [4]
      H.B. Zuo, W.W. Geng, J.L. Zhang, et al., Comparison of kinetic models for isothermal CO2 gasification of coal char–biomass char blended char, Int. J. Miner. Metall. Mater., 22(2015), No. 4, p. 363. doi: 10.1007/s12613-015-1081-3
      [5]
      N. Karali, T.F. Xu, and J. Sathaye, Reducing energy consumption and CO2 emissions by energy efficiency measures and international trading: A bottom-up modeling for the U.S. iron and steel sector, Appl. Energy, 120(2014), p. 133. doi: 10.1016/j.apenergy.2014.01.055
      [6]
      M, Hasanuzzaman, N.A. Rahim, M. Hosenuzzaman, et al., Energy savings in the combustion based process heating in industrial sector, Renewable Sustainable Energy Rev., 16(2012), No. 7, p. 4527. doi: 10.1016/j.rser.2012.05.027
      [7]
      K. Yan, C.W. Liu, L.P. Liu, et al., Pyrolysis behaviour and combustion kinetics of waste printed circuit boards, Int. J. Miner. Metall. Mater., 29(2022), No. 9, p. 1722. doi: 10.1007/s12613-021-2299-x
      [8]
      S.N. Xiu and A. Shahbazi, Bio-oil production and upgrading research: A review, Renew. Sustainable Energy Rev., 16(2012), No. 7, p. 4406. doi: 10.1016/j.rser.2012.04.028
      [9]
      R. Saidur, E.A. Abdelaziz, A. Demirbas, M.S. Hossain, and S. Mekhilef, A review on biomass as a fuel for boilers, Renewable Sustainable Energy Rev., 15(2011), No. 5, p. 2262. doi: 10.1016/j.rser.2011.02.015
      [10]
      Q. Gao, G. Zhang, H. Zheng, et al., Combustion performance of pulverized coal and corresponding kinetics study after adding the additives of Fe2O3 and CaO, Int. J. Miner. Metall. Mater., 30(2023), No. 2, p. 314. doi: 10.1007/s12613-022-2432-5
      [11]
      D. Zhang, H. Fan, B. Zhao, et al., Development of biomass power generation technology at home and abroad, Huadian Technol., 43(2021), No. 03, p. 70.
      [12]
      G. Wang, J. Zhang, J. Shao, et al., Thermal behavior and kinetic analysis of co-combustion of waste biomass/low rank coal blends, Energy Convers. Manage., 124(2016), p. 414. doi: 10.1016/j.enconman.2016.07.045
      [13]
      P. Wang, G.W. Wang, J.L. Zhang, J.Y. Lee, Y.J. Li, and C. Wang, Co-combustion characteristics and kinetic study of anthracite coal and palm kernel shell char, Appl. Therm. Eng., 143(2018), p. 736. doi: 10.1016/j.applthermaleng.2018.08.009
      [14]
      Y.S. Sun, Y.X. Han, Y.F. Li, et al., Formation and characterization of metallic iron grains in coal-based reduction of oolitic iron ore, Int. J. Miner. Metall. Mater., 24(2017), No. 2, p. 123. doi: 10.1007/s12613-017-1386-5
      [15]
      G.W. Wang, J.L. Zhang, J.Y. Lee, et al., Hydrothermal carbonization of maize straw for hydrochar production and its injection for blast furnace, Appl. Energy, 266(2020), art. No. 114818. doi: 10.1016/j.apenergy.2020.114818
      [16]
      J. Minaret and A. Dutta, Comparison of liquid and vapor hydrothermal carbonization of corn husk for the use as a solid fuel, Bioresour. Technol., 200(2016), p. 804. doi: 10.1016/j.biortech.2015.11.010
      [17]
      H. Fatehi and X.S. Bai, Structural evolution of biomass char and its effect on the gasification rate, Appl. Energy, 185(2017), p. 998. doi: 10.1016/j.apenergy.2015.12.093
      [18]
      Z.G. Liu, A. Quek, S. Kent Hoekman, et al., Production of solid biochar fuel from waste biomass by hydrothermal carbonization, Fuel, 103(2013), p. 943. doi: 10.1016/j.fuel.2012.07.069
      [19]
      T.L. Eberhardt, W.J. Catallo, and T.F. Shupe, Hydrothermal transformation of Chinese privet seed biomass to gas-phase and semi-volatile products, Bioresour. Technol., 101(2010), No. 11, p. 4198. doi: 10.1016/j.biortech.2010.01.064
      [20]
      M. Goto, R. Obuchi, T. Hirose, et al., Hydrothermal conversion of municipal organic waste into resources, Bioresour. Technol., 93(2004), No. 3, p. 279. doi: 10.1016/j.biortech.2003.11.017
      [21]
      M.I.G. Miranda, C.I.D. Bica, S.M.B. Nachtigall, et al., Kinetical thermal degradation study of maize straw and soybean hull celluloses by simultaneous DSC–TGA and MDSC techniques, Thermochim. Acta, 565(2013), p. 65. doi: 10.1016/j.tca.2013.04.012
      [22]
      W. Liang, G.W. Wang, K.X. Jiao, et al., Conversion mechanism and gasification kinetics of biomass char during hydrothermal carbonization, Renew. Energy, 173(2021), p. 318. doi: 10.1016/j.renene.2021.03.123
      [23]
      H. Guo, Y. Cheng, L. Wang, et al., Experimental study on the effect of moisture on low-rank coal adsorption characteristics, J. Nat. Gas Sci. Eng., 24(2015), p. 245. doi: 10.1016/j.jngse.2015.03.037
      [24]
      J. Yu, A. Tahmasebi, Y. Han, et al., A review on water in low rank coals: The existence, interaction with coal structure and effects on coal utilization, Fuel Process. Technol., 106(2013), p. 9. doi: 10.1016/j.fuproc.2012.09.051
      [25]
      S. Dey, Enhancement in hydrophobicity of low rank coal by surfactants—A critical overview, Fuel Process. Technol., 94(2012), No. 1, p. 151. doi: 10.1016/j.fuproc.2011.10.021
      [26]
      H.B. Jiang, J.L. Zhang, J.X. Fu, et al., Properties and structural optimization of pulverized coal for blast furnace injection, J. Iron Steel Res. Int., 18(2011), No. 3, p. 6. doi: 10.1016/S1006-706X(11)60029-0
      [27]
      A. Murao, Y. Kashihara, K. Takahashi, et al., Effect of natural gas injection into blast furnace on combustion efficiency of pulverized coal, Tetsu-to-Hagane, 101(2015), No. 12, p. 653. doi: 10.2355/tetsutohagane.TETSU-2015-052
      [28]
      Z.F. Peng, X.J. Ning, G.W. Wang, et al., Structural characteristics and flammability of low-order coal pyrolysis semi-coke, J. Energy Inst., 93(2020), No. 4, p. 1341. doi: 10.1016/j.joei.2019.12.004
      [29]
      H. Dang, G.W. Wang, C.M. Yu, et al., Study on chemical bond dissociation and the removal of oxygen-containing functional groups of low-rank coal during hydrothermal carbonization: DFT calculations, ACS Omega, 6(2021), No. 39, p. 25772. doi: 10.1021/acsomega.1c03866
      [30]
      N. Zhang, G.W. Wang, C.M. Yu, et al., Physicochemical structure characteristics and combustion kinetics of low-rank coal by hydrothermal carbonization, Energy, 238(2022), art. No. 121682. doi: 10.1016/j.energy.2021.121682
      [31]
      S.W. Du, W.H. Chen, and J. Lucas, Performances of pulverized coal injection in blowpipe and tuyere at various operational conditions, Energy Convers. Manage., 48(2007), No. 7, p. 2069. doi: 10.1016/j.enconman.2007.01.013
      [32]
      H.K. Li, Y.J. Wang, Jiao K., et al., Study on alkali circulation process and its influence on coke ratio in blast furnace, [in] 10th International Symposium on High-Temperature Metallurgical Processing, San Antonio, 2019
      [33]
      C. Rodríguez Correa, M. Stollovsky, T. Hehr, et al., Influence of the carbonization process on activated carbon properties from lignin and lignin-rich biomasses, ACS Sustainable Chem. Eng., 5(2017), No. 9, p. 8222. doi: 10.1021/acssuschemeng.7b01895
      [34]
      H. Dang, R.S. Xu, J.L. Zhang, et al., Hydrothermal carbonization of waste furniture for clean blast furnace fuel production: Physicochemical, gasification characteristics and conversion mechanism investigation, Chem. Eng. J., 469(2023), art. No. 143980. doi: 10.1016/j.cej.2023.143980
      [35]
      R.P. Li, J.L. Zhang, G.W. Wang, et al., Study on CO2 gasification reactivity of biomass char derived from high-temperature rapid pyrolysis, Appl. Therm. Eng., 121(2017), p. 1022. doi: 10.1016/j.applthermaleng.2017.04.132
      [36]
      O. Beyssac, B. Goffé, J.P. Petitet, et al., On the characterization of disordered and heterogeneous carbonaceous materials by Raman spectroscopy, Spectrochim. Acta Part A: Mol. Biomol. Spectrosc., 59(2003), No. 10, p. 2267. doi: 10.1016/S1386-1425(03)00070-2
      [37]
      Q. He, L. Ding, A. Raheem, et al., Kinetics comparison and insight into structure-performance correlation for leached biochar gasification, Chem. Eng. J., 417(2021), art. No. 129331. doi: 10.1016/j.cej.2021.129331
      [38]
      N. Zhang, G.W. Wang, J.L. Zhang, et al., Study on co-combustion characteristics of hydrochar and anthracite coal, J. Energy Inst., 93(2020), No. 3, p. 1125. doi: 10.1016/j.joei.2019.10.006
      [39]
      A. Mosqueda, J.T. Wei, K. Medrano, et al., Co-gasification reactivity and synergy of banana residue hydrochar and anthracite coal blends, Appl. Energy, 250(2019), p. 92. doi: 10.1016/j.apenergy.2019.05.008
      [40]
      R.V.P. Antero, A.C.F. Alves, S.B. de Oliveira, et al., Challenges and alternatives for the adequacy of hydrothermal carbonization of lignocellulosic biomass in cleaner production systems: A review, J. Cleaner Prod., 252(2020), art. No. 119899. doi: 10.1016/j.jclepro.2019.119899
      [41]
      H.Y. Gong, Y.D. Huang, H.Y. Hu, et al., The potential oxidation characteristics of CaCr2O4 during coal combustion with solid waste in a fluidized bed boiler: A thermogravimetric analysis, Chemosphere, 263(2021), art. No. 127974. doi: 10.1016/j.chemosphere.2020.127974
      [42]
      Q. Hu, H.P. Yang, H.S. Xu, et al., Thermal behavior and reaction kinetics analysis of pyrolysis and subsequent in situ gasification of torrefied biomass pellets, Energy Convers. Manage., 161(2018), p. 205. doi: 10.1016/j.enconman.2018.02.003
      [43]
      S. Nomura and T.G. Callcott, Maximum rates of pulverized coal injection in ironmaking blast furnaces, ISIJ Int., 51(2011), No. 7, p. 1033. doi: 10.2355/isijinternational.51.1033
      [44]
      C.L. Zhang, G.W. Wang, X.J. Ning, et al., Numerical simulation of combustion behaviors of hydrochar derived from low-rank coal in the raceway of blast furnace, Fuel, 278(2020), art. No. 118267. doi: 10.1016/j.fuel.2020.118267
      [45]
      Y.H. Zhou, P. Zhou, J.Y. Dan, et al., Effects of single lance configuration on coal combustion process in tuyere from viewpoint of coal plume, J. Iron Steel Res. Int., 28(2021), No. 7, p. 785. doi: 10.1007/s42243-020-00556-0
      [46]
      R.K. Agrawal, On the compensation effect, J. Therm. Anal., 31(1986), No. 1, p. 73. doi: 10.1007/BF01913888
      [47]
      P.J. Barrie, The mathematical origins of the kinetic compensation effect: 2. the effect of systematic errors, Phys. Chem. Chem. Phys., 14(2012), No. 1, p. 327. doi: 10.1039/C1CP22667C
      [48]
      K. Yip, E. Ng, C.Z. Li, et al., A mechanistic study on kinetic compensation effect during low-temperature oxidation of coal chars, Proc. Combust. Inst., 33(2011), No. 2, p. 1755. doi: 10.1016/j.proci.2010.07.073

    Catalog


    • /

      返回文章
      返回