留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 3
Mar.  2024

图(9)  / 表(5)

数据统计

分享

计量
  • 文章访问数:  570
  • HTML全文浏览量:  243
  • PDF下载量:  50
  • 被引次数: 0
Wenxing Cao, Jiancheng Shu, Jiaming Chen, Zihan Li, Songshan Zhou, Shushu Liao, Mengjun Chen,  and Yong Yang, Enhanced recovery of high-purity Fe powder from iron-rich electrolytic manganese residue by slurry electrolysis, Int. J. Miner. Metall. Mater., 31(2024), No. 3, pp. 531-538. https://doi.org/10.1007/s12613-023-2729-z
Cite this article as:
Wenxing Cao, Jiancheng Shu, Jiaming Chen, Zihan Li, Songshan Zhou, Shushu Liao, Mengjun Chen,  and Yong Yang, Enhanced recovery of high-purity Fe powder from iron-rich electrolytic manganese residue by slurry electrolysis, Int. J. Miner. Metall. Mater., 31(2024), No. 3, pp. 531-538. https://doi.org/10.1007/s12613-023-2729-z
引用本文 PDF XML SpringerLink
研究论文

基于矿浆电解法强化回收富铁电解锰渣中的铁


  • 通讯作者:

    舒建成    E-mail: sjcees@126.com

文章亮点

  • (1)采用矿浆电解法回收富铁电解锰渣中的铁资源;
  • (2)富铁电解锰渣中铁的浸出率和电流效率分别达到92.56%和80.65%;
  • (3)矿浆电解回收得到的铁纯度达到98.72%;
  • (4)本研究为富铁电解锰渣的资源化提供了一种新的方法。
  • 富铁电解锰渣是电解金属锰生产过程排放的一般工业固废,其中含有大量的铁锰资源以及重金属,直接堆存不仅造成资源浪费,且污染周边环境。本研究采用矿浆电解技术从富铁电解锰渣中回收高纯铁粉,探究了富铁电解锰渣和H2SO4质量比、电流密度、反应温度和电解时间对Fe浸出率和电流效率的影响规律。研究结果表明,在H2SO4与富铁电解锰渣质量比1:2.5、反应温度60℃、电流密度30 mA/cm2、反应时间8 h条件下,Fe的浸出率、电流效率和纯度分别达到92.58%、80.65%和98.72wt%。此外,矿浆电解得到的阴极铁粉顽力达到54.5A/m,达到高级磁性铁粉等级(DT4A矫顽力标准)。本研究为富铁电解锰渣中铁资源的回收提供了一种新的思路。
  • Research Article

    Enhanced recovery of high-purity Fe powder from iron-rich electrolytic manganese residue by slurry electrolysis

    + Author Affiliations
    • Iron-rich electrolytic manganese residue (IREMR) is an industrial waste produced during the processing of electrolytic metal manganese, and it contains certain amounts of Fe and Mn resources and other heavy metals. In this study, the slurry electrolysis technique was used to recover high-purity Fe powder from IREMR. The effects of IREMR and H2SO4 mass ratio, current density, reaction temperature, and electrolytic time on the leaching and current efficiencies of Fe were studied. According to the results, high-purity Fe powder can be recovered from the cathode plate, and the slurry electrolyte can be recycled. The leaching efficiency, current efficiency, and purity of Fe reached 92.58%, 80.65%, and 98.72wt%, respectively, at a 1:2.5 mass ratio of H2SO4 and IREMR, reaction temperature of 60°C, electric current density of 30 mA/cm2, and reaction time of 8 h. In addition, vibrating sample magnetometer (VSM) analysis showed that the coercivity of electrolytic iron powder was 54.5 A/m, which reached the advanced magnetic grade of electrical pure-iron powder (DT4A coercivity standard). The slurry electrolytic method provides fundamental support for the industrial application of Fe resource recovery in IRMER.
    • loading
    • [1]
      D.J. He, J.C. Shu, R. Wang, et al., A critical review on approaches for electrolytic manganese residue treatment and disposal technology: Reduction, pretreatment, and reuse, J. Hazard. Mater., 418(2021), art. No. 126235. doi: 10.1016/j.jhazmat.2021.126235
      [2]
      R.R. Zhang, X.T. Ma, X.X. Shen, et al., Life cycle assessment of electrolytic manganese metal production, J. Clean. Prod., 253(2020), art. No. 119951. doi: 10.1016/j.jclepro.2019.119951
      [3]
      J.M. Lu, D. Dreisinger, and T. Glück, Electrolytic manganese metal production from manganese carbonate precipitate, Hydrometallurgy, 161(2016), p. 45. doi: 10.1016/j.hydromet.2016.01.010
      [4]
      J.C. Shu, R.L. Liu, Z.H. Liu, H.L. Chen, and C.Y. Tao, Enhanced extraction of manganese from electrolytic manganese residue by electrochemical, J. Electroanal. Chem., 780(2016), p. 32. doi: 10.1016/j.jelechem.2016.08.033
      [5]
      M.G. Lei, B.Z. Ma, D.Y. Lv, C.Y. Wang, E. Asselin, and Y.Q. Chen, A process for beneficiation of low-grade manganese ore and synchronous preparation of calcium sulfate whiskers during hydrochloric acid regeneration, Hydrometallurgy., 199(2021), art. No. 105533. doi: 10.1016/j.hydromet.2020.105533
      [6]
      S. Keshavarz, F. Faraji, F. Rashchi, and M. Mokmeli, Bioleaching of manganese from a low-grade pyrolusite ore using Aspergillus niger: Process optimization and kinetic studies, J. Environ. Manage., 285(2021), art. No. 112153. doi: 10.1016/j.jenvman.2021.112153
      [7]
      J.C. Shu, R.L. Liu, Z.H. Liu, H.P. Wu, Y.L. Chen, and C.Y. Tao, Enhanced discharge performance of electrolytic manganese anode slime using calcination and pickling approach, J. Electroanal. Chem., 806(2017), p. 15. doi: 10.1016/j.jelechem.2017.10.041
      [8]
      Y.L. Deng, J.C. Shu, T.Y. Lei, X.F. Zeng, B. Li, and M.J. Chen, A green method for Mn2+ and $ {\mathrm{N}\mathrm{H}}_{4}^{+} $–N removal in electrolytic manganese residue leachate by electric field and phosphorus ore flotation tailings, Sep. Purif. Technol., 270(2021), art. No. 118820. doi: 10.1016/j.seppur.2021.118820
      [9]
      B. Li, J.C. Shu, Y.H. Wu, et al., Enhanced removal of Mn2+ and $ {\mathrm{N}\mathrm{H}}_{4}^{+} $–N in electrolytic manganese residue leachate by electrochemical and modified phosphate ore flotation tailings, Sep. Purif. Technol., 291(2022), art. No. 120959. doi: 10.1016/j.seppur.2022.120959
      [10]
      T.Y. Yang, Y. Xue, X.M. Liu, and Z.Q. Zhang, Solidification/stabilization and separation/extraction treatments of environmental hazardous components in electrolytic manganese residue: A review, Process. Saf. Environ. Prot., 157(2022), p. 509. doi: 10.1016/j.psep.2021.10.031
      [11]
      S.C. He, D.Y. Jiang, M.H. Hong, and Z.H. Liu, Hazard-free treatment and resource utilisation of electrolytic manganese residue: A review, J. Clean. Prod., 306(2021), art. No. 127224. doi: 10.1016/j.jclepro.2021.127224
      [12]
      J. Li, Y.C. Liu, X. Ke, X.K. Jiao, R. Li, and C.J. Shi, Geopolymer synthesized from electrolytic manganese residue and lead-zinc smelting slag: Compressive strength and heavy metal immobilization, Cem. Concr. Compos., 134(2022), art. No. 104806. doi: 10.1016/j.cemconcomp.2022.104806
      [13]
      D. Sun, L. Yang, N. Liu, et al., Sulfur resource recovery based on electrolytic manganese residue calcination and manganese oxide ore desulfurization for the clean production of electrolytic manganese, Chin. J. Chem. Eng., 28(2020), No. 3, p. 864. doi: 10.1016/j.cjche.2019.11.013
      [14]
      D.Q. Wang, J.R. Fang, Q. Wang, and Y.J. Liu, Utilizing desulphurized electrolytic-manganese residue as a mineral admixture: A feasibility study, Cem. Concr. Compos., 134(2022), art. No. 104822. doi: 10.1016/j.cemconcomp.2022.104822
      [15]
      P.X. Su, Q.Y. Wan, Y. Yang, et al., Hydroxylation of electrolytic manganese anode slime with EDTA-2Na and its adsorption of methylene blue, Sep. Purif. Technol., 278(2021), art. No. 119526. doi: 10.1016/j.seppur.2021.119526
      [16]
      J.Q. Wang, S.Y. Chen, X.F. Zeng, et al., Recovery of high purity copper from waste printed circuit boards of mobile phones by slurry electrolysis with ammonia-ammonium system, Sep. Purif. Technol., 275(2021), art. No. 119180. doi: 10.1016/j.seppur.2021.119180
      [17]
      K.X. Liu, S.Q. Huang, Y.X. Jin, L. Ma, W.X. Wang, and J.C.H. Lam, A green slurry electrolysis to recover valuable metals from waste printed circuit board (WPCB) in recyclable pH-neutral ethylene glycol, J. Hazard. Mater., 433(2022), art. No. 128702. doi: 10.1016/j.jhazmat.2022.128702
      [18]
      F.F. Li, M.J. Chen, J.C. Shu, et al., Copper and gold recovery from CPU sockets by one-step slurry electrolysis, J. Clean. Prod., 213(2019), p. 673. doi: 10.1016/j.jclepro.2018.12.161
      [19]
      J.T. Wu, B. Xu, Y.J. Zhou, Z.L. Dong, S.G. Zhong, and T. Jiang, A novel process of reverse flotation-hydrogen reduction for preparation of high-purity iron powder with superior magnetite concentrate, Sep. Purif. Technol., 307(2023), art. No. 122784. doi: 10.1016/j.seppur.2022.122784
      [20]
      D. Chen, S. Chen, H.W. Guo, et al., A novel metallurgical technique for the preparation of soft magnetic iron carbide from low-grade siderite, J. Alloys Compd., 928(2022), art. No. 167186. doi: 10.1016/j.jallcom.2022.167186
      [21]
      S. Iimura, T. Sasaki, K. Hanzawa, S. Matsuishi, and H. Hosono, High pressure synthesis, physical properties and electronic structure of monovalent iron compound LaFePH, J. Solid State Chem., 315(2022), art. No. 123546. doi: 10.1016/j.jssc.2022.123546
      [22]
      J.L. Lv and H.Y. Luo, The effects of cold rolling temperature on corrosion resistance of pure iron, Appl. Surf. Sci., 317(2014), p. 125. doi: 10.1016/j.apsusc.2014.08.065
      [23]
      L. Khan, K. Sato, S. Okuyama, et al., Ultra-high-purity iron is a novel and very compatible biomaterial, J. Mech. Behav. Biomed. Mater., 106(2020), art. No. 103744. doi: 10.1016/j.jmbbm.2020.103744
      [24]
      J. Qiu, J. Han, R. Schoell, et al., Electrical properties of thermal oxide scales on pure iron in liquid lead-bismuth eutectic, Corros. Sci., 176(2020), art. No. 109052. doi: 10.1016/j.corsci.2020.109052
      [25]
      H. Matsumiya, T. Kato, and M. Hiraide, Ionic liquid-based extraction followed by graphite-furnace atomic absorption spectrometry for the determination of trace heavy metals in high-purity iron metal, Talanta., 119(2014), p. 505. doi: 10.1016/j.talanta.2013.11.057
      [26]
      Q. Liang, J.Q. Wang, S.Y. Chen, et al., Electrolyte circulation: Metal recovery from waste printed circuit boards of mobile phones by alkaline slurry electrolysis, J. Clean. Prod., 409(2023), art. No. 137223. doi: 10.1016/j.jclepro.2023.137223
      [27]
      J.Q. Wang, Z.M. Huang, D.Z. Yang, et al., A semi-scaled experiment for metals separating and recovering from waste printed circuit boards by slurry electrolysis, Process. Saf. Environ. Prot., 147(2021), p. 37. doi: 10.1016/j.psep.2020.09.030
      [28]
      Y.X. Zhao, M.M. Sun, Y.L. Zhang, Y.Z. Zhao, and H.H. Ge, Efficient and rapid electrocatalytic degradation of polyethylene glycol by ammonium jarosite, J. Environ. Chem. Eng., 10(2022), No. 3, art. No. 107795. doi: 10.1016/j.jece.2022.107795
      [29]
      J.L. Yang, J.G. Liu, H.X. Xiao, and S.J. Ma, Sulfuric acid leaching of high iron-bearing zinc calcine, Int. J. Miner. Metall. Mater., 24(2017), No. 11, p. 1211. doi: 10.1007/s12613-017-1513-3
      [30]
      B.J. Wang, L.L. Mu, S. Guo, and Y.F. Bi, Lead leaching mechanism and kinetics in electrolytic manganese anode slime, Hydrometallurgy., 183(2019), p. 98. doi: 10.1016/j.hydromet.2018.11.015
      [31]
      T.Y. Lei, J.C. Shu, Y.L. Deng, et al., Enhanced recovery of copper from reclaimed copper smelting fly ash via leaching and electrowinning processes, Sep. Purif. Technol., 273(2021), art. No. 118943. doi: 10.1016/j.seppur.2021.118943
      [32]
      J.M. Gao, B. Wang, W.J. Li, L. Cui, Y.X. Guo, and F.Q. Cheng, High-efficiency leaching of Al and Fe from fly ash for preparation of polymeric aluminum ferric chloride sulfate coagulant for wastewater treatment, Sep. Purif. Technol., 306(2023), art. No. 122545. doi: 10.1016/j.seppur.2022.122545
      [33]
      Y.G. Zhang, M.J. Chen, Q.X. Tan, B. Wang, and S. Chen, Recovery of copper from WPCBs using slurry electrolysis with ionic liquid [BSO3HPy]∙HSO4, Hydrometallurgy., 175(2018), p. 150. doi: 10.1016/j.hydromet.2017.11.004
      [34]
      E. Demircilioğlu, E. Teomete, E. Schlangen, and F.J. Baeza, Temperature and moisture effects on electrical resistance and strain sensitivity of smart concrete, Constr. Build. Mater., 224(2019), p. 420. doi: 10.1016/j.conbuildmat.2019.07.091
      [35]
      R. Kallio, U. Lassi, T. Kauppinen, et al., Leaching characteristics of Sc-enriched, Fe-depleted acidic slags, Miner. Eng., 189(2022), art. No. 107901. doi: 10.1016/j.mineng.2022.107901
      [36]
      B. Miranda-Alcántara, F. Castañeda-Záldivar, L. Ortíz-Frade, R. Antaño, and F.F. Rivera, Electrochemical study of iron deposit in acid media for its recovery from spent pickling baths regeneration, J. Electroanal. Chem., 901(2021), art. No. 115805. doi: 10.1016/j.jelechem.2021.115805
      [37]
      M.C. Nolasco, L.F. Flores, E.J. Gutiérrez, et al., Acid dissolution of jarosite-type compounds: Effect of the incorporation of divalent cations into the structure on the reaction rate, Hydrometallurgy., 212(2022), art. No. 105907. doi: 10.1016/j.hydromet.2022.105907
      [38]
      Y. Shi, K.X. Jiang, T.A. Zhang, and X.F. Zhu, Electrolysis designed for clean production of selective iron products from coal fly ash leachate, Hydrometallurgy., 203(2021), art. No. 105617. doi: 10.1016/j.hydromet.2021.105617
      [39]
      P.F. Liu and Y.F. Zhang, Crystallization of ammonium jarosite from ammonium ferric sulfate solutions, Hydrometallurgy., 189(2019), art. No. 105133. doi: 10.1016/j.hydromet.2019.105133
      [40]
      J.C. Shu, H.P. Wu, M.J. Chen, et al., Simultaneous optimizing removal of manganese and ammonia nitrogen from electrolytic metal manganese residue leachate using chemical equilibrium model, Ecotoxicol. Environ. Saf., 172(2019), p. 273. doi: 10.1016/j.ecoenv.2019.01.071
      [41]
      M. Ristić, S. Musić, and Z. Orehovec, Thermal decomposition of synthetic ammonium jarosite, J. Mol. Struct., 744-747(2005), p. 295. doi: 10.1016/j.molstruc.2004.10.051

    Catalog


    • /

      返回文章
      返回