留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 2
Feb.  2024

图(14)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  492
  • HTML全文浏览量:  182
  • PDF下载量:  11
  • 被引次数: 0
Mingjie Zhao, Lihong Jiang, Changmin Li, Liang Huang, Chaoyuan Sun, Jianjun Li, and Zhenghua Guo, Flow characteristics and hot workability of a typical low-alloy high-strength steel during multi-pass deformation, Int. J. Miner. Metall. Mater., 31(2024), No. 2, pp. 323-336. https://doi.org/10.1007/s12613-023-2736-0
Cite this article as:
Mingjie Zhao, Lihong Jiang, Changmin Li, Liang Huang, Chaoyuan Sun, Jianjun Li, and Zhenghua Guo, Flow characteristics and hot workability of a typical low-alloy high-strength steel during multi-pass deformation, Int. J. Miner. Metall. Mater., 31(2024), No. 2, pp. 323-336. https://doi.org/10.1007/s12613-023-2736-0
引用本文 PDF XML SpringerLink
研究论文

一种典型的低合金高强钢多道次变形过程的流动特性及热加工性能


  • 通讯作者:

    黄亮    E-mail: huangliang@hust.edu.cn

    郭正华    E-mail: guozhenghua@nchu.edu.cn

文章亮点

  • (1) 对比分析了变形参数及变形道次对低合金高强钢加工硬化特性的影响规律。
  • (2) 建立了新的低合金高强钢多道次变形的本构模型。
  • (3) 提出了一种新的低合金高强钢热加工性能评估方法并优化了工艺参数。
  • 由于低合金高强钢大型构件一般采用多道次锻造成形,为了能够更好制定实际锻造工艺参数,有必要围绕低合金高强钢多道次变形过程的流动特性及热加工性能开展研究。在本研究中,对一种典型的低合金高强钢在较宽的变形温度和应变速率下进行了多道次热压缩实验。基于流动行为分析发现,材料的加工硬化速率与变形参数和变形道次有关,这主要归因于动态软化及静态软化的影响。为了实现对不同变形道次下流动行为的准确预测,提出了一个新的本构模型,将其预测精度与经典的Arrhenius本构模型和修正的ZA本构模型相比发现,新提出的本构模型具有更高的预测精度,置信水平为0.98565。基于微观组织分析,揭示了材料功耗效率与变形参数之间的关系,发现功率耗散效率不能反映整个变形过程中微观组织演化情况,而只能评估特定变形参数状态下的微观组织演化。为此,本文提出了一种新的集成热加工图,该图考虑了失稳因子、功率耗散效率以及晶粒分布和尺寸的影响。基于该热加工图,优化出低合金高强钢多道次变形的工艺参数为1223–1318 K和0.01–0.08 s−1。在优化的工艺参数范围内动态再结晶完全,平均晶粒尺寸为18.36–42.3 μm。上述研究为大型构件实际锻造成形过程工艺参数的制定提供重要的理论指导。
  • Research Article

    Flow characteristics and hot workability of a typical low-alloy high-strength steel during multi-pass deformation

    + Author Affiliations
    • Heavy components of low-alloy high-strength (LAHS) steels are generally formed by multi-pass forging. It is necessary to explore the flow characteristics and hot workability of LAHS steels during the multi-pass forging process, which is beneficial to the formulation of actual processing parameters. In the study, the multi-pass hot compression experiments of a typical LAHS steel are carried out at a wide range of deformation temperatures and strain rates. It is found that the work hardening rate of the experimental material depends on deformation parameters and deformation passes, which is ascribed to the impacts of static and dynamic softening behaviors. A new model is established to describe the flow characteristics at various deformation passes. Compared to the classical Arrhenius model and modified Zerilli and Armstrong model, the newly proposed model shows higher prediction accuracy with a confidence level of 0.98565. Furthermore, the connection between power dissipation efficiency (PDE) and deformation parameters is revealed by analyzing the microstructures. The PDE cannot be utilized to reflect the efficiency of energy dissipation for microstructure evolution during the entire deformation process, but only to assess the efficiency of energy dissipation for microstructure evolution in a specific deformation parameter state. As a result, an integrated processing map is proposed to better study the hot workability of the LAHS steel, which considers the effects of instability factor (IF), PDE, and distribution and size of grains. The optimized processing parameters for the multi-pass deformation process are the deformation parameters of 1223–1318 K and 0.01–0.08 s−1. Complete dynamic recrystallization occurs within the optimized processing parameters with an average grain size of 18.36–42.3 μm. This study will guide the optimization of the forging process of heavy components.
    • loading
    • [1]
      M.J. Zhao, L. Huang, C.M. Li, J.J. Li, and P.C. Li, Evaluation of the deformation behaviors and hot workability of a high-strength low-alloy steel, Mater. Sci. Eng. A, 810(2021), art. No. 141031. doi: 10.1016/j.msea.2021.141031
      [2]
      R.C. Chen, S.Y. Zhang, M. Wang, X.L. Liu, and F. Feng, Unified modelling of flow stress and microstructural evolution of 300M steel under isothermal tension, Metals, 11(2021), No. 7, art. No. 1086. doi: 10.3390/met11071086
      [3]
      J.J. Qiu, M. Zhang, X.Y. Liu, X.X. Zhang, and Z.L. Tan, Characterization of retained austenite in a low carbon high strength Mn–Si–Cr steel, Mater. Sci. Eng. A, 797(2020), art. No. 139985. doi: 10.1016/j.msea.2020.139985
      [4]
      S.B. Qiao, X.K. He, C.S. Xie, and Z.D. Liu, Static recrystallization behavior of SA508Gr.4N reactor pressure vessel steel during hot compressive deformation, J. Iron Steel Res. Int., 28(2021), No. 5, p. 604. doi: 10.1007/s42243-020-00536-4
      [5]
      M.J. Zhao, L. Huang, R. Zeng, D.X. Wen, H.L. Su, and J.J. Li, In-situ observations and modeling of static recrystallization in 300 M steel, Mater. Sci. Eng. A, 765(2019), art. No. 138300. doi: 10.1016/j.msea.2019.138300
      [6]
      B. Fang, G.F. Tian, Z. Ji, M.Y. Wang, C.C. Jia, and S.W. Yang, Study on the thermal deformation behavior and microstructure of FGH96 heat extrusion alloy during two-pass hot deformation, Int. J. Miner. Metall. Mater., 26(2019), No. 5, p. 657. doi: 10.1007/s12613-019-1774-0
      [7]
      B. Fang, Z. Ji, M. Liu, et al., Study on constitutive relationships and processing maps for FGH96 alloy during two-pass hot deformation, Mater. Sci. Eng. A, 590(2014), p. 255. doi: 10.1016/j.msea.2013.10.034
      [8]
      Y. Cheng, H.Y. Du, Y.H. Wei, L.F. Hou, and B.S. Liu, Metadynamic recrystallization behavior and workability characteristics of HR3C austenitic heat-resistant stainless steel with processing map, J. Mater. Process. Technol., 235(2016), p. 134. doi: 10.1016/j.jmatprotec.2016.04.026
      [9]
      S. Ding, T. Taylor, S.A. Khan, Y. Sato, and J. Yanagimoto, Further understanding of metadynamic recrystallization through thermomechanical tests and EBSD characterization, J. Mater. Process. Technol., 299(2022), art. No. 117359. doi: 10.1016/j.jmatprotec.2021.117359
      [10]
      R. Zeng, L. Huang, J.J. Li, H.W. Li, H. Zhu, and X.T. Zhang, Quantification of multiple softening processes occurring during multi-stage thermoforming of high-strength steel, Int. J. Plast., 120(2019), p. 64. doi: 10.1016/j.ijplas.2019.04.010
      [11]
      N. Bayat, G.R. Ebrahimi, A. Momeni, and H.R. Ezatpour, Microstructural evolution of a superaustenitic stainless steel during a two-step deformation process, Int. J. Miner. Metall. Mater., 25(2018), No. 2, p. 181. doi: 10.1007/s12613-018-1561-3
      [12]
      Q.W. Wang, Y.C. Lin, Y.Q. Jiang, et al., Precipitation behavior of a β-quenched Ti–5Al–5Mo–5V–1Cr–1Fe alloy during high-temperature compression, Mater. Charact., 151(2019), p. 358. doi: 10.1016/j.matchar.2019.03.034
      [13]
      Y.C. Lin, F. Wu, Q.W. Wang, D.D. Chen, and S.K. Singh, Microstructural evolution of a Ni–Fe–Cr-base superalloy during non-isothermal two-stage hot deformation, Vacuum, 151(2018), p. 283. doi: 10.1016/j.vacuum.2018.02.034
      [14]
      S. Ding, J.W. Zhang, S.A. Khan, and J. Yanagimoto, Static recovery of A5083 aluminum alloy after a small deformation through various measuring approaches, J. Mater. Sci. Technol., 104(2022), p. 202. doi: 10.1016/j.jmst.2021.06.053
      [15]
      Y. Xu, Y.X. Jiao, and J.S. Liu, Modeling of metadynamic recrystallization kinetics and recrystallization mechanisms of V-containing 12Cr rotor steel, J. Mater. Eng. Perform., 29(2020), No. 7, p. 4754. doi: 10.1007/s11665-020-04964-x
      [16]
      H.J. Liu, Q. Wang, J.S. Zhang, K.H. Xu, and Y. Xue, Effect of multi-pass deformation on hot flow behavior and microstructure evolution mechanism of Ti–6Al–4V alloy fabricated by hot isostatic pressing, J. Mater. Res. Technol., 17(2022), p. 2229. doi: 10.1016/j.jmrt.2022.01.136
      [17]
      Q. Ma, K. Wei, Y. Xu, L.J. Zhao, and X. Zhang, Exploration of the static softening behavior and dislocation density evolution of TA15 titanium alloy during double-pass hot compression deformation, J. Mater. Res. Technol., 18(2022), p. 872. doi: 10.1016/j.jmrt.2022.02.122
      [18]
      J. Tang, F.L. Jiang, C.H. Luo, et al., Integrated physically based modeling for the multiple static softening mechanisms following multi-stage hot deformation in Al–Zn–Mg–Cu alloys, Int. J. Plast., 134(2020), art. No. 102809. doi: 10.1016/j.ijplas.2020.102809
      [19]
      B. Jia, H.R. Ma, and Y. Peng, A dislocation density-based unified constitutive model of multipass deformation, Steel Res. Int., 91(2020), No. 2, art. No. 1900372. doi: 10.1002/srin.201900372
      [20]
      J. Wang, G. Chen, S.H. Huang, et al., Multi-scale modeling and simulation for multi-pass processing of Ta–2.5 W alloy, Int. J. Mech. Sci., 218(2022), art. No. 107069. doi: 10.1016/j.ijmecsci.2022.107069
      [21]
      X. Nie, S. Dong, F.H. Wang, et al., Flow behavior and formability of hot-rolled Mg–8Gd–3Y alloy under double-pass isothermal compression, J. Mater. Process. Technol., 275(2020), art. No. 116328. doi: 10.1016/j.jmatprotec.2019.116328
      [22]
      T.K. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas, Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions, Prog. Mater. Sci., 60(2014), p. 130. doi: 10.1016/j.pmatsci.2013.09.002
      [23]
      R. Zeng, L. Huang, H.L. Su, H.J. Ma, Y.F. Ma, and J.J. Li, Softening characterization of 300M high-strength steel during post-dynamic recrystallization, Metals, 8(2018), No. 5, art. No. 340. doi: 10.3390/met8050340
      [24]
      C.M. Li, L. Huang, M.J. Zhao, X.T. Zhang, J.J. Li, and P.C. Li, Influence of hot deformation on dynamic recrystallization behavior of 300M steel: Rules and modeling, Mater. Sci. Eng. A, 797(2020), art. No. 139925. doi: 10.1016/j.msea.2020.139925
      [25]
      Y.B. Xiong, D.X. Wen, Z.Z. Zheng, C.Y. Sun, J. Xie, and J.J. Li, Comparative study of wire arc additive manufactured and wrought ultrahigh-strength steels: Flow behavior and microstructure evolution, Met. Mater. Int., 29(2023), No. 10, p. 3009. doi: 10.1007/s12540-023-01428-4
      [26]
      H. Wang, D. Liu, J.G. Wang, H.P. Wang, Y. Hu, and H.D. Rao, Characterization of hot deformation behavior of 30Si2MnCrMoVE low-alloying ultra-high-strength steel by constitutive equations and processing maps, J. Iron Steel Res. Int., 27(2020), No. 7, p. 807. doi: 10.1007/s42243-019-00335-6
      [27]
      M.J. Zhao, L. Huang, R. Zeng, H.L. Su, D.X. Wen, and J.J. Li, In-situ observations and modeling of metadynamic recrystallization in 300M steel, Mater. Charact., 159(2020), art. No. 109997. doi: 10.1016/j.matchar.2019.109997
      [28]
      R.C. Chen, J. Zeng, G.C. Yao, and F. Feng, Flow-stress model of 300M steel for multi-pass compression, Metals, 10(2020), No. 4, art. No. 438. doi: 10.3390/met10040438
      [29]
      M.J. Zhao, L. Huang, C.M. Li, et al., Flow stress characteristics and constitutive modeling of typical ultrahigh-strength steel under high temperature and large strain, Steel Res. Int., 94(2023), No. 3, art. No. 2200648. doi: 10.1002/srin.202200648
      [30]
      M.J. Zhao, L. Huang, C.M. Li, et al., Investigation and modeling of austenite grain evolution for a typical high-strength low-alloy steel during soaking and deformation process, Acta Metall. Sin., 35(2022), No. 6, p. 996. doi: 10.1007/s40195-021-01330-1
      [31]
      K. Kishore, R.G. Kumar, and A.K. Chandan, Critical assessment of the strain-rate dependent work hardening behaviour of AISI 304 stainless steel, Mater. Sci. Eng. A, 803(2021), art. No. 140675. doi: 10.1016/j.msea.2020.140675
      [32]
      K.K. Kumar, A. Kumar, and S. Sundar, Investigation of microstructure characteristics and work hardening behaviour of water-cooled FSW dissimilar aluminium alloys, Mater. Today Commun., 35(2023), art. No. 105857. doi: 10.1016/j.mtcomm.2023.105857
      [33]
      D.X. Wen, Y.C. Lin, J. Chen, et al., Work-hardening behaviors of typical solution-treated and aged Ni-based superalloys during hot deformation, J. Alloys Compd., 618(2015), p. 372. doi: 10.1016/j.jallcom.2014.08.187
      [34]
      Y.S. Li, Y.W. Dong, Z.H. Jiang, Q.F. Tang, S.Y. Du, and Z.W. Hou, Influence of rare earth Ce on hot deformation behavior of as-cast Mn18Cr18N high nitrogen austenitic stainless steel, Int. J. Miner. Metall. Mater., 30(2023), No. 2, p. 324. doi: 10.1007/s12613-021-2355-6
      [35]
      J.C. Long, Q.X. Xia, G.F. Xiao, Y. Qin, and S. Yuan, Flow characterization of magnesium alloy ZK61 during hot deformation with improved constitutive equations and using activation energy maps, Int. J. Mech. Sci., 191(2021), art. No. 106069. doi: 10.1016/j.ijmecsci.2020.106069
      [36]
      J. Wang, F. Zhao, G.L. Xie, J.X. Xu, and X.H. Liu, Hot compressive deformation of eutectic Al–17at% Cu alloy on the interface of the Cu–Al composite plate produced by horizontal continuous casting, Int. J. Miner. Metall. Mater., 29(2022), No. 8, p. 1578. doi: 10.1007/s12613-021-2276-4
      [37]
      Y. Liu, M. Li, X.W. Ren, Z.B. Xiao, X.Y. Zhang, and Y.C. Huang, Flow stress prediction of Hastelloy C-276 alloy using modified Zerilli–Armstrong, Johnson–Cook and Arrhenius-type constitutive models, Trans. Nonferrous Met. Soc. China, 30(2020), No. 11, p. 3031. doi: 10.1016/S1003-6326(20)65440-1
      [38]
      D. Samantaray, S. Mandal, U. Borah, A.K. Bhaduri, and P.V. Sivaprasad, A thermo-viscoplastic constitutive model to predict elevated-temperature flow behaviour in a titanium-modified austenitic stainless steel, Mater. Sci. Eng. A, 526(2009), No. 1-2, p. 1. doi: 10.1016/j.msea.2009.08.009
      [39]
      Y.L. Lin, K. Zhang, Z.B. He, X.B. Fan, Y.D. Yan, and S.J. Yuan, Constitutive modeling of the high-temperature flow behavior of α-Ti alloy tube, J. Mater. Eng. Perform., 27(2018), No. 5, p. 2475. doi: 10.1007/s11665-018-3352-4
      [40]
      Y.C. Lin and X.M. Chen, A critical review of experimental results and constitutive descriptions for metals and alloys in hot working, Mater. Des., 32(2011), No. 4, p. 1733. doi: 10.1016/j.matdes.2010.11.048
      [41]
      N. Kotkunde, H. Nitin Krishnamurthy, A. Kumar Gupta, and S. Kumar Singh, Study of hot deformation behavior using phenomenological based constitutive model for austenitic stainless steel 316, Mater. Today Proc., 5(2018), No. 2, p. 4870. doi: 10.1016/j.matpr.2017.12.063
      [42]
      A. Mohamadizadeh, A. Zarei-Hanzaki, and H.R. Abedi, Modified constitutive analysis and activation energy evolution of a low-density steel considering the effects of deformation parameters, Mech. Mater., 95(2016), p. 60. doi: 10.1016/j.mechmat.2016.01.001
      [43]
      A. Shamsolhodaei, A. Zarei-Hanzaki, M. Ghambari, and S. Moemeni, The high temperature flow behavior modeling of NiTi shape memory alloy employing phenomenological and physical based constitutive models: A comparative study, Intermetallics, 53(2014), p. 140. doi: 10.1016/j.intermet.2014.04.015
      [44]
      Z.Y. Ding, Q.D. Hu, L. Zeng, and J.G. Li, Hot deformation characteristics of as-cast high-Cr ultra-super-critical rotor steel with columnar grains, Int. J. Miner. Metall. Mater., 23(2016), No. 11, p. 1275. doi: 10.1007/s12613-016-1349-2
      [45]
      Y. Xue, S.S. Chen, Z.M. Zhang, Q. Wang, and J.P. Yan, Hot workability and microstructure evolution of Al–0.2Sc–0.04Zr alloy, J. Mater. Sci., 54(2019), No. 10, p. 7908. doi: 10.1007/s10853-019-03355-5
      [46]
      Q. Chen, L. Hu, M.G. Li, et al., Optimizing process parameters of as-homogenized Mg–Gd–Y–Zn–Zr alloy in isothermal uniaxial compression on the basis of processing maps via prasad criterion and murty criterion, J. Mater. Eng. Perform., 31(2022), No. 3, p. 2257. doi: 10.1007/s11665-021-06305-y
      [47]
      M.S. Ghazani and B. Eghbali, Strain hardening behavior, strain rate sensitivity and hot deformation maps of AISI 321 austenitic stainless steel, Int. J. Miner. Metall. Mater., 28(2021), No. 11, p. 1799. doi: 10.1007/s12613-020-2163-4
      [48]
      C.M. Li, L. Huang, M.J. Zhao, S.Q. Guo, and J.J. Li, Study on microstructure evolution and deformation mechanism of Ti-6554 based on power dissipation efficiency at supertransus temperatures, J. Alloys Compd., 924(2022), art. No. 166481. doi: 10.1016/j.jallcom.2022.166481
      [49]
      A. Paggi, G. Angella, and R. Donnini, Strain induced grain boundary migration effects on grain growth of an austenitic stainless steel during static and metadynamic recrystallization, Mater. Charact., 107(2015), p. 174. doi: 10.1016/j.matchar.2015.07.003
      [50]
      R.Q. Lu, Z.M. Xu, F.L. Jiang, et al., Revealing the grain size dependent hot workability and deformation mechanisms in a Mg–Zn–Y alloy, J. Magnes. Alloys, 11(2023), No. 4, p. 1461. doi: 10.1016/j.jma.2021.08.001
      [51]
      G.Q. Chen, G.S. Fu, T.Y. Wei, C.Z. Cheng, H.S. Wang, and J.D. Wang, Effect of initial grain size on the dynamic recrystallization of hot deformation for 3003 aluminum alloy, Met. Mater. Int., 24(2018), No. 4, p. 711. doi: 10.1007/s12540-018-0093-8
      [52]
      X.F. Ding, F.Q. Zhao, Y.H. Shuang, L.F. Ma, Z.B. Chu, and C.J. Zhao, Characterization of hot deformation behavior of as-extruded AZ31 alloy through kinetic analysis and processing maps, J. Mater. Process. Technol., 276(2020), art. No. 116325. doi: 10.1016/j.jmatprotec.2019.116325
      [53]
      H.T. Lu, D.Z. Li, S.Y. Li, and Y.A. Chen, Hot deformation behavior of Fe–27.34Mn–8.63Al–1.03C lightweight steel, Int. J. Miner. Metall. Mater., 30(2023), No. 4, p. 734. doi: 10.1007/s12613-022-2531-3
      [54]
      M.J. Wang, W.R. Wang, Z.L. Liu, C.Y. Sun, and L.Y. Qian, Hot workability integrating processing and activation energy maps of Inconel 740 superalloy, Mater. Today Commun., 14(2018), p. 188. doi: 10.1016/j.mtcomm.2018.01.009
      [55]
      J.H. Zhao, Y.L. Deng, F.S. Xu, and J. Zhang, Effects of initial grain size of Al–Zn–Mg–Cu alloy on the recrystallization behavior and recrystallization mechanism in isothermal compression, Metals, 9(2019), No. 2, art. No. 110. doi: 10.3390/met9020110
      [56]
      P. Wang, T.H. Yin, and S.X. Qu, On the grain size dependent working hardening behaviors of severe plastic deformation processed metals, Scripta Mater., 178(2020), p. 171. doi: 10.1016/j.scriptamat.2019.11.028
      [57]
      A. Tiamiyu, V. Tari, J. Szpunar, A. Odeshi, and A. Khan, Effects of grain refinement on the quasi-static compressive behavior of AISI 321 austenitic stainless steel: EBSD, TEM, and XRD studies, Int. J. Plast., 107(2018), p. 79. doi: 10.1016/j.ijplas.2018.03.014

    Catalog


    • /

      返回文章
      返回