Cite this article as: |
Xu Zhao, Shoudeng Zhong, Shuqi Wang, Shaozhen Li, and Sujuan Wu, Potassium thiocyanate additive for PEDOT:PSS layer to fabricate efficient tin-based perovskite solar cells, Int. J. Miner. Metall. Mater., 30(2023), No. 12, pp. 2451-2458. https://doi.org/10.1007/s12613-023-2738-y |
李少珍 E-mail: origen2003@whpu.edu.cn
吴素娟 E-mail: sujwu@scnu.edu.cn
[1] |
B.B. Yu, Z.H. Chen, Y.D. Zhu, et al., Heterogeneous 2D/3D tin-halides perovskite solar cells with certified conversion efficiency breaking 14%, Adv. Mater., 33(2021), No. 36, art. No. e2102055. doi: 10.1002/adma.202102055
|
[2] |
E.W.G. Diau, E. Jokar, and M. Rameez, Strategies to improve performance and stability for tin-based perovskite solar cells, ACS Energy Lett., 4(2019), No. 8, p. 1930. doi: 10.1021/acsenergylett.9b01179
|
[3] |
H. Elbohy, B. Bahrami, S. Mabrouk, et al., Tuning hole transport layer using urea for high-performance perovskite solar cells, Adv. Funct. Mater., 29(2019), No. 47, art. No. 1806740. doi: 10.1002/adfm.201806740
|
[4] |
W. Yu, K.X. Wang, B. Guo, et al., Effect of ultraviolet absorptivity and waterproofness of poly(3,4-ethylenedioxythiophene) with extremely weak acidity, high conductivity on enhanced stability of perovskite solar cells, J. Power Sources, 358(2017), p. 29. doi: 10.1016/j.jpowsour.2017.05.007
|
[5] |
N. Cheng, Z. Liu, Z. Yu, et al., High performance inverted perovskite solar cells using PEDOT:PSS/KCl hybrid hole transporting layer, Org. Electron., 98(2021), art. No. 106298. doi: 10.1016/j.orgel.2021.106298
|
[6] |
C.M. Palumbiny, C. Heller, C.J. Schaffer, et al., Molecular reorientation and structural changes in cosolvent-treated highly conductive PEDOT:PSS electrodes for flexible indium tin oxide-free organic electronics, J. Phys. Chem. C, 118(2014), No. 25, p. 13598. doi: 10.1021/jp501540y
|
[7] |
J.P. Cao, Q.D. Tai, P. You, et al., Enhanced performance of tin-based perovskite solar cells induced by an ammonium hypophosphite additive, J. Mater. Chem. A, 7(2019), No. 46, p. 26580. doi: 10.1039/C9TA08679J
|
[8] |
Q.D. Tai, X.Y. Guo, G.Q. Tang, et al., Antioxidant grain passivation for air-stable tin-based perovskite solar cells, Angew. Chem. Int. Ed., 58(2019), No. 3, p. 806. doi: 10.1002/anie.201811539
|
[9] |
W.W. Li, N. Cheng, Y. Cao, et al., Boost the performance of inverted perovskite solar cells with PEDOT:PSS/graphene quantum dots composite hole transporting layer, Org. Electron., 78(2020), art. No. 105575. doi: 10.1016/j.orgel.2019.105575
|
[10] |
C. Wang, C. Zhang, S. Tong, et al., Energy level and thickness control on PEDOT:PSS layer for efficient planar heterojunction perovskite cells, J. Phys. D: Appl. Phys., 51(2018), No. 2, art. No. 025110. doi: 10.1088/1361-6463/aa9d30
|
[11] |
X. Liu, Y.B. Wang, F.X. Xie, X.D. Yang, and L.Y. Han, Improving the performance of inverted formamidinium tin iodide perovskite solar cells by reducing the energy-level mismatch, ACS Energy Lett., 3(2018), p. 1116. doi: 10.1021/acsenergylett.8b00383
|
[12] |
Y.H. Chen, K. Cao, Y.F. Cheng, et al., P-type dopants as dual function interfacial layer for efficient and stable tin perovskite solar cells, Sol. RRL, 5(2021), No. 5, art. No. 2100068. doi: 10.1002/solr.202100068
|
[13] |
X.H. Zhang, Y. Hao, S.Q. Li, et al., Multifunction sandwich structure based on diffusible 2-chloroethylamine for high-efficiency and stable tin-lead mixed perovskite solar cells, J. Phys. Chem. Lett., 13(2022), No. 1, p. 118. doi: 10.1021/acs.jpclett.1c03807
|
[14] |
J.W. Chen, X.H. Zhao, Y.F. Cheng, et al., Hydroxyl-rich d-sorbitol to address transport layer/perovskite interfacial issues toward highly efficient and stable 2D/3D tin-based perovskite solar cells, Adv. Opt. Mater., 9(2021), No. 22, art. No. 2100755. doi: 10.1002/adom.202100755
|
[15] |
Z. Cao, S. Wang, W. Zhu, L. Ding, and F. Hao, Minimizing the voltage deficit of tin halide perovskite solar cells with hydroxyurea-doped PEDOT:PSS, Sol. RRL, 7(2023), No. 2, art. No. 2200889. doi: 10.1002/solr.202200889
|
[16] |
X. Huang, K. Wang, C. Yi, T. Meng, and X. Gong, Efficient perovskite hybrid solar cells by highly electrical conductive PEDOT:PSS hole transport layer, Adv. Energy Mater., 6(2016), No. 3, art. No. 1501773. doi: 10.1002/aenm.201501773
|
[17] |
W. Hu, C.Y. Xu, L.B. Niu, et al., High open-circuit voltage of 1.134 V for inverted planar perovskite solar cells with sodium citrate-doped PEDOT: PSS as a hole transport layer, ACS Appl. Mater. Interfaces, 11(2019), No. 24, p. 22021. doi: 10.1021/acsami.9b06526
|
[18] |
W. Li, H.X. Wang, X.F. Hu, et al., Sodium benzenesulfonate modified poly(3,4-Ethylenedioxythiophenepolystyrene sulfonate with improved wettability and work function for efficient and stable perovskite solar cells, Sol. RRL, 5(2021), No. 1, art. No. 2000573. doi: 10.1002/solr.202000573
|
[19] |
J.J. Cao, Y.H. Lou, W.F. Yang, et al., Multifunctional potassium thiocyanate interlayer for eco-friendly tin perovskite indoor and outdoor photovoltaics, Chem. Eng. J., 433(2022), art. No. 133832. doi: 10.1016/j.cej.2021.133832
|
[20] |
S. Zhong, Z.X. Li, C.Q. Zheng, et al., Guanidine thiocyanate-induced high-quality perovskite film for efficient tin-based perovskite solar cells, Sol. RRL, 6(2022), No. 7, art. No. 2200088. doi: 10.1002/solr.202200088
|
[21] |
C.X. Ran, W.Y. Gao, J.R. Li, et al., Conjugated organic cations enable efficient self-healing FASnI3 solar cells, Joule, 3(2019), No. 12, p. 3072. doi: 10.1016/j.joule.2019.08.023
|
[22] |
K. Cao, Y.F. Cheng, J.W. Chen, et al., Regulated crystallization of FASnI3 films through seeded growth process for efficient tin perovskite solar cells, ACS Appl. Mater. Interfaces, 12(2020), No. 37, p. 41454. doi: 10.1021/acsami.0c11253
|
[23] |
Y. Su, J. Yang, G.L. Liu, et al., Acetic acid-assisted synergistic modulation of crystallization kinetics and inhibition of Sn2+ oxidation in tin-based perovskite solar cells, Adv. Funct. Mater., 32(2021), No. 12, art. No. 2109631.
|
[24] |
Y.J. Xia, K. Sun, and J.Y. Ouyang, Highly conductive poly(3, 4-ethylenedioxythiophene): poly(styrene sulfonate) films treated with an amphiphilic fluoro compound as the transparent electrode of polymer solar cells, Energy Environ. Sci., 5(2012), No. 1, p. 5325. doi: 10.1039/C1EE02475B
|
[25] |
W.B. Han, G.H. Ren, J.M. Liu, et al., Recent progress of inverted perovskite solar cells with a modified PEDOT:PSS hole transport layer, ACS Appl. Mater. Interfaces, 12(2020), No. 44, p. 49297. doi: 10.1021/acsami.0c13576
|
[26] |
F. Wu, K.R. Yan, H.T. Wu, et al., Tuning interfacial chemical interaction for high-performance perovskite solar cell with PEDOT:PSS as hole transporting layer, J. Mater. Chem. A, 9(2021), No. 26, p. 14920. doi: 10.1039/D1TA03024H
|
[27] |
Z.W. Gao, Y. Wang, D. Ouyang, et al., Triple interface passivation strategy enabled efficient and stable inverted perovskite solar cells, Small Methods, 4(2020), No. 12, art. No. 2000478. doi: 10.1002/smtd.202000478
|
[28] |
G.Z. Xia, B.Y. Huang, Y. Zhang, et al., Nanoscale insights into photovoltaic hysteresis in triple-cation mixed-halide perovskite: Resolving the role of polarization and ionic migration, Adv. Mater., 31(2019), No. 36, art. No. e1902870. doi: 10.1002/adma.201902870
|
[29] |
A. Aftab and M.I. Ahmad, A review of stability and progress in tin halide perovskite solar cell, Sol. Energy, 216(2021), p. 26. doi: 10.1016/j.solener.2020.12.065
|
[30] |
M. Ismail, Z. Wu, H.L. You, Y.M. Jia, J.C. Xia, and Y.J. Wang, Photovoltaic effect of “ferroelectric” bananas, Europhys. Lett., 125(2019), No. 4, art. No. 47001. doi: 10.1209/0295-5075/125/47001
|
[31] |
X.L. Xu, L.B. Xiao, J. Zhao, et al., Molecular ferroelectrics-driven high-performance perovskite solar cells, Angew. Chem. Int. Ed., 59(2020), No. 45, p. 19974. doi: 10.1002/anie.202008494
|
[32] |
G.N. Yin, J.X. Ma, H. Jiang, et al., Enhancing efficiency and stability of perovskite solar cells through Nb-doping of TiO2 at low temperature, ACS Appl. Mater. Interfaces, 9(2017), No. 12, p. 10752. doi: 10.1021/acsami.7b01063
|
[33] |
X.Y. Meng, T.H. Wu, X. Liu, et al., Highly reproducible and efficient FASnI3 perovskite solar cells fabricated with volatilizable reducing solvent, J. Phys. Chem. Lett., 11(2020), No. 8, p. 2965. doi: 10.1021/acs.jpclett.0c00923
|
[34] |
X.Y. Liu, X.H. Tan, Z.Y. Liu, et al., Boosting the efficiency of carbon-based planar CsPbBr3 perovskite solar cells by a modified multistep spin-coating technique and interface engineering, Nano Energy, 56(2019), p. 184. doi: 10.1016/j.nanoen.2018.11.053
|
[35] |
L. Chen, C.W. Li, Y.M. Xian, et al., Incorporating potassium citrate to improve the performance of tin-lead perovskite solar cells, Adv. Energy Mater., 13(2023), No. 32, art. No. 2301218. doi: 10.1002/aenm.202301218
|
[36] |
Y. Zhou, Z.B. Zhang, Y.Y. Cai, et al., High performance planar perovskite solar cells based on CH3NH3PbI3–x(SCN)x perovskite film and SnO2 electron transport layer prepared in ambient air with 70% humility, Electrochim. Acta, 260(2018), p. 468. doi: 10.1016/j.electacta.2017.12.076
|
[37] |
C. Chen, Y. Jiang, Y.C. Feng, et al., Understanding the effect of antisolvent on processing window and efficiency for large-area flexible perovskite solar cells, Mater. Today Phys., 21(2021), art. No. 100565. doi: 10.1016/j.mtphys.2021.100565
|
[38] |
C. Chen, Y. Jiang, J.L. Guo, et al., Solvent-assisted low-temperature crystallization of SnO2 electron-transfer layer for high-efficiency planar perovskite solar cells, Adv. Funct. Mater., 29(2019), No. 30, art. No. 1900557. doi: 10.1002/adfm.201900557
|
[39] |
M. Kim, I.W. Choi, S.J. Choi, et al., Enhanced electrical properties of Li-salts doped mesoporous TiO2 in perovskite solar cells, Joule, 5(2021), No. 3, p. 659. doi: 10.1016/j.joule.2021.02.007
|