留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 12
Dec.  2023

图(7)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  550
  • HTML全文浏览量:  174
  • PDF下载量:  23
  • 被引次数: 0
Xu Zhao, Shoudeng Zhong, Shuqi Wang, Shaozhen Li, and Sujuan Wu, Potassium thiocyanate additive for PEDOT:PSS layer to fabricate efficient tin-based perovskite solar cells, Int. J. Miner. Metall. Mater., 30(2023), No. 12, pp. 2451-2458. https://doi.org/10.1007/s12613-023-2738-y
Cite this article as:
Xu Zhao, Shoudeng Zhong, Shuqi Wang, Shaozhen Li, and Sujuan Wu, Potassium thiocyanate additive for PEDOT:PSS layer to fabricate efficient tin-based perovskite solar cells, Int. J. Miner. Metall. Mater., 30(2023), No. 12, pp. 2451-2458. https://doi.org/10.1007/s12613-023-2738-y
引用本文 PDF XML SpringerLink
研究论文

KSCN改性的PEDOT:PPS层用于制备纯锡基钙钛矿太阳能电池


    * 共同第一作者
  • 通讯作者:

    李少珍    E-mail: origen2003@whpu.edu.cn

    吴素娟    E-mail: sujwu@scnu.edu.cn

文章亮点

  • 1)系统研究了适量KSCN添加对采用1∶1体积比的水稀释的PEDOT:PSS溶液制备的空穴层微结构及光电性能的影响。
  • 2)开发了光电性能优异的PEDOT:PSS层,并用于制备纯锡基的钙钛矿太阳能电池,对比研究了电池的光电性能及稳定性。
  • 3)探讨了基于适量KSCN添剂PEDOT:PSS层电池光电性能优异的作用机理。
  • 在锡基钙钛矿太阳能电池中(Sn-PSCs),商业化PEDOT:PSS溶液常被直接用来制备空穴传导层(HTLs)。但是由于PEDOT:PSS原液的酸性比较强,对电池的稳定性不利。尽管可以通过加水来稀释PEDOT:PSS溶液,减小PEDOT:PSS 空穴传导层的酸性,减低其成本。但是稀释后PEDOT:PSS溶液制备的空穴传导层,电导率急剧降低,对应电池光电转换效率显著下降。因此,碱性硫氰酸钾(KSCN)被用来调控稀释后PEDOT:PSS溶液制备空穴传导的光电性能。研制光电性优异的PEDOT:PSS基空穴传导层,力图制备稳定、高效的Sn-PSCs。在本项工作中,系统研究了KSCN添加剂的引入对PEDOT:PSS 层及其上制备钙钛矿层的微结构与光电性能的影响。研究发现,在最优KSCN浓度下,基于KSCN修饰PEDOT:PSS空穴传导层的纯锡基钙钛矿太阳能电池(KSCN-PSCs)的光电转换效率达到了8.39%,而对应基于无KSCN添加剂、未经稀释的PEDOT:PSS原液体制备的PEDOT:PSS HTLs电池的光电转换效率仅为6.7%。研究结果显示,KSCN的添加提高了基于稀释后PEDOT:PSS溶液制备PEDOT:PSS空穴传导层的电导率,改善了其上面制备的钙钛矿层的微结构,抑制了电池中的载流子复合,减小了电池的电滞回效应,提高KSCN-PSCs电池的光电光电转换效率与稳定性。本项研究工作的开展,为发展通过PEDOT:PSS稀溶液来获得Sn-PSCs用的低成本、高质量PEDOT:PSS空穴传导层提供了切实可行的思路。
  • Research Article

    Potassium thiocyanate additive for PEDOT:PSS layer to fabricate efficient tin-based perovskite solar cells

    + Author Affiliations
    • The commercialized poly(3,4-ethylenedioxythiophene):poly (styrenesulfonate) (PEDOT:PSS) is usually used as hole transport layers (HTLs) in tin-based perovskite solar cells (TPSCs). However, the further development has been restricted due to the acidity that could damage the stability of TPSCs. Although the PEDOT:PSS solution can be diluted by water to decrease acidity and reduce the cost of device fabrication, the electrical conductivity will decrease obviously in diluted PEDOT:PSS solution. Herein, potassium thiocyanate (KSCN) is selected to regulate the properties of PEDOT:PSS HTLs from the diluted PEDOT:PSS aqueous solution by water with a volume ratio of 1:1 to prepare efficient TPSCs. The effect of KSCN addition on the structure and photoelectrical properties of PEDOT:PSS HTLs and TPSCs have been systematically studied. At the optimal KSCN concentration, the TPSCs based on KSCN-doped PEDOT:PSS HTLs (KSCN-PSCs) demonstrate the champion power conversion efficiency (PCE) of 8.39%, while the reference TPSCs only show a champioan PCE of 6.70%. The further analysis demonstrates that the KSCN additive increases the electrical conductivity of HTLs prepared by the diluted PEDOT:PSS solution, improves the microstructure of perovskite film, and inhibits carrier recombination in TPSCs, leading to the reduced hysteresis effect and enhanced PCE in KSCN-PSCs. This work gives a low-cost and practical strategy to develop a high-quality PEDOT:PSS HTLs from diluted PEDOT:PSS aqueous solution for efficient TPSCs.
    • loading
    • [1]
      B.B. Yu, Z.H. Chen, Y.D. Zhu, et al., Heterogeneous 2D/3D tin-halides perovskite solar cells with certified conversion efficiency breaking 14%, Adv. Mater., 33(2021), No. 36, art. No. e2102055. doi: 10.1002/adma.202102055
      [2]
      E.W.G. Diau, E. Jokar, and M. Rameez, Strategies to improve performance and stability for tin-based perovskite solar cells, ACS Energy Lett., 4(2019), No. 8, p. 1930. doi: 10.1021/acsenergylett.9b01179
      [3]
      H. Elbohy, B. Bahrami, S. Mabrouk, et al., Tuning hole transport layer using urea for high-performance perovskite solar cells, Adv. Funct. Mater., 29(2019), No. 47, art. No. 1806740. doi: 10.1002/adfm.201806740
      [4]
      W. Yu, K.X. Wang, B. Guo, et al., Effect of ultraviolet absorptivity and waterproofness of poly(3,4-ethylenedioxythiophene) with extremely weak acidity, high conductivity on enhanced stability of perovskite solar cells, J. Power Sources, 358(2017), p. 29. doi: 10.1016/j.jpowsour.2017.05.007
      [5]
      N. Cheng, Z. Liu, Z. Yu, et al., High performance inverted perovskite solar cells using PEDOT:PSS/KCl hybrid hole transporting layer, Org. Electron., 98(2021), art. No. 106298. doi: 10.1016/j.orgel.2021.106298
      [6]
      C.M. Palumbiny, C. Heller, C.J. Schaffer, et al., Molecular reorientation and structural changes in cosolvent-treated highly conductive PEDOT:PSS electrodes for flexible indium tin oxide-free organic electronics, J. Phys. Chem. C, 118(2014), No. 25, p. 13598. doi: 10.1021/jp501540y
      [7]
      J.P. Cao, Q.D. Tai, P. You, et al., Enhanced performance of tin-based perovskite solar cells induced by an ammonium hypophosphite additive, J. Mater. Chem. A, 7(2019), No. 46, p. 26580. doi: 10.1039/C9TA08679J
      [8]
      Q.D. Tai, X.Y. Guo, G.Q. Tang, et al., Antioxidant grain passivation for air-stable tin-based perovskite solar cells, Angew. Chem. Int. Ed., 58(2019), No. 3, p. 806. doi: 10.1002/anie.201811539
      [9]
      W.W. Li, N. Cheng, Y. Cao, et al., Boost the performance of inverted perovskite solar cells with PEDOT:PSS/graphene quantum dots composite hole transporting layer, Org. Electron., 78(2020), art. No. 105575. doi: 10.1016/j.orgel.2019.105575
      [10]
      C. Wang, C. Zhang, S. Tong, et al., Energy level and thickness control on PEDOT:PSS layer for efficient planar heterojunction perovskite cells, J. Phys. D: Appl. Phys., 51(2018), No. 2, art. No. 025110. doi: 10.1088/1361-6463/aa9d30
      [11]
      X. Liu, Y.B. Wang, F.X. Xie, X.D. Yang, and L.Y. Han, Improving the performance of inverted formamidinium tin iodide perovskite solar cells by reducing the energy-level mismatch, ACS Energy Lett., 3(2018), p. 1116. doi: 10.1021/acsenergylett.8b00383
      [12]
      Y.H. Chen, K. Cao, Y.F. Cheng, et al., P-type dopants as dual function interfacial layer for efficient and stable tin perovskite solar cells, Sol. RRL, 5(2021), No. 5, art. No. 2100068. doi: 10.1002/solr.202100068
      [13]
      X.H. Zhang, Y. Hao, S.Q. Li, et al., Multifunction sandwich structure based on diffusible 2-chloroethylamine for high-efficiency and stable tin-lead mixed perovskite solar cells, J. Phys. Chem. Lett., 13(2022), No. 1, p. 118. doi: 10.1021/acs.jpclett.1c03807
      [14]
      J.W. Chen, X.H. Zhao, Y.F. Cheng, et al., Hydroxyl-rich d-sorbitol to address transport layer/perovskite interfacial issues toward highly efficient and stable 2D/3D tin-based perovskite solar cells, Adv. Opt. Mater., 9(2021), No. 22, art. No. 2100755. doi: 10.1002/adom.202100755
      [15]
      Z. Cao, S. Wang, W. Zhu, L. Ding, and F. Hao, Minimizing the voltage deficit of tin halide perovskite solar cells with hydroxyurea-doped PEDOT:PSS, Sol. RRL, 7(2023), No. 2, art. No. 2200889. doi: 10.1002/solr.202200889
      [16]
      X. Huang, K. Wang, C. Yi, T. Meng, and X. Gong, Efficient perovskite hybrid solar cells by highly electrical conductive PEDOT:PSS hole transport layer, Adv. Energy Mater., 6(2016), No. 3, art. No. 1501773. doi: 10.1002/aenm.201501773
      [17]
      W. Hu, C.Y. Xu, L.B. Niu, et al., High open-circuit voltage of 1.134 V for inverted planar perovskite solar cells with sodium citrate-doped PEDOT: PSS as a hole transport layer, ACS Appl. Mater. Interfaces, 11(2019), No. 24, p. 22021. doi: 10.1021/acsami.9b06526
      [18]
      W. Li, H.X. Wang, X.F. Hu, et al., Sodium benzenesulfonate modified poly(3,4-Ethylenedioxythiophenepolystyrene sulfonate with improved wettability and work function for efficient and stable perovskite solar cells, Sol. RRL, 5(2021), No. 1, art. No. 2000573. doi: 10.1002/solr.202000573
      [19]
      J.J. Cao, Y.H. Lou, W.F. Yang, et al., Multifunctional potassium thiocyanate interlayer for eco-friendly tin perovskite indoor and outdoor photovoltaics, Chem. Eng. J., 433(2022), art. No. 133832. doi: 10.1016/j.cej.2021.133832
      [20]
      S. Zhong, Z.X. Li, C.Q. Zheng, et al., Guanidine thiocyanate-induced high-quality perovskite film for efficient tin-based perovskite solar cells, Sol. RRL, 6(2022), No. 7, art. No. 2200088. doi: 10.1002/solr.202200088
      [21]
      C.X. Ran, W.Y. Gao, J.R. Li, et al., Conjugated organic cations enable efficient self-healing FASnI3 solar cells, Joule, 3(2019), No. 12, p. 3072. doi: 10.1016/j.joule.2019.08.023
      [22]
      K. Cao, Y.F. Cheng, J.W. Chen, et al., Regulated crystallization of FASnI3 films through seeded growth process for efficient tin perovskite solar cells, ACS Appl. Mater. Interfaces, 12(2020), No. 37, p. 41454. doi: 10.1021/acsami.0c11253
      [23]
      Y. Su, J. Yang, G.L. Liu, et al., Acetic acid-assisted synergistic modulation of crystallization kinetics and inhibition of Sn2+ oxidation in tin-based perovskite solar cells, Adv. Funct. Mater., 32(2021), No. 12, art. No. 2109631.
      [24]
      Y.J. Xia, K. Sun, and J.Y. Ouyang, Highly conductive poly(3, 4-ethylenedioxythiophene): poly(styrene sulfonate) films treated with an amphiphilic fluoro compound as the transparent electrode of polymer solar cells, Energy Environ. Sci., 5(2012), No. 1, p. 5325. doi: 10.1039/C1EE02475B
      [25]
      W.B. Han, G.H. Ren, J.M. Liu, et al., Recent progress of inverted perovskite solar cells with a modified PEDOT:PSS hole transport layer, ACS Appl. Mater. Interfaces, 12(2020), No. 44, p. 49297. doi: 10.1021/acsami.0c13576
      [26]
      F. Wu, K.R. Yan, H.T. Wu, et al., Tuning interfacial chemical interaction for high-performance perovskite solar cell with PEDOT:PSS as hole transporting layer, J. Mater. Chem. A, 9(2021), No. 26, p. 14920. doi: 10.1039/D1TA03024H
      [27]
      Z.W. Gao, Y. Wang, D. Ouyang, et al., Triple interface passivation strategy enabled efficient and stable inverted perovskite solar cells, Small Methods, 4(2020), No. 12, art. No. 2000478. doi: 10.1002/smtd.202000478
      [28]
      G.Z. Xia, B.Y. Huang, Y. Zhang, et al., Nanoscale insights into photovoltaic hysteresis in triple-cation mixed-halide perovskite: Resolving the role of polarization and ionic migration, Adv. Mater., 31(2019), No. 36, art. No. e1902870. doi: 10.1002/adma.201902870
      [29]
      A. Aftab and M.I. Ahmad, A review of stability and progress in tin halide perovskite solar cell, Sol. Energy, 216(2021), p. 26. doi: 10.1016/j.solener.2020.12.065
      [30]
      M. Ismail, Z. Wu, H.L. You, Y.M. Jia, J.C. Xia, and Y.J. Wang, Photovoltaic effect of “ferroelectric” bananas, Europhys. Lett., 125(2019), No. 4, art. No. 47001. doi: 10.1209/0295-5075/125/47001
      [31]
      X.L. Xu, L.B. Xiao, J. Zhao, et al., Molecular ferroelectrics-driven high-performance perovskite solar cells, Angew. Chem. Int. Ed., 59(2020), No. 45, p. 19974. doi: 10.1002/anie.202008494
      [32]
      G.N. Yin, J.X. Ma, H. Jiang, et al., Enhancing efficiency and stability of perovskite solar cells through Nb-doping of TiO2 at low temperature, ACS Appl. Mater. Interfaces, 9(2017), No. 12, p. 10752. doi: 10.1021/acsami.7b01063
      [33]
      X.Y. Meng, T.H. Wu, X. Liu, et al., Highly reproducible and efficient FASnI3 perovskite solar cells fabricated with volatilizable reducing solvent, J. Phys. Chem. Lett., 11(2020), No. 8, p. 2965. doi: 10.1021/acs.jpclett.0c00923
      [34]
      X.Y. Liu, X.H. Tan, Z.Y. Liu, et al., Boosting the efficiency of carbon-based planar CsPbBr3 perovskite solar cells by a modified multistep spin-coating technique and interface engineering, Nano Energy, 56(2019), p. 184. doi: 10.1016/j.nanoen.2018.11.053
      [35]
      L. Chen, C.W. Li, Y.M. Xian, et al., Incorporating potassium citrate to improve the performance of tin-lead perovskite solar cells, Adv. Energy Mater., 13(2023), No. 32, art. No. 2301218. doi: 10.1002/aenm.202301218
      [36]
      Y. Zhou, Z.B. Zhang, Y.Y. Cai, et al., High performance planar perovskite solar cells based on CH3NH3PbI3–x(SCN)x perovskite film and SnO2 electron transport layer prepared in ambient air with 70% humility, Electrochim. Acta, 260(2018), p. 468. doi: 10.1016/j.electacta.2017.12.076
      [37]
      C. Chen, Y. Jiang, Y.C. Feng, et al., Understanding the effect of antisolvent on processing window and efficiency for large-area flexible perovskite solar cells, Mater. Today Phys., 21(2021), art. No. 100565. doi: 10.1016/j.mtphys.2021.100565
      [38]
      C. Chen, Y. Jiang, J.L. Guo, et al., Solvent-assisted low-temperature crystallization of SnO2 electron-transfer layer for high-efficiency planar perovskite solar cells, Adv. Funct. Mater., 29(2019), No. 30, art. No. 1900557. doi: 10.1002/adfm.201900557
      [39]
      M. Kim, I.W. Choi, S.J. Choi, et al., Enhanced electrical properties of Li-salts doped mesoporous TiO2 in perovskite solar cells, Joule, 5(2021), No. 3, p. 659. doi: 10.1016/j.joule.2021.02.007

    Catalog


    • /

      返回文章
      返回