留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 3
Mar.  2024

图(18)  / 表(5)

数据统计

分享

计量
  • 文章访问数:  512
  • HTML全文浏览量:  204
  • PDF下载量:  33
  • 被引次数: 0
Yufeng Guo, Jinlai Zhang, Shuai Wang, Jianjun Fan, Haokun Li, Feng Chen, Kuo Liu, and Lingzhi Yang, Diffusion and reaction mechanism of limestone and quartz in fluxed iron ore pellet roasting process, Int. J. Miner. Metall. Mater., 31(2024), No. 3, pp. 485-497. https://doi.org/10.1007/s12613-023-2739-x
Cite this article as:
Yufeng Guo, Jinlai Zhang, Shuai Wang, Jianjun Fan, Haokun Li, Feng Chen, Kuo Liu, and Lingzhi Yang, Diffusion and reaction mechanism of limestone and quartz in fluxed iron ore pellet roasting process, Int. J. Miner. Metall. Mater., 31(2024), No. 3, pp. 485-497. https://doi.org/10.1007/s12613-023-2739-x
引用本文 PDF XML SpringerLink
研究论文

熔剂性球团焙烧过程中石灰石和石英的扩散反应机制研究


  • 通讯作者:

    王帅    E-mail: wang_shuai@csu.edu.cn

文章亮点

  • (1)1200°C焙烧9 h,Fe2O3-CaO系扩散偶的互扩散系数数量级为10−10 m2⋅s−1
  • (2)熔剂性球团中石灰石与铁矿扩散界面的初始产物为Ca2Fe2O5
  • (3)石英固溶进CaFe2O4产生复合铁酸钙液相,提高熔剂性球团的固结强度。
  • (4)构建了熔剂性球团焙烧过程石灰石和石英扩散反应的机理模型。
  • 提高熔剂性球团在高炉炉料中的比例是降低炼铁过程中碳排放的有效途径。本文通过设计扩散偶试验,研究了焙烧过程中石灰石和石英与铁矿粉之间的相互作用以及熔剂性铁矿球团矿化机理。利用扫描电子显微镜和能谱技术研究了焙烧过程中元素的扩散和相变过程。研究结果表明,在预热过程前期石灰石迅速分解为氧化钙,磁铁矿被氧化成赤铁矿。随着焙烧温度的升高,Fe和Ca的扩散速度明显加快,而Si的扩散速度相对缓慢。经1200°C焙烧9 h时,Fe2O3–CaO系扩散偶的互扩散系数数量级为10−10 m2·s−1。Fe2O3–CaO–SiO2扩散界面的初始产物为Ca2Fe2O5,随后Ca2Fe2O5继续与Fe2O3反应生成CaFe2O4。随着扩散区域的扩大,石英固溶进CaFe2O4产生复合铁酸钙液相,从而提高了熔剂性球团的固结强度。同时,少量石英颗粒周围还会形成有利于熔剂性球团固结的钙铁榴石相。此外,还形成了熔剂性球团焙烧过程石灰石和石英扩散反应的机理模型。
  • Research Article

    Diffusion and reaction mechanism of limestone and quartz in fluxed iron ore pellet roasting process

    + Author Affiliations
    • The increase to the proportion of fluxed pellets in the blast furnace burden is a useful way to reduce the carbon emissions in the ironmaking process. In this study, the interaction between calcium carbonate and iron ore powder and the mineralization mechanism of fluxed iron ore pellet in the roasting process were investigated through diffusion couple experiments. Scanning electron microscopy with energy dispersive spectroscopy was used to study the elements’ diffusion and phase transformation during the roasting process. The results indicated that limestone decomposed into calcium oxide, and magnetite was oxidized to hematite at the early stage of preheating. With the increase in roasting temperature, the diffusion rate of Fe and Ca was obviously accelerated, while the diffusion rate of Si was relatively slow. The order of magnitude of interdiffusion coefficient of Fe2O3–CaO diffusion couple was 10−10 m2·s−1 at a roasting temperature of 1200°C for 9 h. Ca2Fe2O5 was the initial product in the Fe2O3–CaO–SiO2 diffusion interface, and then Ca2Fe2O5 continued to react with Fe2O3 to form CaFe2O4. With the expansion of the diffusion region, the sillico-ferrite of calcium liquid phase was produced due to the melting of SiO2 into CaFe2O4, which can strengthen the consolidation of fluxed pellets. Furthermore, andradite would be formed around a small part of quartz particles, which is also conducive to the consolidation of fluxed pellets. In addition, the principle diagram of limestone and quartz diffusion reaction in the process of fluxed pellet roasting was discussed.
    • loading
    • [1]
      F. Zhang, D.Q. Zhu, J. Pan, Z.Q. Guo, and C.C. Yang, Effect of basicity on the structure characteristics of chromium–nickel bearing iron ore pellets, Powder Technol., 342(2019), p. 409. doi: 10.1016/j.powtec.2018.09.100
      [2]
      B. Hu, P.W. Hu, B. Lu, et al., NO x emission reduction by advanced reburning in grate-rotary kiln for the iron ore pelletizing production, Processes, 8(2020), No. 11, art. No. 1470. doi: 10.3390/pr8111470
      [3]
      Y.F. Guo, K. Liu, F. Chen, et al., Effect of basicity on the reduction swelling behavior and mechanism of limestone fluxed iron ore pellets, Powder Technol., 393(2021), p. 291. doi: 10.1016/j.powtec.2021.07.057
      [4]
      P. Wang, C.Q. Wang, H.T. Wang, H.M. Long, and T.B. Zhou, Effects of SiO2, CaO and basicity on reduction behaviors and swelling properties of fluxed pellet at different stages, Powder Technol., 396(2022), p. 477. doi: 10.1016/j.powtec.2021.09.080
      [5]
      W. Lv, Z.Q. Sun, and Z.J. Su, Life cycle energy consumption and greenhouse gas emissions of iron pelletizing process in China, a case study, J. Clean. Prod., 233(2019), p. 1314. doi: 10.1016/j.jclepro.2019.06.180
      [6]
      J.G. Lu, C.C. Lan, Q. Lyu, S.H. Zhang, and J.N. Sun, Effects of SiO2 on the preparation and metallurgical properties of acid oxidized pellets, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 629. doi: 10.1007/s12613-020-2236-4
      [7]
      H.T. Wang and H.Y. Sohn, Effect of CaO and SiO2 on swelling and iron whisker formation during reduction of iron oxide compact, Ironmaking Steelmaking, 38(2011), No. 6, p. 447. doi: 10.1179/1743281211Y.0000000022
      [8]
      G.C. Zhang, G.P. Luo, and C.C. Sun, Effect of CaF2 on the reduction swelling properties of iron ore briquettes in different reduction stages, Min. Metall. Explor., 38(2021), No. 4, p. 1711.
      [9]
      T. Umadevi, A. Kumar, P. Karthik, R. Srinidhi, and S. Manjini, Characterisation studies on swelling behaviour of iron ore pellets, Ironmaking Steelmaking, 45(2018), No. 2, p. 157. doi: 10.1080/03019233.2016.1250043
      [10]
      M.B. Shaik, C. Sekhar, S. Dwarapudi, et al., Characterization of colemanite and its effect on cold compressive strength and swelling index of iron ore pellets, Min. Metall. Explor., 38(2021), No. 1, p. 217. doi: 10.1007/s42461-020-00331-5
      [11]
      R.K. Dishwar, A.K. Mandal, and O.P. Sinha, Studies on highly fluxed iron ore pellets hardened at 1100°C to 1200°C, Metall. Mater. Trans. B, 50(2019), No. 2, p. 617. doi: 10.1007/s11663-019-01506-2
      [12]
      R.K. Dishwar and O.P. Sinha, Effect of basicity on the activation energy during reduction of highly fluxed iron ore pellets, Fuel, 296(2021), art. No. 120640. doi: 10.1016/j.fuel.2021.120640
      [13]
      S. Wang, Y.F. Guo, J.J. Fan, et al., Degradation mechanism of high alumina refractory bricks by reaction with deposits in a rotary kiln for fluxed iron ore pellets production, Ceram. Int., 48(2022), No. 9, p. 12014. doi: 10.1016/j.ceramint.2022.01.059
      [14]
      K.K. Bai, L.C. Liu, Y.Z. Pan, H.B. Zuo, J.S. Wang, Q.G. Xue, A review: Research progress of flux pellets and their application in China, Ironmaking Steelmaking, 48(2021), p. 1048. doi: 10.1080/03019233.2021.1911770
      [15]
      S. Dwarapudi, T.K. Ghosh, V. Tathavadkar, M.B. Denys, D. Bhattacharjee, and R. Venugopal, Effect of MgO in the form of magnesite on the quality and microstructure of hematite pellets, Int. J. Miner. Process., 112-113(2012), p. 55. doi: 10.1016/j.minpro.2012.06.006
      [16]
      M. Iljana, A. Kemppainen, T. Paananen, et al., Effect of adding limestone on the metallurgical properties of iron ore pellets, Int. J. Miner. Process., 141(2015), p. 34. doi: 10.1016/j.minpro.2015.06.004
      [17]
      S. Dwarapudi, C. Sekhar, I. Paul, Y.G.S. Prasad, K. Modi, and U. Chakraborty, Effect of fluxing agents on reduction degradation behaviour of hematite pellets, Ironmaking Steelmaking, 43(2016), No. 3, p. 180. doi: 10.1179/1743281215Y.0000000030
      [18]
      R.R. Wang, J.L. Zhang, Z.J. Liu, X.L. Liu, C.Y. Xu, and Y. Li, Effects of magnesium olivine on the mineral structure and compressive strength of pellets, Ironmaking Steelmaking, 47(2020), No. 2, p. 100. doi: 10.1080/03019233.2018.1482599
      [19]
      P. Prusti, K. Barik, N. Dash, S.K. Biswal, and B.C. Meikap, Effect of limestone and dolomite flux on the quality of pellets using high LOI iron ore, Powder Technol., 379(2021), p. 154. doi: 10.1016/j.powtec.2020.10.063
      [20]
      S. Dwarapudi, T.K. Ghosh, A. Shankar, V. Tathavadkar, D. Bhattacharjee, and R. Venugopal, Effect of pellet basicity and MgO content on the quality and microstructure of hematite pellets, Int. J. Miner. Process., 99(2011), No. 1-4, p. 43. doi: 10.1016/j.minpro.2011.03.004
      [21]
      M. Meraj, S. Pramanik, and J. Pal, Role of MgO and its different minerals on properties of iron ore pellet, Trans. Indian Inst. Met., 69(2016), No. 6, p. 1141. doi: 10.1007/s12666-015-0676-8
      [22]
      S. Dwarapudi, P.K. Banerjee, P. Chaudhary, et al., Effect of fluxing agents on the swelling behavior of hematite pellets, Int. J. Miner. Process., 126(2014), p. 76. doi: 10.1016/j.minpro.2013.11.012
      [23]
      P. Prusti and K. Barik, Effect of additives concentration on pelletization of high grade hematite, Mater. Today Proc., 33(2020), p. 5373. doi: 10.1016/j.matpr.2020.03.118
      [24]
      Y.B. Zhang, X.J. Chen, Z.J. Su, et al., Improving properties of fluxed iron ore pellets with high-silica by regulating liquid phase, J. Iron Steel Res. Int., 29(2022), No. 9, p. 1381. doi: 10.1007/s42243-021-00665-4
      [25]
      A. Kemppainen, K.I. Ohno, M. Iljana, et al., Softening behaviors of acid and olivine fluxed iron ore pellets in the cohesive zone of a blast furnace, ISIJ Int., 55(2015), No. 10, p. 2039. doi: 10.2355/isijinternational.ISIJINT-2015-023
      [26]
      R.R. Wang, J.L. Zhang, Z.J. Liu, Y. Li, and C.Y. Xu, Effect of CaO and MgO additives on the compressive strength of pellets: Exploration on the decisive stage during induration, Powder Technol., 390(2021), p. 496. doi: 10.1016/j.powtec.2021.06.001
      [27]
      A.R. Firth, J.F. Garden, and J.D. Douglas, Phase equilibria and slag formation in the magnetite core of fluxed iron ore pellets, ISIJ Int., 48(2008), No. 11, p. 1485. doi: 10.2355/isijinternational.48.1485
      [28]
      G.S. Feng, S.L. Wu, H.L. Han, L.W. Ma, W.Z. Jiang, and X.Q. Liu, Sintering characteristics of fluxes and their structure optimization, Int. J. Miner. Metall. Mater., 18(2011), No. 3, p. 270. doi: 10.1007/s12613-011-0433-x
      [29]
      F. Kongoli, I. Mcbow, R. Budd, S. Llubani, and A. Yazawa, Effect of oxygen potential and fluxing components on phase relations during sintering of iron ore, J. Min. Metall. Sect. B Metall., 46(2010), No. 2, p. 123. doi: 10.2298/JMMB1002123K
      [30]
      H.B. Li, D.J. Pinson, P. Zulli, et al., Interaction between mineral phases in a hematite iron ore and fluxing materials during sintering, Metall. Mater. Trans. B, 52(2021), No. 1, p. 267. doi: 10.1007/s11663-020-02010-8
      [31]
      X. Ding and X.M. Guo, Study of SiO2 involved in the formation process of silico-ferrite of calcium (SFC) by solid-state reactions, Int. J. Miner. Process., 149(2016), p. 69. doi: 10.1016/j.minpro.2016.02.007
      [32]
      X. Ding, Y.J. Wang, X.M. Guo, S.L. Ran, and C.Y. Ma, Investigation of structural and electrical properties of silico-ferrite of calcium (SFC) in the Fe2O3–CaO–SiO2 system synthesized by solid-state reaction, J. Mater. Sci. Mater. Electron., 30(2019), No. 16, p. 15715. doi: 10.1007/s10854-019-01957-y
      [33]
      X. Ding and X.M. Guo, The sintering characteristics of mixing SiO2 with calcium ferrite at 1473 K (1200°C), Metall. Mater. Trans. B, 46(2015), No. 4, p. 1742. doi: 10.1007/s11663-015-0348-4
      [34]
      H.R. Wang, R. Kou, T. Harrington, and K.S. Vecchio, Electromigration effect in Fe–Al diffusion couples with field-assisted sintering, Acta Mater., 186(2020), p. 631. doi: 10.1016/j.actamat.2020.01.008
      [35]
      J. Wen, H.Y. Sun, T. Jiang, B.J. Chen, F.F. Li, and M.X. Liu, Comparison of the interface reaction behaviors of CaO–V2O5 and MnO2–V2O5 solid-state systems based on the diffusion couple method, Int. J. Miner. Metall. Mater., 30(2023), No. 5, p. 834. doi: 10.1007/s12613-022-2564-7
      [36]
      W. Wei, H.R. Yue, and X.X. Xue, Diffusion coefficient of Ti4+ in calcium ferrite/calcium titanate diffusion couple, Int. J. Miner. Metall. Mater., 27(2020), No. 9, p. 1216. doi: 10.1007/s12613-020-2057-5
      [37]
      R.R. Wang, J.L. Zhang, Z.J. Liu, X.L. Liu, C.Y. Xu, and Y. Li, Interaction between iron ore and magnesium additives during induration process of pellets, Powder Technol., 361(2020), p. 894. doi: 10.1016/j.powtec.2019.11.006
      [38]
      Q.J. Gao, Y.S. Shen, G. Wei, X. Jiang, and F.M. Shen, Diffusion behavior and distribution regulation of MgO in MgO-bearing pellets, Int. J. Miner. Metall. Mater., 23(2016), No. 9, p. 1011. doi: 10.1007/s12613-016-1318-9
      [39]
      H. Fukuyama, K. Hossain, and K. Nagata, Solid-state reaction kinetics of the system CaO–FeO, Metall. Mater. Trans. B, 33(2002), No. 2, p. 257. doi: 10.1007/s11663-002-0010-9
      [40]
      R. Freer, Self-diffusion and impurity diffusion in oxides, J. Mater. Sci., 15(1980), No. 4, p. 803. doi: 10.1007/BF00552089
      [41]
      J.W. Jeon, S.M. Jung, and Y. Sasaki, Formation of calcium ferrites under controlled oxygen potentials at 1273 K, ISIJ Int., 50(2010), No. 8, p. 1064. doi: 10.2355/isijinternational.50.1064

    Catalog


    • /

      返回文章
      返回