留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 4
Apr.  2024

图(8)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  357
  • HTML全文浏览量:  152
  • PDF下载量:  15
  • 被引次数: 0
Xu Zhao, Naitao Gao, Shengcheng Wu, Shaozhen Li,  and Sujuan Wu, Enhancing performance of low-temperature processed CsPbI2Br all-inorganic perovskite solar cells using polyethylene oxide-modified TiO2, Int. J. Miner. Metall. Mater., 31(2024), No. 4, pp. 786-794. https://doi.org/10.1007/s12613-023-2742-2
Cite this article as:
Xu Zhao, Naitao Gao, Shengcheng Wu, Shaozhen Li,  and Sujuan Wu, Enhancing performance of low-temperature processed CsPbI2Br all-inorganic perovskite solar cells using polyethylene oxide-modified TiO2, Int. J. Miner. Metall. Mater., 31(2024), No. 4, pp. 786-794. https://doi.org/10.1007/s12613-023-2742-2
引用本文 PDF XML SpringerLink
研究论文

PEO修饰TiO2电子层提高低温制备的全无机钙钛矿太阳能电池光电性能



    * 共同第一作者
  • 通讯作者:

    李少珍    E-mail: sujwu@scnu.edu.cn

    吴素娟    E-mail: origen2003@whpu.edu.cn

文章亮点

  • (1) 系统地研究了PEO修饰对CsPbI2Br-基全无机钙钛矿太阳能电池光电性能影响规律。
  • (2) 开发了调控低温TiO2/CsPbI2Br界面的简单方法。
  • (3) 深入探究了PEO修饰该界面提高电池光电性能的可能原因。
  • 由于成本低廉、热稳定性好,低温工艺制备的CsPbX3-基 (X = I, Br, Cl) 无机钙钛矿太阳能电池 (PSCs) 备受关注。但是,在低温工艺制备的TiO2膜与无机钙钛矿层间的界面存在较高的缺陷态密度,导致严重的电荷复合,从而限制了全无机钙钛矿太阳能电池效率的提高。因此,本工作引入聚环氧乙烷(PEO)修饰的TiO2 膜来钝化该界面的缺陷态,促进载流子的传导与收集。系统研究了PEO修饰对TiO2膜、CsPbI2Br层微结构及电池光电性能的影响。研究结果显示:PEO修饰将降低TiO2膜的表面粗糙度及其平均表面电势、并且钝化该界面的缺陷态。在最优工艺条件下,PEO修饰后将电池的最优光电转换效率由9.03%提高到了11.24%。同时,PEO的修饰抑制了电池中的电滞回效应,减小了电荷复合,促进了载流子的有效传导与收集。
  • Research Article

    Enhancing performance of low-temperature processed CsPbI2Br all-inorganic perovskite solar cells using polyethylene oxide-modified TiO2

    + Author Affiliations
    • CsPbX3-based (X = I, Br, Cl) inorganic perovskite solar cells (PSCs) prepared by low-temperature process have attracted much attention because of their low cost and excellent thermal stability. However, the high trap state density and serious charge recombination between low-temperature processed TiO2 film and inorganic perovskite layer interface seriously restrict the performance of all-inorganic PSCs. Here a thin polyethylene oxide (PEO) layer is employed to modify TiO2 film to passivate traps and promote carrier collection. The impacts of PEO layer on microstructure and photoelectric characteristics of TiO2 film and related devices are systematically studied. Characterization results suggest that PEO modification can reduce the surface roughness of TiO2 film, decrease its average surface potential, and passivate trap states. At optimal conditions, the champion efficiency of CsPbI2Br PSCs with PEO-modified TiO2 (PEO-PSCs) has been improved to 11.24% from 9.03% of reference PSCs. Moreover, the hysteresis behavior and charge recombination have been suppressed in PEO-PSCs.
    • loading
    • Supplementary Information-s12613-023-2742-2.docx
    • [1]
      L. Chu, S.B. Zhai, W. Ahmad, et al., High-performance large-area perovskite photovoltaic modules, Nano Res. Energy, 1(2022), No. 2, art. No. 9120024. doi: 10.26599/NRE.2022.9120024
      [2]
      Z.T. Wang, Q.W. Tian, H. Zhang, et al., Managing multiple halide-related defects for efficient and stable inorganic perovskite solar cells, Angew. Chem. Int. Ed., 62(2023), No. 30, art. No. e202305815. doi: 10.1002/anie.202305815
      [3]
      S.Y. Zhang, J. He, X. Guo, et al., Crystallization dynamic control of perovskite films with suppressed phase transition and reduced defects for highly efficient and stable all-inorganic perovskite solar cells, ACS Mater. Lett., 5(2023), No. 6, p. 1497. doi: 10.1021/acsmaterialslett.3c00275
      [4]
      G.E. Eperon, G.M. Paternò, R.J. Sutton, et al., Inorganic caesium lead iodide perovskite solar cells, J. Mater. Chem. A, 3(2015), No. 39, p. 19688. doi: 10.1039/C5TA06398A
      [5]
      J.X. Zhang, G.Z. Zhang, P.Y. Su, et al., 1D choline-PbI3-based heterostructure boosts efficiency and stability of CsPbI3 perovskite solar cells, Angew. Chem. Int. Ed., 62(2023), No. 25, art. No. e202303486. doi: 10.1002/anie.202303486
      [6]
      Q.S. Zeng, X.Y. Zhang, C.M. Liu, et al., Inorganic CsPbI2Br perovskite solar cells: The progress and perspective, Sol. RRL, 3(2019), No. 1, art. No. 1800239. doi: 10.1002/solr.201800239
      [7]
      H.P. Dong, Y. Li, S.F. Wang, et al., Interface engineering of perovskite solar cells with PEO for improved performance, J. Mater. Chem. A, 3(2015), No. 18, p. 9999. doi: 10.1039/C5TA00407A
      [8]
      L. Yan, Q.F. Xue, M.Y. Liu, et al., Interface engineering for all-inorganic CsPbI2Br perovskite solar cells with efficiency over 14%, Adv. Mater., 30(2018), No. 33, art. No. 1802509. doi: 10.1002/adma.201802509
      [9]
      S.M. Yang, H. Zhao, Y. Han, C.Y. Duan, Z.K. Liu, and S.F. Liu, Europium and acetate co-doping strategy for developing stable and efficient CsPbI2Br perovskite solar cells, Small, 15(2019), No. 46, art. No. 1904387. doi: 10.1002/smll.201904387
      [10]
      E.C. Shen, J.D. Chen, Y. Tian, et al., Interfacial energy level tuning for efficient and thermostable CsPbI2Br perovskite solar cells, Adv. Sci., 7(2020), No. 1, art. No. 1901952. doi: 10.1002/advs.201901952
      [11]
      Q.Y. Guo, J.L. Duan, J.S. Zhang, et al., Universal dynamic liquid interface for healing perovskite solar cells, Adv. Mater., 34(2022), No. 26, art. No. 2202301. doi: 10.1002/adma.202202301
      [12]
      H.P. Zhou, Q. Chen, G. Li, et al., Interface engineering of highly efficient perovskite solar cells, Science, 345(2014), No. 6196, p. 542. doi: 10.1126/science.1254050
      [13]
      J.J. He, B. Ge, Y. Hou, S. Yang, and H.G. Yang, A dendrite-structured RbX (X=Br, I) interlayer for CsPbI2Br perovskite solar cells with over 15 % stabilized efficiency, ChemSusChem, 13(2020), No. 20, p. 5443. doi: 10.1002/cssc.202001629
      [14]
      A.R. Zhao, Y. Han, Y.H. Che, et al., High-quality borophene quantum dot realization and their application in a photovoltaic device, J. Mater. Chem. A, 9(2021), No. 42, p. 24036. doi: 10.1039/D1TA06524F
      [15]
      W.R. Wang, Y. Lin, G.Z. Zhang, et al., Modification of compact TiO2 layer by TiCl4–TiCl3 mixture treatment and construction of high-efficiency carbon-based CsPbI2Br perovskite solar cells, J. Energy Chem., 63(2021), p. 442. doi: 10.1016/j.jechem.2021.07.014
      [16]
      C.H. Duan, Q.Y. Wen, Y. Fan, J. Li, Z.D. Liu, and K.Y. Yan, Improving the stability and scalability of all-inorganic inverted CsPbI2Br perovskite solar cell, J. Energy Chem., 68(2022), p. 176. doi: 10.1016/j.jechem.2021.11.026
      [17]
      Y. Jing, X. Liu, Y. Xu, et al., Amorphous antimony sulfide nanoparticles construct multi-contact electron transport layers for efficient carbon-based all-inorganic CsPbI2Br perovskite solar cells, Chem. Eng. J., 455(2023), art. No. 140871. doi: 10.1016/j.cej.2022.140871
      [18]
      S. You, H. Wang, S.Q. Bi, et al., A biopolymer heparin sodium interlayer anchoring TiO2 and MAPbI3 enhances trap passivation and device stability in perovskite solar cells, Adv. Mater., 30(2018), No. 22, art. No. 1706924. doi: 10.1002/adma.201706924
      [19]
      J. Tan, J. Dou, J.L. Duan, Y.Y. Zhao, B.L. He, and Q.W. Tang, A trifunctional polyethylene oxide buffer layer for stable and efficient all-inorganic CsPbBr3 perovskite solar cells, Dalton Trans., 52(2023), No. 13, p. 4038. doi: 10.1039/D3DT00169E
      [20]
      K. Tian, Y. Lu, R. Liu, X.J. Loh, and D.J. Young, Low-threshold amplified spontaneous emission from air-stable CsPbBr3 perovskite films containing trace amounts of polyethylene oxide, ChemPlusChem, 86(2021), No. 11, p. 1537. doi: 10.1002/cplu.202100377
      [21]
      Z. Uddin, J.H. Ran, E. Stathatos, and B. Yang, Improving thermal stability of perovskite solar cells by thermoplastic additive engineering, Energies, 16(2023), No. 9, art. No. 3621. doi: 10.3390/en16093621
      [22]
      J.J. Yang, X. Yu, X.B. Lu, et al., Bifunctional passivation for efficient and stable low-temperature processed all-inorganic CsPbIBr2 perovskite solar cells, Surf. Interfaces, 32(2022), art. No. 102097. doi: 10.1016/j.surfin.2022.102097
      [23]
      P.L. Qin, T. Wu, Z.C. Wang, et al., Vitrification transformation of poly(ethylene oxide) activating interface passivation for high-efficiency perovskite solar cells, Sol. RRL, 3(2019), No. 10, art. No. 1900134. doi: 10.1002/solr.201900134
      [24]
      N. Arora, M.I. Dar, A. Hinderhofer, et al., Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20%, Science, 358(2017), No. 6364, p. 768. doi: 10.1126/science.aam5655
      [25]
      Q. Chen, H.P. Zhou, Z.R. Hong, et al., Planar heterojunction perovskite solar cells via vapor-assisted solution process, J. Am. Chem. Soc., 136(2014), No. 2, p. 622. doi: 10.1021/ja411509g
      [26]
      B.A. Nejand, V. Ahmadi, S. Gharibzadeh, and H.R. Shahverdi, Cuprous oxide as a potential low-cost hole-transport material for stable perovskite solar cells, ChemSusChem, 9(2016), No. 3, p. 302. doi: 10.1002/cssc.201501273
      [27]
      A. Aftab and M.I. Ahmad, A review of stability and progress in tin halide perovskite solar cell, Sol. Energy, 216(2021), p. 26. doi: 10.1016/j.solener.2020.12.065
      [28]
      H.J. Snaith, A. Abate, J.M. Ball, et al., Anomalous hysteresis in perovskite solar cells, J. Phys. Chem. Lett., 5(2014), No. 9, p. 1511. doi: 10.1021/jz500113x
      [29]
      J.Y. Li, B.Y. Huang, E.N. Esfahani, et al., Touching is believing: Interrogating halide perovskite solar cells at the nanoscale via scanning probe microscopy, NPJ Quantum Mater., 2(2017), art. No. 56. doi: 10.1038/s41535-017-0061-4
      [30]
      B.P. Nguyen, G.Y. Kim, W. Jo, B.J. Kim, and H.S. Jung, Trapping charges at grain boundaries and degradation of CH3NH3Pb(I1− x Br x )3 perovskite solar cells, Nanotechnology, 28(2017), No. 31, art. No. 315402. doi: 10.1088/1361-6528/aa727e
      [31]
      J.H. Heo, M.S. You, M.H. Chang, et al., Hysteresis-less mesoscopic CH3NH3PbI3 perovskite hybrid solar cells by introduction of Li-treated TiO2 electrode, Nano Energy, 15(2015), p. 530. doi: 10.1016/j.nanoen.2015.05.014
      [32]
      K.M. Boopathi, R. Mohan, T.Y. Huang, et al., Synergistic improvements in stability and performance of lead iodide perovskite solar cells incorporating salt additives, J. Mater. Chem. A, 4(2016), No. 5, p. 1591. doi: 10.1039/C5TA10288J
      [33]
      Y.F. Liu, Z.L. Wu, Y.X. Dou, et al., Formamidinium-based perovskite solar cells with enhanced moisture stability and performance via confined pressure annealing, J. Phys. Chem. C, 124(2020), No. 23, p. 12249. doi: 10.1021/acs.jpcc.0c02289
      [34]
      Y. Dong, W.J. Shen, W. Dong, et al., Chlorobenzenesulfonic potassium salts as the efficient multifunctional passivator for the buried interface in regular perovskite solar cells, Adv. Energy Mater., 12(2022), No. 20, art. No. 2200417. doi: 10.1002/aenm.202200417
      [35]
      Y.X. Gao, Y.N. Dong, K.Q. Huang, et al., Highly efficient, solution-processed CsPbI2Br planar heterojunction perovskite solar cells via flash annealing, ACS Photonics, 5(2018), No. 10, p. 4104. doi: 10.1021/acsphotonics.8b00783
      [36]
      J.R. Zhang, D.L. Bai, Z.W. Jin, et al., 3D–2D–0D interface profiling for record efficiency all-inorganic CsPbBrI2 perovskite solar cells with superior stability, Adv. Energy Mater., 8(2018), No. 15, art. No. 1703246. doi: 10.1002/aenm.201703246
      [37]
      Y. Xu, F.L. Liu, R.S. Li, et al., Mxene regulates the stress of perovskite and improves interface contact for high-efficiency carbon-based all-inorganic solar cells, Chem. Eng. J., 461(2023), art. No. 141895. doi: 10.1016/j.cej.2023.141895
      [38]
      Y.W. Duan, K. He, L. Yang, J. Xu, W.J. Zhao, and Z.K. Liu, 24.20%-efficiency MA-free perovskite solar cells enabled by siloxane derivative interface engineering, Small, 18(2022), No. 48, art. No. 2204733. doi: 10.1002/smll.202204733
      [39]
      Y.X. Zhao, A.M. Nardes, and K. Zhu, Mesoporous perovskite solar cells: Material composition, charge-carrier dynamics, and device characteristics, Faraday Discuss., 176(2014), p. 301. doi: 10.1039/C4FD00128A
      [40]
      M. Park, J.Y. Kim, H.J. Son, C.H. Lee, S.S. Jang, and M.J. Ko, Low-temperature solution-processed Li-doped SnO2 as an effective electron transporting layer for high-performance flexible and wearable perovskite solar cells, Nano Energy, 26(2016), p. 208. doi: 10.1016/j.nanoen.2016.04.060
      [41]
      Z.H. Yu, B.L. Chen, P. Liu, et al., Stable organic–inorganic perovskite solar cells without hole-conductor layer achieved via cell structure design and contact engineering, Adv. Funct. Mater., 26(2016), No. 27, p. 4866. doi: 10.1002/adfm.201504564
      [42]
      L.Y. Lin, M.H. Yeh, C.P. Lee, C.Y. Chou, R. Vittal, and K.C. Ho, Enhanced performance of a flexible dye-sensitized solar cell with a composite semiconductor film of ZnO nanorods and ZnO nanoparticles, Electrochim. Acta, 62(2012), p. 341. doi: 10.1016/j.electacta.2011.12.036
      [43]
      S. Yang, W.B. Yue, J. Zhu, Y. Ren, and X.J. Yang, Graphene-based mesoporous SnO2 with enhanced electrochemical performance for lithium-ion batteries, Adv. Funct. Mater., 23(2013), No. 28, p. 3570. doi: 10.1002/adfm.201203286
      [44]
      M.A. Mahmud, N.K. Elumalai, M.B. Upama, et al., Single vs mixed organic cation for low temperature processed perovskite solar cells, Electrochim. Acta, 222(2016), p. 1510. doi: 10.1016/j.electacta.2016.11.132
      [45]
      X.M. Li, P.C. Jia, F.W. Meng, et al., Propylamine hydrobromide passivated tin-based perovskites to efficient solar cells, Int. J. Miner. Metall. Mater., 30(2023), No. 10, p. 1965. doi: 10.1007/s12613-023-2604-y
      [46]
      H.R. Sun, J. Zhang, X.L. Gan, et al., Pb-reduced CsPb0.9Zn0.1I2Br thin films for efficient perovskite solar cells, Adv. Energy Mater., 9(2019), No. 25, art. No. 1900896. doi: 10.1002/aenm.201900896
      [47]
      W. Chen, Y.H. Wu, J. Fan, et al., Understanding the doping effect on NiO: Toward high-performance inverted perovskite solar cells, Adv. Energy Mater., 8(2018), 19, art. No. 1703519. doi: 10.1002/aenm.201703519
      [48]
      J.J. Tian, Q.F. Xue, X.F. Tang, et al., Dual interfacial design for efficient CsPbI2Br perovskite solar cells with improved photostability, Adv. Mater., 31(2019), No. 23, art. No. 1901152. doi: 10.1002/adma.201901152
      [49]
      R. Azmi, S.H. Oh, and S.Y. Jang, High-efficiency colloidal quantum dot photovoltaic devices using chemically modified heterojunctions, ACS Energy Lett., 1(2016), No. 1, p. 100. doi: 10.1021/acsenergylett.6b00070
      [50]
      Y. Zhou, X. Zhang, X.B. Lu, et al., Promoting the hole extraction with Co3O4 nanomaterials for efficient carbon-based CsPbI2Br perovskite solar cells, Sol. RRL, 3(2019), No. 4, art. No. 1800315. doi: 10.1002/solr.201800315
      [51]
      J.L. Duan, Y.Y. Zhao, B.L. He, and Q.W. Tang, High-purity inorganic perovskite films for solar cells with 9.72 % efficiency, Angew. Chem. Int. Ed., 57(2018), No. 14, p. 3787. doi: 10.1002/anie.201800019
      [52]
      M. Zhang, W. Gao, F.J. Zhang, et al., Efficient ternary non-fullerene polymer solar cells with PCE of 11.92% and FF of 76.5%, Energy Environ. Sci., 11(2018), No. 4, p. 841. doi: 10.1039/C8EE00215K

    Catalog


    • /

      返回文章
      返回