留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 3
Mar.  2024

图(13)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  387
  • HTML全文浏览量:  175
  • PDF下载量:  36
  • 被引次数: 0
Qianqian Wang, Zequn Yao, Lijie Guo,  and Xiaodong Shen, Exploring the potential of olivine-containing copper–nickel slag for carbon dioxide mineralization in cementitious materials, Int. J. Miner. Metall. Mater., 31(2024), No. 3, pp. 562-573. https://doi.org/10.1007/s12613-023-2743-1
Cite this article as:
Qianqian Wang, Zequn Yao, Lijie Guo,  and Xiaodong Shen, Exploring the potential of olivine-containing copper–nickel slag for carbon dioxide mineralization in cementitious materials, Int. J. Miner. Metall. Mater., 31(2024), No. 3, pp. 562-573. https://doi.org/10.1007/s12613-023-2743-1
引用本文 PDF XML SpringerLink
研究论文

含橄榄石类铜镍渣基胶凝材料二氧化碳矿化潜力探究



  • 通讯作者:

    王倩倩    E-mail: qqwang@njtech.edu.cn

    郭利杰    E-mail: guolijie@bgrimm.com

文章亮点

  • (1) 系统采用不同活化方式活化铜镍渣并制备高掺量铜镍渣基胶凝材料
  • (2) 探讨了不同有机酸对铜镍渣中橄榄石矿物相的溶解效率及反应机理
  • (3) 研究了不同碳化工艺条件下高掺量铜镍渣基胶凝材料的固碳潜力及产物演变过程
  • 富含橄榄石矿物相的水淬铜镍冶金渣具有制备二氧化碳矿化胶凝材料的潜力。本文采用不同的化学活化方法制备了大掺量铜镍渣基胶凝材料(CNCM),以提高其水化反应性和二氧化碳矿化能力,并研究了养护龄期和碳化反应工艺条件对于其固碳及力学性能的影响。基于热重–差示扫描量热法和X射线衍射法评估了CNCM的二氧化碳吸附量和碳化产物。利用背散射电子成像(BSE)和能谱X射线分析技术对碳化CNCM试块的微观结构进行了研究。研究结果表明,经过3天水养护的CNCM样品在80°C和72小时的碳化反应条件下,其二氧化碳封存量最高,为8.51wt%,同时抗压强度为39.07 MPa。这一结果表明,1吨这种CNCM可以封存85.1公斤的CO2并具有高抗压强度。尽管柠檬酸的添加并未改善强度发展,但在相同的碳化条件下有利于增加二氧化碳在硬化体的扩散和吸附量。这项工作为利用大量含有橄榄石矿物的冶金渣制备二氧化碳矿化胶凝材料提供了指导。
  • Research Article

    Exploring the potential of olivine-containing copper–nickel slag for carbon dioxide mineralization in cementitious materials

    + Author Affiliations
    • Water-quenched copper-nickel metallurgical slag enriched with olivine minerals exhibits promising potential for the production of CO2-mineralized cementitious materials. In this work, copper-nickel slag-based cementitious material (CNCM) was synthesized by using different chemical activation methods to enhance its hydration reactivity and CO2 mineralization capacity. Different water curing ages and carbonation conditions were explored related to their carbonation and mechanical properties development. Meanwhile, thermogravimetry differential scanning calorimetry and X-ray diffraction methods were applied to evaluate the CO2 adsorption amount and carbonation products of CNCM. Microstructure development of carbonated CNCM blocks was examined by backscattered electron imaging (BSE) with energy-dispersive X-ray spectrometry. Results showed that among the studied samples, the CNCM sample that was subjected to water curing for 3 d exhibited the highest CO2 sequestration amount of 8.51wt% at 80°C and 72 h while presenting the compressive strength of 39.07 MPa. This result indicated that 1 t of this CNCM can sequester 85.1 kg of CO2 and exhibit high compressive strength. Although the addition of citric acid did not improve strength development, it was beneficial to increase the CO2 diffusion and adsorption amount under the same carbonation conditions from BSE results. This work provides guidance for synthesizing CO2-mineralized cementitious materials using large amounts of metallurgical slags containing olivine minerals.
    • loading
    • Supplementary Information-s12613-023-2743-1.docx
    • [1]
      IEA (2023), CO 2 Emissions in 2022, IEA, Paris [2022-4-24]. https://www.iea.org/reports/co2-emissions-in-2022
      [2]
      Z. Liu, Z. Deng, S.J. Davis, C. Giron, and P. Ciais, Monitoring global carbon emissions in 2021, Nat. Rev. Earth Environ., 3(2022), No. 4, p. 217. doi: 10.1038/s43017-022-00285-w
      [3]
      L.M. Alsarhan, A.S. Alayyar, N.B. Alqahtani, and N.H. Khdary, Circular carbon economy (CCE): A way to invest CO2 and protect the environment, A review, Sustainability, 13(2021), No. 21, art. No. 11625. doi: 10.3390/su132111625
      [4]
      S.Y. Pan, Y.H. Chen, L.S. Fan, et al., CO2 mineralization and utilization by alkaline solid wastes for potential carbon reduction, Nat. Sustain., 3(2020), No. 5, p. 399. doi: 10.1038/s41893-020-0486-9
      [5]
      G. Gadikota, Carbon mineralization pathways for carbon capture, storage and utilization, Commun. Chem., 4(2021), No. 1, art. No. 23. doi: 10.1038/s42004-021-00461-x
      [6]
      J.J. Li and M. Hitch, Ultra-fine grinding and mechanical activation of mine waste rock using a high-speed stirred mill for mineral carbonation, Int. J. Miner. Metall. Mater., 22(2015), No. 10, p. 1005. doi: 10.1007/s12613-015-1162-3
      [7]
      Q.F. Guo, X. Xi, S.T. Yang, and M.F. Cai, Technology strategies to achieve carbon peak and carbon neutrality for China’s metal mines, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 626. doi: 10.1007/s12613-021-2374-3
      [8]
      B. Traynor, C. Mulcahy, H. Uvegi, T. Aytas, N. Chanut, and E.A. Olivetti, Dissolution of olivines from steel and copper slags in basic solution, Cem. Concr. Res., 133(2020), art. No. 106065. doi: 10.1016/j.cemconres.2020.106065
      [9]
      E.H. Oelkers, J. Declercq, G.D. Saldi, S.R. Gislason, and J. Schott, Olivine dissolution rates: A critical review, Chem. Geol., 500(2018), p. 1. doi: 10.1016/j.chemgeo.2018.10.008
      [10]
      C.C. Sun, Z.Q. Yao, Q.Q. Wang, L.J. Guo, and X.D. Shen, Theoretical study on the organic acid promoted dissolution mechanism of forsterite mineral, Appl. Surf. Sci., 614(2023), art. No. 156063. doi: 10.1016/j.apsusc.2022.156063
      [11]
      O. Qafoku, L. Kovarik, R.K. Kukkadapu, et al., Fayalite dissolution and siderite formation in water-saturated supercritical CO2, Chem. Geol., 332-333(2012), p. 124. doi: 10.1016/j.chemgeo.2012.09.028
      [12]
      D.E. Giammar, R.G. Bruant, and C.A. Peters, Forsterite dissolution and magnesite precipitation at conditions relevant for deep saline aquifer storage and sequestration of carbon dioxide, Chem. Geol., 217(2005), No. 3-4, p. 257. doi: 10.1016/j.chemgeo.2004.12.013
      [13]
      N.C. Johnson, B. Thomas, K. Maher, R.J. Rosenbauer, D. Bird, and G.E. Brown Jr, Olivine dissolution and carbonation under conditions relevant for in situ carbon storage, Chem. Geol., 373(2014), p. 93. doi: 10.1016/j.chemgeo.2014.02.026
      [14]
      M. Azadi, M. Edraki, F. Farhang, and J. Ahn, Opportunities for mineral carbonation in Australia’s mining industry, Sustainability, 11(2019), No. 5, art. No. 1250. doi: 10.3390/su11051250
      [15]
      A.A. Olajire, A review of mineral carbonation technology in sequestration of CO2, J. Petrol. Sci. Eng., 109(2013), p. 364. doi: 10.1016/j.petrol.2013.03.013
      [16]
      Z.M. Chen, R. Li, X.M. Zheng, and J.X. Liu, Carbon sequestration of steel slag and carbonation for activating RO phase, Cem. Concr. Res., 139(2021), art. No. 106271. doi: 10.1016/j.cemconres.2020.106271
      [17]
      L.W. Mo and D.K. Panesar, Effects of accelerated carbonation on the microstructure of Portland cement pastes containing reactive MgO, Cem. Concr. Res., 42(2012), No. 6, p. 769. doi: 10.1016/j.cemconres.2012.02.017
      [18]
      L. Wang, L. Chen, J.L. Provis, D.C.W. Tsang, and C.S. Poon, Accelerated carbonation of reactive MgO and Portland cement blends under flowing CO2 gas, Cem. Concr. Compos., 106(2020), art. No. 103489. doi: 10.1016/j.cemconcomp.2019.103489
      [19]
      S.A. Novikova, Fayalite from Fe-rich paralavas of ancient coal fires in the Kuzbass, Russia, Geol. Ore Depos., 51(2009), No. 8, p. 800. doi: 10.1134/S1075701509080133
      [20]
      J.S. Loring, Q.R.S. Miller, C.J. Thompson, and H.T. Schaef, Experimental studies of reactivity and transformations of rocks and minerals in water-bearing supercritical CO2, [in] Science of Carbon Storage in Deep Saline Formations, Elsevier, Amsterdam, 2019, p. 63.
      [21]
      A.T.M. Marsh, T. Yang, S. Adu-Amankwah, and S.A. Bernal, Utilization of metallurgical wastes as raw materials for manufacturing alkali-activated cements, [in] Waste and Byproducts in Cement-based Materials, Woodhead Publishing, Sawston, 2021, p. 335.
      [22]
      T. Yang, X. Yao, and Z.H. Zhang, Geopolymer prepared with high-magnesium nickel slag: Characterization of properties and microstructure, Constr. Build. Mater., 59(2014), p. 188. doi: 10.1016/j.conbuildmat.2014.01.038
      [23]
      T. Yang, Z.H. Zhang, H.J. Zhu, X. Gao, C.D. Dai, and Q.S. Wu, re-examining the suitability of high magnesium nickel slag as precursors for alkali-activated materials, Constr. Build. Mater., 213(2019), p. 109. doi: 10.1016/j.conbuildmat.2019.04.063
      [24]
      Y.D. Huang, Q. Wang, and M.X. Shi, Characteristics and reactivity of ferronickel slag powder, Constr. Build. Mater., 156(2017), p. 773. doi: 10.1016/j.conbuildmat.2017.09.038
      [25]
      C.L. Wang, Z.Z. Ren, Z.K. Huo, et al., Properties and hydration characteristics of mine cemented paste backfill material containing secondary smelting water-granulated nickel slag, Alex. Eng. J., 60(2021), No. 6, p. 4961. doi: 10.1016/j.aej.2020.12.058
      [26]
      T. Yang, Z.H. Zhang, Q. Wang, and Q.S. Wu, ASR potential of nickel slag fine aggregate in blast furnace slag–fly ash geopolymer and Portland cement mortars, Constr. Build. Mater., 262(2020), art. No. 119990. doi: 10.1016/j.conbuildmat.2020.119990
      [27]
      F. Wang, D. Dreisinger, M. Jarvis, and T. Hitchins, Kinetics and mechanism of mineral carbonation of olivine for CO2 sequestration, Miner. Eng., 131(2019), p. 185. doi: 10.1016/j.mineng.2018.11.024
      [28]
      F. Wang, D. Dreisinger, M. Jarvis, T. Hitchins, and L. Trytten, CO2 mineralization and concurrent utilization for nickel conversion from nickel silicates to nickel sulfides, Chem. Eng. J., 406(2021), art. No. 126761. doi: 10.1016/j.cej.2020.126761
      [29]
      Z.Q. Yao, C.C. Sun, Q.Q. Wang, and X.D. Shen, The dissolution kinetics of copper–nickel slag, [in] the 10th International Symposium on Cement and Concrete (ISCC 2022), Guangzhou, 2022, p. 14.
      [30]
      P. Giannaros, A. Kanellopoulos, and A. Al-Tabbaa, Sealing of cracks in cement using microencapsulated sodium silicate, Smart Mater. Struct., 25(2016), No. 8, art. No. 084005. doi: 10.1088/0964-1726/25/8/084005
      [31]
      E. Drouet, S. Poyet, P. Le Bescop, J.M. Torrenti, and X. Bourbon, Carbonation of hardened cement pastes: Influence of temperature, Cem. Concr. Res., 115(2019), p. 445. doi: 10.1016/j.cemconres.2018.09.019
      [32]
      Y.X. Zhao, F. Wei, and Y. Yu, Effects of reaction time and temperature on carbonization in asphaltene pyrolysis, J. Petrol. Sci. Eng., 74(2010), No. 1-2, p. 20. doi: 10.1016/j.petrol.2010.08.002
      [33]
      N. Wada, K. Kanamura, and T. Umegaki, Effects of carboxylic acids on the crystallization of calcium carbonate, J. Colloid Interface Sci., 233(2001), No. 1, p. 65. doi: 10.1006/jcis.2000.7215
      [34]
      Y.F. Ma, Y.H. Gao, and Q.L. Feng, Effects of pH and temperature on CaCO3 crystallization in aqueous solution with water soluble matrix of pearls, J. Cryst. Growth, 312(2010), No. 21, p. 3165. doi: 10.1016/j.jcrysgro.2010.07.053
      [35]
      M. Kogo, K. Suzuki, T. Umegaki, and Y. Kojima, Control of aragonite formation and its crystal shape in CaCl2–Na2CO3–H2O reaction system, J. Cryst. Growth, 559(2021), art. No. 125964. doi: 10.1016/j.jcrysgro.2020.125964
      [36]
      S.L. Guo, Y. Lu, Y.H. Bu, and B.L. Li, Effect of carboxylic group on the compatibility with retarder and the retarding side effect of the fluid loss control additive used in oil well cement, R. Soc. Open Sci., 5(2018), No. 9, art. No. 180490. doi: 10.1098/rsos.180490
      [37]
      X.H. Ye, T.W. Chen, and J.K. Chen, Carbonation of cement paste under different pressures, Constr. Build. Mater., 370(2023), art. No. 130511. doi: 10.1016/j.conbuildmat.2023.130511
      [38]
      F. Matsushita, Y. Aono, and S. Shibata, Calcium silicate structure and carbonation shrinkage of a tobermorite-based material, Cem. Concr. Res., 34(2004), No. 7, p. 1251. doi: 10.1016/j.cemconres.2003.12.016
      [39]
      V.W.Y. Tam, A. Butera, and K.N. Le, An investigation of the shrinkage, concrete shrinkage reversibility and permeability of CO2-treated concrete, Constr. Build. Mater., 365(2023), art. No. 130120. doi: 10.1016/j.conbuildmat.2022.130120
      [40]
      Q.S. Chen, L.M. Zhu, Y.M. Wang, J. Chen, and C.C. Qi, The carbon uptake and mechanical property of cemented paste backfill carbonation curing for low concentration of CO2, Sci. Total Environ., 852(2022), art. No. 158516. doi: 10.1016/j.scitotenv.2022.158516
      [41]
      X. Luo, S.J. Li, Z.H. Guo, C. Liu, and J.M. Gao, Effect of curing temperature on the hydration property and microstructure of Portland cement blended with recycled brick powder, J. Build. Eng., 61(2022), art. No. 105327. doi: 10.1016/j.jobe.2022.105327
      [42]
      M. Mejdi, W. Wilson, M. Saillio, T. Chaussadent, L. Divet, and A. Tagnit-Hamou, Hydration and microstructure of glass powder cement pastes—A multi-technique investigation, Cem. Concr. Res., 151(2022), art. No. 106610. doi: 10.1016/j.cemconres.2021.106610
      [43]
      X.D. Li, Q.Q. Wang, X.D. Shen, E.T. Pedrosa, and A. Luttge, Multiscale investigation of olivine (010) face dissolution from a surface control perspective, Appl. Surf. Sci., 549(2021), art. No. 149317. doi: 10.1016/j.apsusc.2021.149317
      [44]
      M. Kazemian and B. Shafei, Carbon sequestration and storage in concrete: A state-of-the-art review of compositions, methods, and developments, J. CO2 Util., 70(2023), art. No. 102443. doi: 10.1016/j.jcou.2023.102443
      [45]
      P. Liu, L.W. Mo, and Z. Zhang, Effects of carbonation degree on the hydration reactivity of steel slag in cement-based materials, Constr. Build. Mater., 370(2023), art. No. 130653. doi: 10.1016/j.conbuildmat.2023.130653
      [46]
      F. Wang and D. Dreisinger, Status of CO2 mineralization and its utilization prospects, Miner. Miner. Mater., 1(2022), art. No. 4. doi: 10.20517/mmm.2022.02

    Catalog


    • /

      返回文章
      返回