留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 1
Jan.  2024

图(10)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  545
  • HTML全文浏览量:  235
  • PDF下载量:  60
  • 被引次数: 0
Sara Marijanand Luka Pavić, Solid-state impedance spectroscopy studies of dielectric properties and relaxation processes in Na2O–V2O5–Nb2O5–P2O5 glass system, Int. J. Miner. Metall. Mater., 31(2024), No. 1, pp. 186-196. https://doi.org/10.1007/s12613-023-2744-0
Cite this article as:
Sara Marijanand Luka Pavić, Solid-state impedance spectroscopy studies of dielectric properties and relaxation processes in Na2O–V2O5–Nb2O5–P2O5 glass system, Int. J. Miner. Metall. Mater., 31(2024), No. 1, pp. 186-196. https://doi.org/10.1007/s12613-023-2744-0
引用本文 PDF XML SpringerLink
研究论文

Na2O–V2O5–Nb2O5–P2O5玻璃体系介电特性及弛豫过程的固态阻抗谱研究


  • 通讯作者:

    Luka Pavić    E-mail: lpavic@irb.hr

  • 采用固态阻抗谱(SS-IS)研究了添加Nb2O5引起的结构改性对四元混合玻璃成型剂(MGF)体系35Na2O–10V2O5–(55−x)P2O5xNb2O5 (x = 0–40, mol%)的介电性能和弛豫过程的影响。介电参数,包括介电强度和介电损耗,由频率和温度相关的复介电常数数据确定的,揭示了Nb2O5含量对介电强度和介电损耗的显著依赖性。从以磷酸盐为主的玻璃网络(x < 10,区域I)到混合铌酸盐-磷酸盐玻璃网络(10 ≤ x ≤ 20,区域II)的转变导致介电参数增加,这与观察到的直流(DC)电导率趋势相关。在以铌酸盐为主的网络中(x ≥ 25, III区),Nb5+离子的高度极化性质导致介电常数和介电强度进一步增加。这在Nb-40玻璃陶瓷中尤为明显,该玻璃陶瓷含有具有钨青铜结构的Na13Nb35O94晶相,在303 K和10 kHz时,其介电常数最高为61.81,损耗因子最低为0.032。通过模量形式化和复阻抗数据分析的弛豫研究表明,直流电导率和弛豫过程受相同的机制影响,并归因于离子电导率。与电模量虚部M″(ω)的频率依赖性为单峰的玻璃相比,Nb-40玻璃陶瓷在相似的弛豫时间下表现出两种不同的特征。高频峰表示整体离子电导率,而额外的低频峰与晶界效应有关,这通过等效电路(EEC)模型得到了证实。介电常数和电导率谱的标度特征以及电模量验证了时间-温度叠加,并证明了Nb2O5掺入后玻璃结构的组成和改性与时间-温度叠加有很强的相关性。
  • Research Article

    Solid-state impedance spectroscopy studies of dielectric properties and relaxation processes in Na2O–V2O5–Nb2O5–P2O5 glass system

    + Author Affiliations
    • Solid-state impedance spectroscopy (SS-IS) was used to investigate the influence of structural modifications resulting from the addition of Nb2O5 on the dielectric properties and relaxation processes in the quaternary mixed glass former (MGF) system 35Na2O–10V2O5–(55−x)P2O5xNb2O5 (x = 0–40, mol%). The dielectric parameters, including the dielectric strength and dielectric loss, are determined from the frequency and temperature-dependent complex permittivity data, revealing a significant dependence on the Nb2O5 content. The transition from a predominantly phosphate glass network (x < 10, region I) to a mixed niobate–phosphate glass network (10 ≤ x ≤ 20, region II) leads to an increase in the dielectric parameters, which correlates with the observed trend in the direct-current (DC) conductivity. In the predominantly niobate network (x ≥ 25, region III), the highly polarizable nature of Nb5+ ions leads to a further increase in the dielectric permittivity and dielectric strength. This is particularly evident in Nb-40 glass-ceramic, which contains Na13Nb35O94 crystalline phase with a tungsten bronze structure and exhibits the highest dielectric permittivity of 61.81 and the lowest loss factor of 0.032 at 303 K and 10 kHz. The relaxation studies, analyzed through modulus formalism and complex impedance data, show that DC conductivity and relaxation processes are governed by the same mechanism, attributed to ionic conductivity. In contrast to glasses with a single peak in frequency dependence of imaginary part of electrical modulus, M″(ω), Nb-40 glass-ceramic exhibits two distinct contributions with similar relaxation times. The high-frequency peak indicates bulk ionic conductivity, while the additional low-frequency peak is associated with the grain boundary effect, confirmed by the electrical equivalent circuit (EEC) modelling. The scaling characteristics of permittivity and conductivity spectra, along with the electrical modulus, validate time-temperature superposition and demonstrate a strong correlation with composition and modification of the glass structure upon Nb2O5 incorporation.
    • loading
    • [1]
      Q.B. Yuan, M. Chen, S.L. Zhan, Y.X. Li, Y. Lin, and H.B. Yang, Ceramic-based dielectrics for electrostatic energy storage applications: Fundamental aspects, recent progress, and remaining challenges, Chem. Eng. J., 446(2022), art. No. 136315. doi: 10.1016/j.cej.2022.136315
      [2]
      Z.H. Yao, Z. Song, H. Hao, et al., Homogeneous/inhomogeneous-structured dielectrics and their energy-storage performances, Adv. Mater., 29(2017), No. 20, art. No. 1601727. doi: 10.1002/adma.201601727
      [3]
      A. Smirnova, A. Numan-Al-Mobin, and Inamuddin, Green Sustainable Process for Chemical and Environmental Engineering and Science: Solid-State Energy Storage - A Path to Environmental Sustainability, Elsevier, Amsterdam, 2023.
      [4]
      S. Gandi, V.S.C.S. Vaddadi, S.S.S. Panda, et al., Recent progress in the development of glass and glass-ceramic cathode/solid electrolyte materials for next-generation high capacity all-solid-state sodium-ion batteries: A review, J. Power Sources, 521(2022), art. No. 230930. doi: 10.1016/j.jpowsour.2021.230930
      [5]
      C. Chen, Y.X. Zheng, and B. Li, Achieving ultrafast discharge speed and excellent energy storage efficiency in environmentally friendly niobate-based glass ceramics, J. Eur. Ceram. Soc., 42(2022), No. 15, p. 6977. doi: 10.1016/j.jeurceramsoc.2022.08.010
      [6]
      T.T. Fu, S.F. Xie, C.S. Liu, H.R. Bai, B. Shen, and J.W. Zhai, High discharge energy density and ultralow dielectric loss in alkali-free niobate-based glass-ceramics by composition optimization, Scripta Mater., 221(2022), art. No. 114993. doi: 10.1016/j.scriptamat.2022.114993
      [7]
      F. Luo, Y.Y. Qin, F. Shang, and G.H. Chen, Crystallization temperature dependence of structure, electrical and energy storage properties in BaO–Na2O–Nb2O5–Al2O3–B2O3 glass ceramics, Ceram. Int., 48(2022), No. 20, p. 30661. doi: 10.1016/j.ceramint.2022.07.011
      [8]
      C.S. Liu, S.F. Xie, K.K. Chen, B.J. Song, B. Shen, and J.W. Zhai, High breakdown strength and enhanced energy storage performance of niobate-based glass-ceramics via glass phase structure optimization, Ceram. Int., 47(2021), No. 22, p. 31229. doi: 10.1016/j.ceramint.2021.07.299
      [9]
      T. Komatsu, T. Honma, T. Tasheva, and V. Dimitrov, Structural role of Nb2O5 in glass-forming ability, electronic polarizability and nanocrystallization in glasses: A review, J. Non-Cryst. Solids, 581(2022), art. No. 121414. doi: 10.1016/j.jnoncrysol.2022.121414
      [10]
      S.J. Wang, J. Tian, K. Yang, J.R. Liu, J.W. Zhai, and B. Shen, Crystallization kinetics behavior and dielectric energy storage properties of strontium potassium niobate glass-ceramics with different nucleating agents, Ceram. Int., 44(2018), No. 7, p. 8528. doi: 10.1016/j.ceramint.2018.02.054
      [11]
      M.P.F. Graça, M.G.F. da Silva, A.S.B. Sombra, and M.A. Valente, Electric and dielectric properties of a SiO2–Na2O–Nb2O5 glass subject to a controlled heat-treatment process, Physica B, 396(2007), No. 1-2, p. 62. doi: 10.1016/j.physb.2007.03.009
      [12]
      X. Peng, Y.P. Pu, Z.X. Sun, et al., Achieving high electrical homogeneity in (Na2O, K2O)–Nb2O5–SiO2–MO (M = Ca2+, Sr2+, Ba2+) glass-ceramics for energy storage by composition design, Composites Part B, 260(2023), art. No. 110765. doi: 10.1016/j.compositesb.2023.110765
      [13]
      X.Y. Liu, K. Zhao, and H. Jiao, Stabilizing the anti-ferroelectric phase in NaO–Nb2O5–CaO–B2O3–SiO2–ZrO2 glass-ceramics using the modification of K+ ion, Ceram. Int., 49(2023), No. 12, p. 21078. doi: 10.1016/j.ceramint.2023.03.243
      [14]
      M.P.F. Graça, M.G.F. da Silva, and M.A. Valente, NaNbO3 crystals dispersed in a B2O3 glass matrix –Structural characteristics versus electrical and dielectrical properties, Solid State Sci., 11(2009), No. 2, p. 570. doi: 10.1016/j.solidstatesciences.2008.07.010
      [15]
      S. Benyounoussy, L. Bih, F. Muñoz, F. Rubio-Marcos, M. Naji, and A. El Bouari, Structure, dielectric, and energy storage behaviors of the lossy glass-ceramics obtained from Na2O–Nb2O5–P2O5 glassy-system, Phase Transitions, 94(2021), No. 9, p. 634. doi: 10.1080/01411594.2021.1949458
      [16]
      S. Benyounoussy, L. Bih, F. Muñoz, F. Rubio-Marcos, and A. El Bouari, Effect of the Na2O–Nb2O5–P2O5 glass additive on the structure, dielectric and energy storage performances of sodium niobate ceramics, Heliyon, 7(2021), No. 5, art. No. e07113. doi: 10.1016/j.heliyon.2021.e07113
      [17]
      A. Ihyadn, A. Lahmar, D. Mezzane, et al., Structural, electrical and energy storage properties of BaO–Na2O–Nb2O5–WO3–P2O5 glass-ceramics system, Mater. Res. Express, 6(2019), No. 11, art. No. 115203. doi: 10.1088/2053-1591/ab4569
      [18]
      A. Ihyadn, S. Merselmiz, D. Mezzane, et al., Dielectric and energy storage properties of Ba0.85Ca0.15Zr0.1Ti0.90O3 ceramics with BaO–Na2O–Nb2O5–WO3–P2O5 glass addition, J. Mater. Sci. Mater. Electron., 34(2023), No. 12, art. No. 1051. doi: 10.1007/s10854-023-10483-x
      [19]
      M. Maraj, W.W. Wei, B.L. Peng, and W.H. Sun, Dielectric and energy storage properties of Ba(1−x)CaxZryTi(1−y)O3 (BCZT): A review, Materials, 12(2019), No. 21, art. No. 3641. doi: 10.3390/ma12213641
      [20]
      L. Zhang, Y.P. Pu, and M. Chen, Complex impedance spectroscopy for capacitive energy-storage ceramics: A review and prospects, Mater. Today Chem., 28(2023), art. No. 101353. doi: 10.1016/j.mtchem.2022.101353
      [21]
      S. Sanghi, A. Sheoran, A. Agarwal, and S. Khasa, Conductivity and dielectric relaxation in niobium alkali borate glasses, Physica B, 405(2010), No. 24, p. 4919. doi: 10.1016/j.physb.2010.09.032
      [22]
      M.P.F. Graça, B.M.G. Melo, P.R. Prezas, M.A. Valente, F.N.A. Freire, and L. Bih, Electrical and dielectric analysis of phosphate based glasses doped with alkali oxides, Mater. Des., 86(2015), p. 427. doi: 10.1016/j.matdes.2015.07.043
      [23]
      Y. Attafi and S.Q. Liu, Conductivity and dielectric properties of Na2O–K2O–Nb2O5–P2O5 glasses with varying amounts of Nb2O5, J. Non-Cryst. Solids, 447(2016), p. 74. doi: 10.1016/j.jnoncrysol.2016.05.038
      [24]
      K.S. Gerace, M.T. Lanagan, and J.C. Mauro, Dielectric polarizability of SiO2 in niobiosilicate glasses, J. Am. Ceram. Soc., 106(2023), No. 8, p. 4546. doi: 10.1111/jace.19151
      [25]
      S. Marijan, M. Razum, T. Klaser, et al., Tailoring structure for improved sodium mobility and electrical properties in V2O5–Nb2O5–P2O5 glass(es)-(ceramics), J. Phys. Chem. Solids, 181(2023), art. No. 111461. doi: 10.1016/j.jpcs.2023.111461
      [26]
      A. Moguš-Milanković, K. Sklepić, H. Blažanović, P. Mošner, M. Vorokhta, and L. Koudelka, Influence of germanium oxide addition on the electrical properties of Li2O–B2O3–P2O5 glasses, J. Power Sources, 242(2013), p. 91. doi: 10.1016/j.jpowsour.2013.05.068
      [27]
      V. Prasad, L. Pavić, A. Moguš-Milanković, et al., Influence of silver ion concentration on dielectric characteristics of Li2O–Nb2O5–P2O5 glasses, J. Alloys Compd., 773(2019), p. 654. doi: 10.1016/j.jallcom.2018.09.161
      [28]
      L. Pavić, Ž. Skoko, A. Gajović, D.S. Su, and A. Moguš-Milanković, Electrical transport in iron phosphate glass-ceramics, J. Non-Cryst. Solids, 502(2018), p. 44. doi: 10.1016/j.jnoncrysol.2018.02.012
      [29]
      L. Pavić, K. Sklepić, Ž. Skoko, et al., Ionic conductivity of lithium germanium phosphate glass-ceramics, J. Phys. Chem. C, 123(2019), No. 38, p. 23312. doi: 10.1021/acs.jpcc.9b03666
      [30]
      L. Pavić, J. Nikolić, M.P.F. Graça, et al., Effect of controlled crystallization on polaronic transport in phosphate-based glass-ceramics, Int. J. Appl. Glass Sci., 11(2020), No. 1, p. 97. doi: 10.1111/ijag.13618
      [31]
      A. Bafti, S. Kubuki, H. Ertap, et al., Electrical transport in iron phosphate-based glass-(ceramics): Insights into the role of B2O3 and HfO2 from model-free scaling procedures, Nanomaterials, 12(2022), No. 4, art. No. 639. doi: 10.3390/nano12040639
      [32]
      F. Kremer and A. Schönhals, Broadband Dielectric Spectroscopy, Springer Berlin, Heidelberg, 2003.
      [33]
      D.L. Sidebottom, Universal approach for scaling the ac conductivity in ionic glasses, Phys. Rev. Lett., 82(1999), No. 18, p. 3653. doi: 10.1103/PhysRevLett.82.3653
      [34]
      D.L. Sidebottom, B. Roling, and K. Funke, Ionic conduction in solids: Comparing conductivity and modulus representations with regard to scaling properties, Phys. Rev. B, 63(2000), No. 2, art. No. 024301. doi: 10.1103/PhysRevB.63.024301
      [35]
      N.K. Mohan, M.R. Reddy, C.K. Jayasankar, and N. Veeraiah, Spectroscopic and dielectric studies on MnO doped PbO–Nb2O5–P2O5 glass system, J. Alloys Compd., 458(2008), No. 1-2, p. 66. doi: 10.1016/j.jallcom.2007.04.143
      [36]
      B. Roling, Scaling properties of the conductivity spectra of glasses and supercooled melts, Solid State Ionics, 105(1998), No. 1-4, p. 185. doi: 10.1016/S0167-2738(97)00463-3
      [37]
      M. Bakry and L. Klinkenbusch, Using the Kramers-Kronig transforms to retrieve the conductivity from the effective complex permittivity, Adv. Radio Sci., 16(2018), p. 23. doi: 10.5194/ars-16-23-2018
      [38]
      P.B. Macedo, C.T. Moynihan, and R. Bose, Role of ionic diffusion in polarization in vitreous ionic conductors, Phys. Chem. Glasses, 13(1972), No. 6, p. 171.
      [39]
      D.C. Sinclair, Characterization of electro-materials using ac impedance spectroscopy, Bol. Soc. Esp. Ceram. Vidrio, 34(1995), No. 2, p. 55.

    Catalog


    • /

      返回文章
      返回