留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 6
Jun.  2024

图(8)

数据统计

分享

计量
  • 文章访问数:  1279
  • HTML全文浏览量:  201
  • PDF下载量:  62
  • 被引次数: 0
Qinghe Cui, Xuefeng Liu, Wenjing Wang, Shaojie Tian, Vasili Rubanik, Vasili Rubanik Jr.,  and Dzmitry Bahrets, Microstructure and forming mechanism of metals subjected to ultrasonic vibration plastic forming: A mini review, Int. J. Miner. Metall. Mater., 31(2024), No. 6, pp. 1322-1332. https://doi.org/10.1007/s12613-023-2745-z
Cite this article as:
Qinghe Cui, Xuefeng Liu, Wenjing Wang, Shaojie Tian, Vasili Rubanik, Vasili Rubanik Jr.,  and Dzmitry Bahrets, Microstructure and forming mechanism of metals subjected to ultrasonic vibration plastic forming: A mini review, Int. J. Miner. Metall. Mater., 31(2024), No. 6, pp. 1322-1332. https://doi.org/10.1007/s12613-023-2745-z
引用本文 PDF XML SpringerLink
特约综述

超声振动塑性成形金属的微观组织及成形机理


  • 通讯作者:

    刘雪峰    E-mail: liuxuefengbj@163.com

文章亮点

  • (1) 详细介绍了超声振动塑性成形对FCC、BCC和HCP结构金属微观组织的影响
  • (2) 总结和归纳了不同晶体结构金属超声振动塑性成形过程中的超声作用机理
  • (3) 对金属超声振动塑性成形领域的未来发展进行了展望
  • 金属超声振动塑性成形是将超声振动应用于传统塑性成形过程中,与传统塑性成形技术相比,超声振动塑性成形具有降低成形力、改善工件表面质量和强化表面结构等优点,在工业制造领域具有非常广阔的应用前景。近年来,研究者们将超声振动应用于拉伸、压缩、镦粗和等通道转角挤压等过程,系统研究了超声振动在金属塑性成形过程中的作用效果和作用机理,为超声振动塑性成形领域的发展奠定了深厚的基础。本文从金属晶体结构出发,综述了超声振动对面心立方(FCC)、体心立方(BCC)和密排六方(HCP)金属塑性成形过程中微观组织的影响,总结和归纳了超声振动在其中的作用机理,指出了目前金属超声振动塑性成形存在的主要问题及未来的重点研究方向。
  • Invited Review

    Microstructure and forming mechanism of metals subjected to ultrasonic vibration plastic forming: A mini review

    + Author Affiliations
    • Compared with traditional plastic forming, ultrasonic vibration plastic forming has the advantages of reducing the forming force and improving the surface quality of the workpiece. This technology has a very broad application prospect in industrial manufacturing. Researchers have conducted extensive research on the ultrasonic vibration plastic forming of metals and laid a deep foundation for the development of this field. In this review, metals were classified according to their crystal structures. The effects of ultrasonic vibration on the microstructure of face-centered cubic, body-centered cubic, and hexagonal close-packed metals during plastic forming and the mechanism underlying ultrasonic vibration forming were reviewed. The main challenges and future research direction of the ultrasonic vibration plastic forming of metals were also discussed.
    • loading
    • [1]
      S.Y. Lin, Analysis on the resonance frequency of sandwich ultrasonic transducers with two sets of piezoelectric ceramic elements, Acta Electron. Sin., 37(2009), No. 11, p. 2504.
      [2]
      X.M. Cheng, K. Yang, J. Wang, W.T. Xiao, and S.S. Huang, Ultrasonic system and ultrasonic metal welding performance: A status review, J. Manuf. Process., 84(2022), p. 1196. doi: 10.1016/j.jmapro.2022.10.067
      [3]
      H.Y. Zhou, H.Z. Cui, and Q.H. Qin, Influence of ultrasonic vibration on the plasticity of metals during compression process, J. Mater. Process. Technol., 251(2018), p. 146. doi: 10.1016/j.jmatprotec.2017.08.021
      [4]
      C. Bunget and G. Ngaile, Influence of ultrasonic vibration on micro-extrusion, Ultrasonics, 51(2011), No. 5, p. 606. doi: 10.1016/j.ultras.2011.01.001
      [5]
      Z.B. Chen, L.F. Yang, K.Y. Zhang, J.Y. Jiang, and P.J. Zong, Research status of ultrasonic vibration assisted plastic forming process, IOP Conf. Ser.: Mater. Sci. Eng., 758(2020), No. 1, art. No. 012036. doi: 10.1088/1757-899X/758/1/012036
      [6]
      D. Kremer, S.M. Saleh, S.R. Ghabrial, and A. Moisan, The state of the art of ultrasonic machining, CIRP Ann., 30(1981), No. 1, p. 107. doi: 10.1016/S0007-8506(07)60905-6
      [7]
      R. Singh and J.S. Khamba, Ultrasonic machining of titanium and its alloys: A review, J. Mater. Process. Technol., 173(2006), No. 2, p. 125. doi: 10.1016/j.jmatprotec.2005.10.027
      [8]
      S. Kumar, Ultrasonic assisted friction stir processing of 6063 aluminum alloy, Arch. Civ. Mech. Eng., 16(2016), No. 3, p. 473. doi: 10.1016/j.acme.2016.03.002
      [9]
      Y.L. Wei, Research of the Dislocation Structures of Deformed FCC Metals [Dissertation], Tsinghua University, Beijing, 2011, p. 59.
      [10]
      A.A. Nazarova, R.R. Mulyukov, V.V. Rubanik, Y.V. Tsarenko, and A.A. Nazarov, Effect of ultrasonic treatment on the structure and properties of ultrafine-grained nickel, Phys. Met. Metallogr., 110(2010), No. 6, p. 574. doi: 10.1134/S0031918X10120082
      [11]
      J. Hu, T. Shimizu, T. Yoshino, T. Shiratori, and M. Yang, Ultrasonic dynamic impact effect on deformation of aluminum during micro-compression tests, J. Mater. Process. Technol., 258(2018), p. 144. doi: 10.1016/j.jmatprotec.2018.03.021
      [12]
      J.C. Hung and C.C. Lin, Investigations on the material property changes of ultrasonic-vibration assisted aluminum alloy upsetting, Mater. Des., 45(2013), p. 412. doi: 10.1016/j.matdes.2012.07.021
      [13]
      S. Bagherzadeh, K. Abrinia, and Q.Y. Han, Analysis of plastic deformation behavior of ultrafine-grained aluminum processed by the newly developed ultrasonic vibration enhanced ECAP: Simulation and experiments, J. Manuf. Process., 50(2020), p. 485. doi: 10.1016/j.jmapro.2020.01.010
      [14]
      G.D. Shao, H.W. Li, X. Zhang, M. Zhan, and Z.Y. Xiang, Characteristics and mechanism in ultrasonic vibration-assisted deformation of Ni-based superalloy thin-walled sheet by quasi-in-situ EBSD, SSRN Electron. J., 908(2022), art. No. 164591.
      [15]
      J. Hu, T. Shimizu, T. Yoshino, T. Shiratori, and M. Yang, Evolution of acoustic softening effect on ultrasonic-assisted micro/meso-compression behavior and microstructure, Ultrasonics, 107(2020), art. No. 106107. doi: 10.1016/j.ultras.2020.106107
      [16]
      A.E. Eaves, A.W. Smith, W.J. Waterhouse, and D.H. Sansome, Review of the application of ultrasonic vibrations to deforming metals, Ultrasonics, 13(1975), No. 4, p. 162. doi: 10.1016/0041-624X(75)90085-2
      [17]
      D.R. Culp and H.T. Gencsoy, Metal deformation with ultrasound, [in] 1973 Ultrasonics Symposium, Monterey, 1973, p. 195.
      [18]
      J. Hu, T. Shimizu, and M. Yang, Investigation on ultrasonic volume effects: Stress superposition, acoustic softening and dynamic impact, Ultrason. Sonochem., 48(2018), p. 240. doi: 10.1016/j.ultsonch.2018.05.039
      [19]
      B. Langenecker, Effects of ultrasound on deformation characteristics of metals, IEEE Trans. Sonics Ultrason., 13(1966), No. 1, p. 1. doi: 10.1109/T-SU.1966.29367
      [20]
      F. Blaha and B. Langenecker, Dehnung von Zink-Kristallen unter ultraschalleinwirkung, Naturwissenschaften, 42(1955), p. 556.
      [21]
      M.R. Sriraman, M. Gonser, H.T. Fujii, S.S. Babu, and M. Bloss, Thermal transients during processing of materials by very high power ultrasonic additive manufacturing, J. Mater. Process. Technol., 211(2011), No. 10, p. 1650. doi: 10.1016/j.jmatprotec.2011.05.003
      [22]
      G.S. Kelly, S.G. Advani, J.W. Gillespie Jr, and T.A. Bogetti, A model to characterize acoustic softening during ultrasonic consolidation, J. Mater. Process. Technol., 213(2013), No. 11, p. 1835. doi: 10.1016/j.jmatprotec.2013.05.008
      [23]
      B. Meng, B.N. Cao, M. Wan, C.J. Wang, and D.B. Shan, Constitutive behavior and microstructural evolution in ultrasonic vibration assisted deformation of ultrathin superalloy sheet, Int. J. Mech. Sci., 157-158(2019), p. 609. doi: 10.1016/j.ijmecsci.2019.05.009
      [24]
      Y. Daud, M. Lucas, and Z.H. Huang, Modelling the effects of superimposed ultrasonic vibrations on tension and compression tests of aluminium, J. Mater. Process. Technol., 186(2007), No. 1-3, p. 179. doi: 10.1016/j.jmatprotec.2006.12.032
      [25]
      C.J. Wang, Y. Liu, B. Guo, D.B. Shan, and B. Zhang, Acoustic softening and stress superposition in ultrasonic vibration assisted uniaxial tension of copper foil: Experiments and modeling, Mater. Des., 112(2016), p. 246. doi: 10.1016/j.matdes.2016.09.042
      [26]
      J.C. Hung and Y.C. Tsai, Investigation of the effects of ultrasonic vibration-assisted micro-upsetting on brass, Mater. Sci. Eng. A, 580(2013), p. 125. doi: 10.1016/j.msea.2013.04.074
      [27]
      Y.X. Liu, Q.Y. Han, L. Hua, and C. Xu, Numerical and experimental investigation of upsetting with ultrasonic vibration of pure copper cone tip, Ultrasonics, 53(2013), No. 3, p. 803. doi: 10.1016/j.ultras.2012.11.010
      [28]
      Q. Mao, N. Coutris, H. Rack, G. Fadel, and J. Gibert, Investigating ultrasound-induced acoustic softening in aluminum and its alloys, Ultrasonics, 102(2020), art. No. 106005. doi: 10.1016/j.ultras.2019.106005
      [29]
      Y. Liu, C.J. Wang, and R.G. Bi, Acoustic residual softening and microstructure evolution of T2 copper foil in ultrasonic vibration assisted micro-tension, Mater. Sci. Eng. A, 841(2022), art. No. 143044. doi: 10.1016/j.msea.2022.143044
      [30]
      J.R. Kang, X. Liu, and M.J. Xu, Plastic deformation of pure copper in ultrasonic assisted micro-tensile test, Mater. Sci. Eng. A, 785(2020), art. No. 139364. doi: 10.1016/j.msea.2020.139364
      [31]
      H. Huang, A. Pequegnat, B.H. Chang, M. Mayer, D. Du, and Y. Zhou, Influence of superimposed ultrasound on deformability of Cu, J. Appl. Phys., 106(2009), No. 11, p. 113514. doi: 10.1063/1.3266170
      [32]
      Z.H. Yao, G.Y. Kim, Z.H. Wang, et al., Acoustic softening and residual hardening in aluminum: Modeling and experiments, Int. J. Plast., 39(2012), p. 75. doi: 10.1016/j.ijplas.2012.06.003
      [33]
      I. Lum, H. Huang, B.H. Chang, M. Mayer, D. Du, and Y. Zhou, Effects of superimposed ultrasound on deformation of gold, J. Appl. Phys., 105(2009), No. 2, art. No. 024905. doi: 10.1063/1.3068352
      [34]
      T.F. Zhou and C.F. Ma, Study of ultrasonic vibration-assisted forming in copper cylinder compression, Procedia Manuf., 50(2020), p. 199. doi: 10.1016/j.promfg.2020.08.037
      [35]
      R.K. Dutta, R.H. Petrov, R. Delhez, M.J.M. Hermans, I.M. Richardson, and A.J. Böttger, The effect of tensile deformation by in situ ultrasonic treatment on the microstructure of low-carbon steel, Acta Mater., 61(2013), No. 5, p. 1592. doi: 10.1016/j.actamat.2012.11.036
      [36]
      J.R. Kang and X. Liu, Ultrasonic effect on the deformation behavior and microstructure evolution of a TRIP-assisted steel, Metall. Mater. Trans. A, 52(2021), No. 10, p. 4468. doi: 10.1007/s11661-021-06398-z
      [37]
      K.W. Siu, A.H.W. Ngan, and I.P. Jones, New insight on acoustoplasticity–Ultrasonic irradiation enhances subgrain formation during deformation, Int. J. Plast., 27(2011), No. 5, p. 788. doi: 10.1016/j.ijplas.2010.09.007
      [38]
      K.H. Westmacott and B. Langenecker, Dislocation structure in ultrasonically irradiated aluminum, Phys. Rev. Lett., 14(1965), No. 7, p. 221. doi: 10.1103/PhysRevLett.14.221
      [39]
      K. Srivastava, D. Weygand, D. Caillard, and P. Gumbsch, Repulsion leads to coupled dislocation motion and extended work hardening in bcc metals, Nat. Commun., 11(2020), No. 1, art. No. 5098. doi: 10.1038/s41467-020-18774-1
      [40]
      A. Prabhakar, G.C. Verma, H. Krishnasamy, P.M. Pandey, M.G. Lee, and S. Suwas, Dislocation density based constitutive model for ultrasonic assisted deformation, Mech. Res. Commun., 85(2017), p. 76. doi: 10.1016/j.mechrescom.2017.08.003
      [41]
      Q.C. Ma, J.Y. Ma, J.L. Zhou, X.X. Zheng, and H.J. Ji, Dislocation behavior in Cu single crystal joints under the ultrasonically excited high-strain-rate deformation, J. Mater. Sci. Technol., 141(2023), p. 66. doi: 10.1016/j.jmst.2022.09.011
      [42]
      J. Wang, X.F. He, H. Cao, L.X. Jia, Y.K. Dou, and W. Yang, Screw dislocation slip and its interaction with ½[ $11 \bar1 $] dislocation loop in bcc-Fe at different temperatures, Acta Phys. Sin., 70(2021), No. 6, art. No. 068701. doi: 10.7498/aps.70.20201659
      [43]
      J. Wang, X.F. He, H. Cao, D.J. Wang, Y.K. Dou, and W. Yang, Molecular dynamics simulation on interaction between screw dislocation and [010] interstitial dislocation loop in BCC-Fe, At. Energy Sci. Technol., 55(2021), No. 7, p. 1210.
      [44]
      M. Zohrevand, M. Aghaie-Khafri, F. Forouzan, and E. Vuorinen, Softening mechanisms in ultrasonic treatment of deformed austenitic stainless steel, Ultrasonics, 116(2021), art. No. 106519. doi: 10.1016/j.ultras.2021.106519
      [45]
      X.X. Wang, Z.C. Qi, and W.L. Chen, Investigation of mechanical and microstructural characteristics of Ti–45Nb undergoing transversal ultrasonic vibration-assisted upsetting, Mater. Sci. Eng. A, 813(2021), art. No. 141169. doi: 10.1016/j.msea.2021.141169
      [46]
      G. Nevill, Effect of Vibrations on the Yield Strength of a Low Carbon Steel [Dissertation], Rice University, Houston, 1957.
      [47]
      M.D. Hoseini, M. Shalvandi, and A. Salimiasl, Experimental and theatrical evaluation of the effect of grain size of S355J2 on acoustic softening, Modares Mech. Eng., 18(2018), No. 9, p. 40.
      [48]
      M.T. Ken, H. Jun, T. Shimizu, and Y. Ming, Shearing characteristics in ultrasonic vibration-assisted piercing of fine-grained stainless steel foils, Procedia Manuf., 15(2018), p. 627. doi: 10.1016/j.promfg.2018.07.287
      [49]
      O. Sitdikov, E. Avtokratova, O. Latypova, and M. Markushev, Structure, strength and superplasticity of ultrafine-grained 1570C aluminum alloy subjected to different thermomechanical processing routes based on severe plastic deformation, Trans. Nonferrous Met. Soc. China, 31(2021), No. 4, p. 887. doi: 10.1016/S1003-6326(21)65547-4
      [50]
      Y.L. Deng, B. Shan, J. Zhang, Y. Wang, and S. Zhang, Effect of tensile stress on microstructures and properties of creep aged 6N01 aluminum alloy, J. Cent. South Univ. Sci. Technol., 49(2018), No. 6, p. 1358.
      [51]
      X. X. Wang, Z.C. Qi, and W.L. Chen, Investigation of Ti–45Nb alloy’s mechanical and microscopic behaviors under transverse ultrasonic vibration-assisted compression, Mater. Sci. Eng. A, 832(2022), art. No. 142401. doi: 10.1016/j.msea.2021.142401
      [52]
      A.V. Panin, M.S. Kazachenok, A.I. Kozelskaya, R.R. Hairullin, and E.A. Sinyakova, Mechanisms of surface roughening of commercial purity titanium during ultrasonic impact treatment, Mater. Sci. Eng. A, 647(2015), p. 43. doi: 10.1016/j.msea.2015.08.086
      [53]
      H.Y. Zhou, H.Z. Cui, Q.H. Qin, H. Wang, and Y.G. Shen, A comparative study of mechanical and microstructural characteristics of aluminium and titanium undergoing ultrasonic assisted compression testing, Mater. Sci. Eng. A, 682(2017), p. 376. doi: 10.1016/j.msea.2016.11.021
      [54]
      J. Liao, L.X. Zhang, H.L. Xiang, and X. Xue, Mechanical behavior and microstructure evolution of AZ31 magnesium alloy sheet in an ultrasonic vibration-assisted hot tensile test, J. Alloys Compd., 895(2022), art. No. 162575. doi: 10.1016/j.jallcom.2021.162575
      [55]
      T.J. Gao, K.X. Wang, H.T. Lu, and Y. Yang, Effect of compound energy-field with temperature and ultrasonic vibration on mechanical properties of TC2 titanium alloy, J. Wuhan Univ. Technol. Mater. Sci. Ed., 37(2022), No. 1, p. 85. doi: 10.1007/s11595-022-2502-6
      [56]
      S.S. Jiang, Y. Jia, H.B. Zhang, et al., Plastic deformation behavior of Ti foil under ultrasonic vibration in tension, J. Mater. Eng. Perform., 26(2017), No. 4, p. 1769. doi: 10.1007/s11665-017-2598-6
      [57]
      J. Han, C. Wang, Y.M. Song, Z.Y. Liu, J.P. Sun, and J.Y. Zhao, Simultaneously improving mechanical properties and corrosion resistance of as-cast AZ91 Mg alloy by ultrasonic surface rolling, Int. J. Miner. Metall. Mater., 29(2022), No. 8, p. 1551. doi: 10.1007/s12613-021-2294-2
      [58]
      H. Ye, X. Sun, Y. Liu, X.X. Rao, and Q. Gu, Effect of ultrasonic surface rolling process on mechanical properties and corrosion resistance of AZ31B Mg alloy, Surf. Coat. Technol., 372(2019), p. 288. doi: 10.1016/j.surfcoat.2019.05.035
      [59]
      T. Wen, L. Wei, X. Chen, and C.L. Pei, Effects of ultrasonic vibration on plastic deformation of AZ31 during the tensile process, Int. J. Miner. Metall. Mater., 18(2011), No. 1, p. 70. doi: 10.1007/s12613-011-0402-4
      [60]
      Z.D. Xie, Y.J. Guan, X.H. Yu, L.H. Zhu, and J. Lin, Effects of ultrasonic vibration on performance and microstructure of AZ31 magnesium alloy under tensile deformation, J. Cent. South Univ., 25(2018), No. 7, p. 1545. doi: 10.1007/s11771-018-3847-z
      [61]
      T. Liu, J. Lin, Y.J. Guan, Z.D. Xie, L.H. Zhu, and J.Q. Zhai, Effects of ultrasonic vibration on the compression of pure titanium, Ultrasonics, 89(2018), p. 26. doi: 10.1016/j.ultras.2018.04.006
      [62]
      A.T. Bozdana, N.N.Z. Gindy, and H. Li, Deep cold rolling with ultrasonic vibrations–A new mechanical surface enhancement technique, Int. J. Mach. Tools Manuf., 45(2005), No. 6, p. 713. doi: 10.1016/j.ijmachtools.2004.09.017
      [63]
      J. Zhao and Z.Q. Liu, Investigations of ultrasonic frequency effects on surface deformation in rotary ultrasonic roller burnishing Ti–6Al–4V, Mater. Des., 107(2016), p. 238. doi: 10.1016/j.matdes.2016.06.024
      [64]
      S. Liu, X.B. Shan, K. Guo, Y.C. Yang, and T. Xie, Experimental study on titanium wire drawing with ultrasonic vibration, Ultrasonics, 83(2018), p. 60. doi: 10.1016/j.ultras.2017.08.003
      [65]
      C.Q. Yang, X.B. Shan, and T. Xie, Titanium wire drawing with longitudinal-torsional composite ultrasonic vibration, Int. J. Adv. Manuf. Technol., 83(2016), No. 1, p. 645.
      [66]
      K. Siegert and J. Ulmer, Influencing the friction in metal forming processes by superimposing ultrasonic waves, CIRP Ann., 50(2001), No. 1, p. 195. doi: 10.1016/S0007-8506(07)62103-9
      [67]
      S. Liu, T. Xie, J. Han, and X.B. Shan, Stress superposition effect in ultrasonic drawing of titanium wires: An experimental study, Ultrasonics, 125(2022), art. No. 106775. doi: 10.1016/j.ultras.2022.106775

    Catalog


    • /

      返回文章
      返回