留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 1
Jan.  2024

图(8)  / 表(5)

数据统计

分享

计量
  • 文章访问数:  511
  • HTML全文浏览量:  278
  • PDF下载量:  33
  • 被引次数: 0
Xiaoshuang Li, Dmitry Sukhomlinov, and Zaiqing Que, Microstructure and thermal properties of dissimilar M300–CuCr1Zr alloys by multi-material laser-based powder bed fusion, Int. J. Miner. Metall. Mater., 31(2024), No. 1, pp. 118-128. https://doi.org/10.1007/s12613-023-2747-x
Cite this article as:
Xiaoshuang Li, Dmitry Sukhomlinov, and Zaiqing Que, Microstructure and thermal properties of dissimilar M300–CuCr1Zr alloys by multi-material laser-based powder bed fusion, Int. J. Miner. Metall. Mater., 31(2024), No. 1, pp. 118-128. https://doi.org/10.1007/s12613-023-2747-x
引用本文 PDF XML SpringerLink
研究论文Open Access

激光粉末床熔融多材料M300–CuCr1Zr异种合金的微观组织与热性能




  • 通讯作者:

    Que Zaiqing    E-mail: zaiqing.que@vtt.fi

  • 激光粉末床融合(PBF-LB)多材料可以在一个步骤中生产具有三维梯度和附加功能的零件。本文重点研究了具有导热性能的CuCr1Zr与硬质M300工具钢两种界面构型,即M300在CuCr1Zr上和CuCr1Zr在M300上。由于铜和钢的低互溶性,在界面处形成超细晶粒。二者混合区域的大小取决于构型并且引入一组单独的界面层参数其可在0.1–0.3 mm的范围内进行调控。微裂纹和孔隙主要出现在过渡区域。尽管存在裂纹、孔隙等缺陷,与纯M300工具钢相比, CuCr1Zr占50vol%双金属零件的热扩散率显著提高了70%–150%。表明时效热处理可以同时提高CuCr1Zr的热扩散率和M300钢的硬度。
  • Research ArticleOpen Access

    Microstructure and thermal properties of dissimilar M300–CuCr1Zr alloys by multi-material laser-based powder bed fusion

    + Author Affiliations
    • Multi-material laser-based powder bed fusion (PBF-LB) allows manufacturing of parts with 3-dimensional gradient and additional functionality in a single step. This research focuses on the combination of thermally-conductive CuCr1Zr with hard M300 tool steel. Two interface configurations of M300 on CuCr1Zr and CuCr1Zr on M300 were investigated. Ultra-fine grains form at the interface due to the low mutual solubility of Cu and steel. The material mixing zone size is dependent on the configurations and tunable in the range of 0.1–0.3 mm by introducing a separate set of parameters for the interface layers. Microcracks and pores mainly occur in the transition zone. Regardless of these defects, the thermal diffusivity of bimetallic parts with 50vol% of CuCr1Zr significantly increases by 70%–150% compared to pure M300. The thermal diffusivity of CuCr1Zr and the hardness of M300 steel can be enhanced simultaneously by applying the aging heat treatment.
    • loading
    • [1]
      A. Kirchheim, Y. Katrodiya, L. Zumofen, F. Ehrig, and C. Wick, Dynamic conformal cooling improves injection molding Hybrid molds manufactured by laser powder bed fusion, Int. J. Adv. Manuf. Technol., 114(2021), No. 1, p. 107.
      [2]
      S.C. Feng, A.M. Kamat, and Y.T. Pei, Design and fabrication of conformal cooling channels in molds: Review and progress updates, Int. J. Heat Mass Transf., 171(2021), art. No. 121082. doi: 10.1016/j.ijheatmasstransfer.2021.121082
      [3]
      J. Lee, J. Choe, J. Park, et al., Microstructural effects on the tensile and fracture behavior of selective laser melted H13 tool steel under varying conditions, Mater. Charact., 155(2019), art. No. 109817. doi: 10.1016/j.matchar.2019.109817
      [4]
      K. Kempen, B. Vrancken, S. Buls, L. Thijs, J. Van Humbeeck, and J.P. Kruth, Selective laser melting of crack-free high density M2 high speed steel parts by baseplate preheating, J. Manuf. Sci. Eng., 136(2014), No. 6, art. No. 061026. doi: 10.1115/1.4028513
      [5]
      K. Bae, D. Kim, W. Lee, and Y. Park, Wear behavior of conventionally and directly aged maraging 18Ni–300 steel produced by laser powder bed fusion, Materials, 14(2021), No. 10, art. No. 2588. doi: 10.3390/ma14102588
      [6]
      L. Wu, S. Das, W. Gridin, et al., Hot work tool steel processed by laser powder bed fusion: A review on most relevant influencing factors, Adv. Eng. Mater., 23(2021), No. 7, art. No. 2100049. doi: 10.1002/adem.202100049
      [7]
      A.G. Demir and B. Previtali, Multi-material selective laser melting of Fe/Al–12Si components, Manuf. Lett., 11(2017), p. 8. doi: 10.1016/j.mfglet.2017.01.002
      [8]
      M. Schneck, M. Horn, M. Schmitt, C. Seidel, G. Schlick, and G. Reinhart, Review on additive hybrid- and multi-material-manufacturing of metals by powder bed fusion: State of technology and development potential, Prog. Addit. Manuf., 6(2021), No. 4, p. 881. doi: 10.1007/s40964-021-00205-2
      [9]
      C. Wei and L. Li, Recent progress and scientific challenges in multi-material additive manufacturing via laser-based powder bed fusion, Virtual Phys. Prototyp., 16(2021), No. 3, p. 347. doi: 10.1080/17452759.2021.1928520
      [10]
      T. Bareth, M. Binder, P. Kindermann, V. Stapff, A. Rieser, and C. Seidel, Implementation of a multi-material mechanism in a laser-based powder bed fusion (PBF-LB) machine, Procedia CIRP, 107(2022), p. 558. doi: 10.1016/j.procir.2022.05.025
      [11]
      M. Mehrpouya, D. Tuma, T. Vaneker, M. Afrasiabi, M. Bambach, and I. Gibson, Multimaterial powder bed fusion techniques, Rapid Prototyping J., 28(2022), No. 11, p. 1. doi: 10.1108/RPJ-01-2022-0014
      [12]
      M. Schneck, M. Horn, M. Schindler, and C. Seidel, Capability of multi-material laser-based powder bed fusion—Development and analysis of a prototype large bore engine component, Metals, 12(2021), No. 1, art. No. 44. doi: 10.3390/met12010044
      [13]
      C. Singer, M. Schmitt, G. Schlick, and J. Schilp, Multi-material additive manufacturing of thermocouples by laser-based powder bed fusion, Procedia CIRP, 112(2022), p. 346. doi: 10.1016/j.procir.2022.09.007
      [14]
      D. Wang, L.Q. Liu, G.W. Deng, et al., Recent progress on additive manufacturing of multi-material structures with laser powder bed fusion, Virtual Phys. Prototyp., 17(2022), No. 2, p. 329. doi: 10.1080/17452759.2022.2028343
      [15]
      C. Wei, L.C. Liu, Y.C. Gu, et al., Multi-material additive-manufacturing of tungsten–copper alloy bimetallic structure with a stainless-steel interlayer and associated bonding mechanisms, Addit. Manuf., 50(2022), art. No. 102574.
      [16]
      Y.C. Bai, J.Y. Zhang, C.L. Zhao, C.J. Li, and H. Wang, Dual interfacial characterization and property in multi-material selective laser melting of 316L stainless steel and C52400 copper alloy, Mater. Charact., 167(2020), art. No. 110489. doi: 10.1016/j.matchar.2020.110489
      [17]
      J. Chen, Y.Q. Yang, C.H. Song, D. Wang, S.B. Wu, and M.K. Zhang, Influence mechanism of process parameters on the interfacial characterization of selective laser melting 316L/CuSn10, Mater. Sci. Eng. A, 792(2020), art. No. 139316. doi: 10.1016/j.msea.2020.139316
      [18]
      J. Chen, Y.Q. Yang, D. Wang, Z.X. Liu, and C.H. Song, Effect of manufacturing steps on the interfacial defects of laser powder bed fusion 316L/CuSn10, Mater. Lett., 292(2021), art. No. 129377. doi: 10.1016/j.matlet.2021.129377
      [19]
      J. Schanz, N. Islam, D. Kolb, et al., Individual process development of single and multi-material laser melting in novel modular laser powder bed fusion system, Prog. Addit. Manuf., 7(2022), No. 3, p. 481. doi: 10.1007/s40964-022-00276-9
      [20]
      Z.H. Liu, D.Q. Zhang, S.L. Sing, C.K. Chua, and L.E. Loh, Interfacial characterization of SLM parts in multi-material processing: Metallurgical diffusion between 316L stainless steel and C18400 copper alloy, Mater. Charact., 94(2014), p. 116. doi: 10.1016/j.matchar.2014.05.001
      [21]
      S.L. Mao, D.Z. Zhang, Z.H. Ren, G. Fu, and X.Y. Ma, Effects of process parameters on interfacial characterization and mechanical properties of 316L/CuCrZr functionally graded material by selective laser melting, J. Alloys Compd., 899(2022), art. No. 163256. doi: 10.1016/j.jallcom.2021.163256
      [22]
      C. Anstaett, C. Seidel, and G. Reinhart, Fabrication of 3D multi-material parts using laser-based powder bed fusion, [in] 2017 International Solid Freeform Fabrication Symposium, Austin, 2017, p. 9.
      [23]
      A. Cunha, A. Marques, F.S. Silva, et al., 420 stainless steel–Cu parts fabricated using 3D multi-material laser powder bed fusion: A new solution for plastic injection moulds, Mater. Today Commun., 32(2022), art. No. 103852. doi: 10.1016/j.mtcomm.2022.103852
      [24]
      V. Lindström, O. Liashenko, K. Zweiacker, et al., Laser powder bed fusion of metal coated copper powders, Materials, 13(2020), No. 16, art. No. 3493. doi: 10.3390/ma13163493
      [25]
      S.D. Jadhav, L.R. Goossens, Y. Kinds, B. Van Hooreweder, and K. Vanmeensel, Laser-based Powder bed fusion additive manufacturing of pure copper, Addit. Manuf., 42(2021), art. No. 101990.
      [26]
      P.F. Guan, X.H. Chen, P. Liu, et al., Effect of selective laser melting process parameters and aging heat treatment on properties of CuCrZr alloy, Mater. Res. Express, 6(2019), No. 11, art. No. 1165c1. doi: 10.1088/2053-1591/ab4e2f
      [27]
      Z.B. Ma, K.F. Zhang, Z.H. Ren, D.Z. Zhang, G.B. Tao, and H.S. Xu, Selective laser melting of Cu–Cr–Zr copper alloy: Parameter optimization, microstructure and mechanical properties, J. Alloys Compd., 828(2020), art. No. 154350. doi: 10.1016/j.jallcom.2020.154350
      [28]
      H.F. Xie, X.P. Tang, X.H. Chen, et al., The effect of build orientations on mechanical and thermal properties on CuCrZr alloys fabricated by laser powder bed fusion, J. Mater. Res. Technol., 23(2023), p. 3322. doi: 10.1016/j.jmrt.2023.01.218
      [29]
      R.P. Polkam, Laser Powder Bed Fusion of CuNi2SiCr Alloy: Process Parameters Optimization and Electro-mechanical Characterization [Dissertation], Politecnico di Torino, Torino, 2022.
      [30]
      B. Neirinck, X.S. Li, and M. Hick, Powder deposition systems used in powder bed-based multimetal additive manufacturing, Acc. Mater. Res., 2(2021), No. 6, p. 387. doi: 10.1021/accountsmr.1c00030
      [31]
      X. Li, N. Gianfolcaro, O. Dedry, and A. Mertens, Microstructure and properties of multi-material parts by PBF-LB, [in] World PM2022 Proceedings, Lyon, 2022.
      [32]
      E.A. Jägle, Z.D. Sheng, P. Kürnsteiner, S. Ocylok, A. Weisheit, and D. Raabe, Comparison of maraging steel micro- and nanostructure produced conventionally and by laser additive manufacturing, Materials, 10(2016), No. 1, art. No. 8. doi: 10.3390/ma10010008
      [33]
      C. Elangeswaran, K. Gurung, R. Koch, A. Cutolo, and B. Van Hooreweder, Post-treatment selection for tailored fatigue performance of 18Ni300 maraging steel manufactured by laser powder bed fusion, Fatigue Fract. Eng. Mater. Struct., 43(2020), No. 10, p. 2359. doi: 10.1111/ffe.13304
      [34]
      B. Podgornik, M. Šinko, and M. Godec, Dependence of the wear resistance of additive-manufactured maraging steel on the build direction and heat treatment, Addit. Manuf., 46(2021), art. No. 102123.
      [35]
      C. Wallis and B. Buchmayr, Effect of heat treatments on microstructure and properties of CuCrZr produced by laser-powder bed fusion, Mater. Sci. Eng. A, 744(2019), p. 215. doi: 10.1016/j.msea.2018.12.017
      [36]
      C. Salvan, L. Briottet, T. Baffie, L. Guetaz, and C. Flament, CuCrZr alloy produced by laser powder bed fusion: Microstructure, nanoscale strengthening mechanisms, electrical and mechanical properties, Mater. Sci. Eng. A, 826(2021), art. No. 141915. doi: 10.1016/j.msea.2021.141915
      [37]
      P. Kürnsteiner, M.B. Wilms, A. Weisheit, P. Barriobero-Vila, E.A. Jägle, and D. Raabe, Massive nanoprecipitation in an Fe–19Ni–xAl maraging steel triggered by the intrinsic heat treatment during laser metal deposition, Acta Mater., 129(2017), p. 52. doi: 10.1016/j.actamat.2017.02.069
      [38]
      C.L. Tan, K.S. Zhou, W.Y. Ma, and L. Min, Interfacial characteristic and mechanical performance of maraging steel–copper functional bimetal produced by selective laser melting based hybrid manufacture, Mater. Des., 155(2018), p. 77. doi: 10.1016/j.matdes.2018.05.064

    Catalog


    • /

      返回文章
      返回