Cite this article as: |
Xiaoshuang Li, Dmitry Sukhomlinov, and Zaiqing Que, Microstructure and thermal properties of dissimilar M300–CuCr1Zr alloys by multi-material laser-based powder bed fusion, Int. J. Miner. Metall. Mater., 31(2024), No. 1, pp. 118-128. https://doi.org/10.1007/s12613-023-2747-x |
Que Zaiqing E-mail: zaiqing.que@vtt.fi
[1] |
A. Kirchheim, Y. Katrodiya, L. Zumofen, F. Ehrig, and C. Wick, Dynamic conformal cooling improves injection molding Hybrid molds manufactured by laser powder bed fusion, Int. J. Adv. Manuf. Technol., 114(2021), No. 1, p. 107.
|
[2] |
S.C. Feng, A.M. Kamat, and Y.T. Pei, Design and fabrication of conformal cooling channels in molds: Review and progress updates, Int. J. Heat Mass Transf., 171(2021), art. No. 121082. doi: 10.1016/j.ijheatmasstransfer.2021.121082
|
[3] |
J. Lee, J. Choe, J. Park, et al., Microstructural effects on the tensile and fracture behavior of selective laser melted H13 tool steel under varying conditions, Mater. Charact., 155(2019), art. No. 109817. doi: 10.1016/j.matchar.2019.109817
|
[4] |
K. Kempen, B. Vrancken, S. Buls, L. Thijs, J. Van Humbeeck, and J.P. Kruth, Selective laser melting of crack-free high density M2 high speed steel parts by baseplate preheating, J. Manuf. Sci. Eng., 136(2014), No. 6, art. No. 061026. doi: 10.1115/1.4028513
|
[5] |
K. Bae, D. Kim, W. Lee, and Y. Park, Wear behavior of conventionally and directly aged maraging 18Ni–300 steel produced by laser powder bed fusion, Materials, 14(2021), No. 10, art. No. 2588. doi: 10.3390/ma14102588
|
[6] |
L. Wu, S. Das, W. Gridin, et al., Hot work tool steel processed by laser powder bed fusion: A review on most relevant influencing factors, Adv. Eng. Mater., 23(2021), No. 7, art. No. 2100049. doi: 10.1002/adem.202100049
|
[7] |
A.G. Demir and B. Previtali, Multi-material selective laser melting of Fe/Al–12Si components, Manuf. Lett., 11(2017), p. 8. doi: 10.1016/j.mfglet.2017.01.002
|
[8] |
M. Schneck, M. Horn, M. Schmitt, C. Seidel, G. Schlick, and G. Reinhart, Review on additive hybrid- and multi-material-manufacturing of metals by powder bed fusion: State of technology and development potential, Prog. Addit. Manuf., 6(2021), No. 4, p. 881. doi: 10.1007/s40964-021-00205-2
|
[9] |
C. Wei and L. Li, Recent progress and scientific challenges in multi-material additive manufacturing via laser-based powder bed fusion, Virtual Phys. Prototyp., 16(2021), No. 3, p. 347. doi: 10.1080/17452759.2021.1928520
|
[10] |
T. Bareth, M. Binder, P. Kindermann, V. Stapff, A. Rieser, and C. Seidel, Implementation of a multi-material mechanism in a laser-based powder bed fusion (PBF-LB) machine, Procedia CIRP, 107(2022), p. 558. doi: 10.1016/j.procir.2022.05.025
|
[11] |
M. Mehrpouya, D. Tuma, T. Vaneker, M. Afrasiabi, M. Bambach, and I. Gibson, Multimaterial powder bed fusion techniques, Rapid Prototyping J., 28(2022), No. 11, p. 1. doi: 10.1108/RPJ-01-2022-0014
|
[12] |
M. Schneck, M. Horn, M. Schindler, and C. Seidel, Capability of multi-material laser-based powder bed fusion—Development and analysis of a prototype large bore engine component, Metals, 12(2021), No. 1, art. No. 44. doi: 10.3390/met12010044
|
[13] |
C. Singer, M. Schmitt, G. Schlick, and J. Schilp, Multi-material additive manufacturing of thermocouples by laser-based powder bed fusion, Procedia CIRP, 112(2022), p. 346. doi: 10.1016/j.procir.2022.09.007
|
[14] |
D. Wang, L.Q. Liu, G.W. Deng, et al., Recent progress on additive manufacturing of multi-material structures with laser powder bed fusion, Virtual Phys. Prototyp., 17(2022), No. 2, p. 329. doi: 10.1080/17452759.2022.2028343
|
[15] |
C. Wei, L.C. Liu, Y.C. Gu, et al., Multi-material additive-manufacturing of tungsten–copper alloy bimetallic structure with a stainless-steel interlayer and associated bonding mechanisms, Addit. Manuf., 50(2022), art. No. 102574.
|
[16] |
Y.C. Bai, J.Y. Zhang, C.L. Zhao, C.J. Li, and H. Wang, Dual interfacial characterization and property in multi-material selective laser melting of 316L stainless steel and C52400 copper alloy, Mater. Charact., 167(2020), art. No. 110489. doi: 10.1016/j.matchar.2020.110489
|
[17] |
J. Chen, Y.Q. Yang, C.H. Song, D. Wang, S.B. Wu, and M.K. Zhang, Influence mechanism of process parameters on the interfacial characterization of selective laser melting 316L/CuSn10, Mater. Sci. Eng. A, 792(2020), art. No. 139316. doi: 10.1016/j.msea.2020.139316
|
[18] |
J. Chen, Y.Q. Yang, D. Wang, Z.X. Liu, and C.H. Song, Effect of manufacturing steps on the interfacial defects of laser powder bed fusion 316L/CuSn10, Mater. Lett., 292(2021), art. No. 129377. doi: 10.1016/j.matlet.2021.129377
|
[19] |
J. Schanz, N. Islam, D. Kolb, et al., Individual process development of single and multi-material laser melting in novel modular laser powder bed fusion system, Prog. Addit. Manuf., 7(2022), No. 3, p. 481. doi: 10.1007/s40964-022-00276-9
|
[20] |
Z.H. Liu, D.Q. Zhang, S.L. Sing, C.K. Chua, and L.E. Loh, Interfacial characterization of SLM parts in multi-material processing: Metallurgical diffusion between 316L stainless steel and C18400 copper alloy, Mater. Charact., 94(2014), p. 116. doi: 10.1016/j.matchar.2014.05.001
|
[21] |
S.L. Mao, D.Z. Zhang, Z.H. Ren, G. Fu, and X.Y. Ma, Effects of process parameters on interfacial characterization and mechanical properties of 316L/CuCrZr functionally graded material by selective laser melting, J. Alloys Compd., 899(2022), art. No. 163256. doi: 10.1016/j.jallcom.2021.163256
|
[22] |
C. Anstaett, C. Seidel, and G. Reinhart, Fabrication of 3D multi-material parts using laser-based powder bed fusion, [in] 2017 International Solid Freeform Fabrication Symposium, Austin, 2017, p. 9.
|
[23] |
A. Cunha, A. Marques, F.S. Silva, et al., 420 stainless steel–Cu parts fabricated using 3D multi-material laser powder bed fusion: A new solution for plastic injection moulds, Mater. Today Commun., 32(2022), art. No. 103852. doi: 10.1016/j.mtcomm.2022.103852
|
[24] |
V. Lindström, O. Liashenko, K. Zweiacker, et al., Laser powder bed fusion of metal coated copper powders, Materials, 13(2020), No. 16, art. No. 3493. doi: 10.3390/ma13163493
|
[25] |
S.D. Jadhav, L.R. Goossens, Y. Kinds, B. Van Hooreweder, and K. Vanmeensel, Laser-based Powder bed fusion additive manufacturing of pure copper, Addit. Manuf., 42(2021), art. No. 101990.
|
[26] |
P.F. Guan, X.H. Chen, P. Liu, et al., Effect of selective laser melting process parameters and aging heat treatment on properties of CuCrZr alloy, Mater. Res. Express, 6(2019), No. 11, art. No. 1165c1. doi: 10.1088/2053-1591/ab4e2f
|
[27] |
Z.B. Ma, K.F. Zhang, Z.H. Ren, D.Z. Zhang, G.B. Tao, and H.S. Xu, Selective laser melting of Cu–Cr–Zr copper alloy: Parameter optimization, microstructure and mechanical properties, J. Alloys Compd., 828(2020), art. No. 154350. doi: 10.1016/j.jallcom.2020.154350
|
[28] |
H.F. Xie, X.P. Tang, X.H. Chen, et al., The effect of build orientations on mechanical and thermal properties on CuCrZr alloys fabricated by laser powder bed fusion, J. Mater. Res. Technol., 23(2023), p. 3322. doi: 10.1016/j.jmrt.2023.01.218
|
[29] |
R.P. Polkam, Laser Powder Bed Fusion of CuNi2SiCr Alloy: Process Parameters Optimization and Electro-mechanical Characterization [Dissertation], Politecnico di Torino, Torino, 2022.
|
[30] |
B. Neirinck, X.S. Li, and M. Hick, Powder deposition systems used in powder bed-based multimetal additive manufacturing, Acc. Mater. Res., 2(2021), No. 6, p. 387. doi: 10.1021/accountsmr.1c00030
|
[31] |
X. Li, N. Gianfolcaro, O. Dedry, and A. Mertens, Microstructure and properties of multi-material parts by PBF-LB, [in] World PM2022 Proceedings, Lyon, 2022.
|
[32] |
E.A. Jägle, Z.D. Sheng, P. Kürnsteiner, S. Ocylok, A. Weisheit, and D. Raabe, Comparison of maraging steel micro- and nanostructure produced conventionally and by laser additive manufacturing, Materials, 10(2016), No. 1, art. No. 8. doi: 10.3390/ma10010008
|
[33] |
C. Elangeswaran, K. Gurung, R. Koch, A. Cutolo, and B. Van Hooreweder, Post-treatment selection for tailored fatigue performance of 18Ni300 maraging steel manufactured by laser powder bed fusion, Fatigue Fract. Eng. Mater. Struct., 43(2020), No. 10, p. 2359. doi: 10.1111/ffe.13304
|
[34] |
B. Podgornik, M. Šinko, and M. Godec, Dependence of the wear resistance of additive-manufactured maraging steel on the build direction and heat treatment, Addit. Manuf., 46(2021), art. No. 102123.
|
[35] |
C. Wallis and B. Buchmayr, Effect of heat treatments on microstructure and properties of CuCrZr produced by laser-powder bed fusion, Mater. Sci. Eng. A, 744(2019), p. 215. doi: 10.1016/j.msea.2018.12.017
|
[36] |
C. Salvan, L. Briottet, T. Baffie, L. Guetaz, and C. Flament, CuCrZr alloy produced by laser powder bed fusion: Microstructure, nanoscale strengthening mechanisms, electrical and mechanical properties, Mater. Sci. Eng. A, 826(2021), art. No. 141915. doi: 10.1016/j.msea.2021.141915
|
[37] |
P. Kürnsteiner, M.B. Wilms, A. Weisheit, P. Barriobero-Vila, E.A. Jägle, and D. Raabe, Massive nanoprecipitation in an Fe–19Ni–xAl maraging steel triggered by the intrinsic heat treatment during laser metal deposition, Acta Mater., 129(2017), p. 52. doi: 10.1016/j.actamat.2017.02.069
|
[38] |
C.L. Tan, K.S. Zhou, W.Y. Ma, and L. Min, Interfacial characteristic and mechanical performance of maraging steel–copper functional bimetal produced by selective laser melting based hybrid manufacture, Mater. Des., 155(2018), p. 77. doi: 10.1016/j.matdes.2018.05.064
|