Cite this article as: |
Qian Zhao, Zhenli He, Yuehui He, Yue Qiu, Zhonghe Wang, and Yao Jiang, Porous TiFe2 intermetallic compound fabricated via elemental powder reactive synthesis, Int. J. Miner. Metall. Mater., 31(2024), No. 4, pp. 764-772. https://doi.org/10.1007/s12613-023-2748-9 |
江垚 E-mail: jiangyao@csu.edu.cn
[1] |
Y. Jiang, Y.H. He, and H.Y. Gao, Recent progress in porous intermetallics: Synthesis mechanism, pore structure, and material properties, J. Mater. Sci. Technol., 74(2021), p. 89. doi: 10.1016/j.jmst.2020.10.007
|
[2] |
J.J. Wan, Z.M. Zhang, Y.M. Wang, et al., Synergistic covalent-and-supramolecular polymers connected by [2]pseudorotaxane moieties, Chem. Commun., 57(2021), No. 60, p. 7374. doi: 10.1039/D1CC02873A
|
[3] |
Y.L. Zhang, A.H. Feng, S.J. Qu, J. Shen, and D.L. Chen, Microstructure and low cycle fatigue of a Ti2AlNb-based lightweight alloy, J. Mater. Sci. Technol., 44(2020), p. 140. doi: 10.1016/j.jmst.2020.01.032
|
[4] |
Z.C. Shang, X.P. Cai, H. Wang, et al., High temperature anti-oxidation and filtration behavior of micro/nano-scale porous CoAl intermetallic synthesized via rapid thermal explosion, Corros. Sci., 219(2023), art. No. 111216. doi: 10.1016/j.corsci.2023.111216
|
[5] |
Z.C. Shang, X.P. Cai, X.Y. Jiao, et al., 3D microstructure and anti-oxidation behavior of porous CoAl intermetallic fabricated by rapid thermal explosion, Corros. Sci., 208(2022), art. No. 110715. doi: 10.1016/j.corsci.2022.110715
|
[6] |
X.Y. Jiao, P.Z. Feng, J.Z. Wang, X.R. Ren, and F. Akhtar, Exothermic behavior and thermodynamic analysis for the formation of porous TiAl3 intermetallics sintering with different heating rates, J. Alloys Compd., 811(2019), art. No. 152056. doi: 10.1016/j.jallcom.2019.152056
|
[7] |
Y.H. He, Y. Jiang, N.P. Xu, et al., Fabrication of Ti–Al micro/nanometer-sized porous alloys through the Kirkendall effect, Adv. Mater., 19(2007), No. 16, p. 2102. doi: 10.1002/adma.200602398
|
[8] |
G.L. Hao, H. Wang, and X.Y. Li, Novel double pore structures of TiAl produced by powder metallurgy processing, Mater. Lett., 142(2015), p. 11. doi: 10.1016/j.matlet.2014.11.135
|
[9] |
H. Sina, J. Corneliusson, K. Turba, and S. Iyengar, A study on the formation of iron aluminide (FeAl) from elemental powders, J. Alloys Compd., 636(2015), p. 261. doi: 10.1016/j.jallcom.2015.02.132
|
[10] |
G. Chen, K.D. Liss, C. Chen, Y.H. He, X.H. Qu, and P. Cao, Porous FeAl alloys via powder sintering: Phase transformation, microstructure and aqueous corrosion behavior, J. Mater. Sci. Technol., 86(2021), p. 64. doi: 10.1016/j.jmst.2021.01.029
|
[11] |
Y.M. Shu, A. Suzuki, N. Takata, and M. Kobashi, Fabrication of porous NiAl intermetallic compounds with a hierarchical open-cell structure by combustion synthesis reaction and space holder method, J. Mater. Process. Technol., 264(2019), p. 182. doi: 10.1016/j.jmatprotec.2018.09.010
|
[12] |
T. Ide, M. Tane, and H. Nakajima, Fabrication of lotus-type porous NiAl and Ni3Al intermetallic compounds, Solid State Phenom., 124-126(2007), p. 1721. doi: 10.4028/www.scientific.net/SSP.124-126.1721
|
[13] |
L. Wu, Y.H. He, T. Lei, et al., The stability of hydrogen evolution activity and corrosion behavior of porous Ni3Al–Mo electrode in alkaline solution during long-term electrolysis, Energy, 67(2014), p. 19. doi: 10.1016/j.energy.2014.02.033
|
[14] |
B.T. Shen, Y.H. He, Z.H. Wang, L.P. Yu, Y. Jiang, and H.Y. Gao, Reactive synthesis of porous FeSi intermetallic compound, J. Alloys Compd., 826(2020), art. No. 154227. doi: 10.1016/j.jallcom.2020.154227
|
[15] |
B.T. Shen, Y.H. He, W.H. Li, et al., Insight into electrochemical performance of porous Fe x Si y intermetallic anode for zinc electrowinning, Mater. Des., 191(2020), art. No. 108645. doi: 10.1016/j.matdes.2020.108645
|
[16] |
B.T. Shen, Y.H. He, Z.L. He, Z.H. Wang, Y. Jiang, and H.Y. Gao, Porous Fe5Si3 intermetallic anode for the oxygen evolution reaction in acidic electrolytes, J. Colloid Interface Sci., 605(2022), p. 637. doi: 10.1016/j.jcis.2021.07.127
|
[17] |
S. Malik, S. Kishore, S. Prasad, and M.P. Shah, A comprehensive review on emerging trends in industrial wastewater research, J. Basic Microbiol., 62(2022), No. 3-4, p. 296. doi: 10.1002/jobm.202100554
|
[18] |
V. Kumar and S.K. Dwivedi, A review on accessible techniques for removal of hexavalent Chromium and divalent Nickel from industrial wastewater: Recent research and future outlook, J. Cleaner Prod., 295(2021), art. No. 126229. doi: 10.1016/j.jclepro.2021.126229
|
[19] |
A.V. Baskar, N. Bolan, S.A. Hoang, et al., Recovery, regeneration and sustainable management of spent adsorbents from wastewater treatment streams: A review, Sci. Total Environ., 822(2022), art. No. 153555. doi: 10.1016/j.scitotenv.2022.153555
|
[20] |
R.M. Jain, K.H. Mody, J. Keshri, and B. Jha, Biological neutralization and biosorption of dyes of alkaline textile industry wastewater, Mar. Pollut. Bull., 84(2014), No. 1-2, p. 83. doi: 10.1016/j.marpolbul.2014.05.033
|
[21] |
J.H. Jeon, A.B.C. Sola, J.Y. Lee, and R.K. Jyothi, Hydrometallurgical process development to recycle valuable metals from spent SCR deNO X catalyst, Sci. Rep., 11(2021), No. 1, art. No. 22131. doi: 10.1038/s41598-021-01726-0
|
[22] |
A.V. Boyarintsev, S.I. Stepanov, G.V. Kostikova, V.I. Zhilov, A.M. Safiulina, and A.Y. Tsivadze, Separation and purification of elements from alkaline and carbonate nuclear waste solutions, Nucl. Eng. Technol., 55(2023), No. 2, p. 391. doi: 10.1016/j.net.2022.09.030
|
[23] |
A.A. Chichirov, N.D. Chichirova, A.A. Filimonova, A.I. Minibaev, and R.V. Buskin, Laboratory investigations of processing highly mineralized alkali solutions by means of electromembrane technology, Therm. Eng., 66(2019), No. 7, p. 527. doi: 10.1134/S0040601519070036
|
[24] |
T. Hua, R.J. Haynes, and Y.F. Zhou, Removal of Al, Ga, As, V and Mo from alkaline wastewater using pilot-scale constructed wetlands, Environ. Sci. Pollut. Res. Int., 26(2019), No. 34, p. 35121. doi: 10.1007/s11356-019-06490-3
|
[25] |
G. Tranchida, M. Clesi, F. Di Franco, F. Di Quarto, and M. Santamaria, Electronic properties and corrosion resistance of passive films on austenitic and duplex stainless steels, Electrochim. Acta, 273(2018), p. 412. doi: 10.1016/j.electacta.2018.04.058
|
[26] |
N. Jeyaprakash, C.H. Yang, S.S. Karuppasamy, and M. Duraiselvam, Stellite 6 cladding on AISI type 316L stainless steel: Microstructure, nanohardness and corrosion resistance, Trans. Indian Inst. Met., 76(2023), No. 2, p. 491. doi: 10.1007/s12666-022-02731-1
|
[27] |
A. Sharma, S. Shukla, M. Thombre, A. Bansod, and S. Untawale, An investigation of the effect of sensitization on the metallurgical characteristics of dissimilarly welded austenitic–ferritic stainless steel, Anti-Corros. Meth. Mater., 70(2023), No. 6, p. 361. doi: 10.1108/ACMM-04-2023-2797
|
[28] |
R.R. Song, J.H. Han, M. Okugawa, et al., Ultrafine nanoporous intermetallic catalysts by high-temperature liquid metal dealloying for electrochemical hydrogen production, Nat. Commun., 13(2022), No. 1, art. No. 5157. doi: 10.1038/s41467-022-32768-1
|
[29] |
Y. Qiu, Z.L. He, Y.H. He, Q. Zhao, Z.H. Wang, and Y. Jiang, Porous TiNi3-based intermetallics as active and robust monolith catalysts for hydrogen evolution, Chem. Commun., 58(2022), No. 100, p. 13943. doi: 10.1039/D2CC05574K
|
[30] |
J. Sun, N.K. Guo, T.S. Song, et al., Revealing the interfacial electron modulation effect of CoFe alloys with CoC X encapsulated in N-doped CNTs for superior oxygen reduction, Adv. Powder Mater., 1(2022), No. 3, art. No. 100023. doi: 10.1016/j.apmate.2021.11.009
|
[31] |
J. Abed, S. Ahmadi, L. Laverdure, et al. , In situ formation of nano Ni–Co oxyhydroxide enables water oxidation electrocatalysts durable at high current densities, Adv. Mater., 33(2021), No. 45, art. No. 2103812. doi: 10.1002/adma.202103812
|
[32] |
A.I. Zhevnovatyi and G.F. Shenberg, Study of the production technology of porous titanium tubes, Sov. Powder Metall. Met. Ceram., 4(1965), No. 2, p. 95. doi: 10.1007/BF00777009
|
[33] |
P.S. Liu and K.M. Liang, Review Functional materials of porous metals made by P/M, electroplating and some other techniques, J. Mater. Sci., 36(2001), No. 21, p. 5059. doi: 10.1023/A:1012483920628
|
[34] |
Z.D. Lin, K.J. Song, and X.H. Yu, A review on wire and arc additive manufacturing of titanium alloy, J. Manuf. Process., 70(2021), p. 24. doi: 10.1016/j.jmapro.2021.08.018
|
[35] |
J.Z. Niu, G.Q. Dai, Y.H. Guo, et al., Microstructure and mechanical properties of B modified Ti–Fe alloy manufactured by casting, forging and laser melting deposition, Composites Part B, 216(2021), art. No. 108854. doi: 10.1016/j.compositesb.2021.108854
|
[36] |
J.J. Noël, N. Ebrahimi, and D.W. Shoesmith, Corrosion of titanium and titanium alloys, [in] K. Wandelt, ed., Encyclopedia of Interfacial Chemistry : Surface Science and Electrochemistry, Elsevier, Amsterdam, 2018, p. 192.
|
[37] |
Y. Xu, Y.L. Huang, F.F. Cai, D.Z. Lu, and X.T. Wang, Study on corrosion behavior and mechanism of AISI 4135 steel in marine environments based on field exposure experiment, Sci. Total Environ., 830(2022), art. No. 154864. doi: 10.1016/j.scitotenv.2022.154864
|
[38] |
C.X. Yi and B.F. Zhu, Corrosion inhibition effect of 2-hydroxy phosphonoacetic acid and pyrophosfate on Q235 steel, electrochemical noise and EIS analysis, Int. J. Electrochem. Sci., 14(2019), No. 7, p. 6759. doi: 10.20964/2019.07.28
|
[39] |
Y. Zhao, L. Bai, Y.H. Sun, et al., Low-temperature alkali corrosion induced growth of nanosheet layers on NiTi alloy and their corrosion behavior and biological responses, Corros. Sci., 190(2021), art. No. 109654. doi: 10.1016/j.corsci.2021.109654
|