留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 6
Jun.  2024

图(10)

数据统计

分享

计量
  • 文章访问数:  1018
  • HTML全文浏览量:  455
  • PDF下载量:  86
  • 被引次数: 0
Bin Hu, Han Sui, Qinghua Wen, Zheng Wang, Alexander Gramlich, and Haiwen Luo, Review on the plastic instability of medium-Mn steels for identifying the formation mechanisms of Lüders and Portevin–Le Chatelier bands, Int. J. Miner. Metall. Mater., 31(2024), No. 6, pp. 1285-1297. https://doi.org/10.1007/s12613-023-2751-1
Cite this article as:
Bin Hu, Han Sui, Qinghua Wen, Zheng Wang, Alexander Gramlich, and Haiwen Luo, Review on the plastic instability of medium-Mn steels for identifying the formation mechanisms of Lüders and Portevin–Le Chatelier bands, Int. J. Miner. Metall. Mater., 31(2024), No. 6, pp. 1285-1297. https://doi.org/10.1007/s12613-023-2751-1
引用本文 PDF XML SpringerLink
特约综述

中锰钢不连续屈服与流变应力锯齿形成的机理分析


  • 通讯作者:

    胡斌    E-mail: hubin@ustb.edu.cn

    罗海文    E-mail: luohaiwen@ustb.edu.cn

文章亮点

  • (1) 系统综述了残余奥氏体、相界面和变形参数等诸多因素对中锰钢屈服行为和应力锯齿的影响。
  • (2) 分析发现形变诱导马氏体相变不是中锰钢发生塑性失稳的根本原因,但其通过影响位错密度和可动性、奥氏体中位错和间隙原子的相互作用等既可促进也可抑制塑性失稳。
  • (3) 分析了目前实验结果相互矛盾的可能原因,提出了中锰钢发生不连续屈服的统一解释和流变应力出现锯齿的机理。
  • 中锰钢拉伸变形过程经常发生塑性失稳,包括不连续屈服和应力锯齿,近年来被金属材料科学家广泛关注和深入研究。然而,现有研究结果存在争议,尚未就这一现象提出统一解释。本文首先总结了各种可能影响中锰钢屈服行为和应力锯齿的因素,包括奥氏体的形貌和稳定性,相界特征和形变参数等;据此提出了能解释现有相互矛盾实验结果的统一机理。其中,不连续屈服现象归因于形变前缺少可移动位错和塑性变形初期位错的快速增殖;应力锯齿的形成是由于奥氏体中间隙原子和位错之间的钉扎和脱钉作用。受奥氏体稳定性和形变参数影响的应变诱导马氏体相变不是中锰钢中发生塑性失稳的根本原因,但其可以通过影响位错的可动性和密度,以及奥氏体中间隙原子和位错的相互作用而加强或减弱不连续屈服和应力锯齿现象。
  • Invited Review

    Review on the plastic instability of medium-Mn steels for identifying the formation mechanisms of Lüders and Portevin–Le Chatelier bands

    + Author Affiliations
    • Plastic instability, including both the discontinuous yielding and stress serrations, has been frequently observed during the tensile deformation of medium-Mn steels (MMnS) and has been intensively studied in recent years. Unfortunately, research results are controversial, and no consensus has been achieved regarding the topic. Here, we first summarize all the possible factors that affect the yielding and flow stress serrations in MMnS, including the morphology and stability of austenite, the feature of the phase interface, and the deformation parameters. Then, we propose a universal mechanism to explain the conflicting experimental results. We conclude that the discontinuous yielding can be attributed to the lack of mobile dislocation before deformation and the rapid dislocation multiplication at the beginning of plastic deformation. Meanwhile, the results show that the stress serrations are formed due to the pinning and depinning between dislocations and interstitial atoms in austenite. Strain-induced martensitic transformation, influenced by the mechanical stability of austenite grain and deformation parameters, should not be the intrinsic cause of plastic instability. However, it can intensify or weaken the discontinuous yielding and the stress serrations by affecting the mobility and density of dislocations, as well as the interaction between the interstitial atoms and dislocations in austenite grains.
    • loading
    • [1]
      D.W. Suh and S.J. Kim, Medium Mn transformation-induced plasticity steels: Recent progress and challenges, Scripta Mater., 126(2017), p. 63. doi: 10.1016/j.scriptamat.2016.07.013
      [2]
      B. Hu, H.W. Luo, F. Yang, and H. Dong, Recent progress in medium-Mn steels made with new designing strategies, a review, J. Mater. Sci. Technol., 33(2017), No. 12, p. 1457. doi: 10.1016/j.jmst.2017.06.017
      [3]
      B. Hu, B.B. He, G.J. Cheng, H. Yen, M.X. Huang, and H.W. Luo, Super-high-strength and formable medium Mn steel manufactured by warm rolling process, Acta Mater., 174(2019), p. 131. doi: 10.1016/j.actamat.2019.05.043
      [4]
      B. Hu and H.W. Luo, A strong and ductile 7Mn steel manufactured by warm rolling and exhibiting both transformation and twinning induced plasticity, J. Alloys Compd., 725(2017), p. 684. doi: 10.1016/j.jallcom.2017.07.203
      [5]
      B.B. He, B. Hu, H.W. Yen, et al., High dislocation density-induced large ductility in deformed and partitioned steels, Science, 357(2017), No. 6355, p. 1029. doi: 10.1126/science.aan0177
      [6]
      L. Liu, Q. Yu, Z. Wang, J. Ell, M.X. Huang, and R.O. Ritchie, Making ultrastrong steel tough by grain-boundary delamination, Science, 368(2020), No. 6497, p. 1347. doi: 10.1126/science.aba9413
      [7]
      R. Ding, Y. Yao, B. Sun, et al., Chemical boundary engineering: A new route toward lean, ultrastrong yet ductile steels, Sci. Adv., 6(2020), No. 13, art. No. eaay1430. doi: 10.1126/sciadv.aay1430
      [8]
      Y.J. Li, G. Yuan, L.L. Li, et al., Ductile 2-GPa steels with hierarchical substructure, Science, 379(2023), No. 6628, p. 168. doi: 10.1126/science.add7857
      [9]
      Z.J. Teng, H.R. Wu, S. Pramanik, K.P. Hoyer, M. Schaper, H.L. Zhang, C. Boller, and P. Starke, Characterization and analysis of plastic instability in an ultrafine-grained medium Mn TRIP steel, Adv. Eng. Mater., 24(2022), No. 9, art. No. 2200022. doi: 10.1002/adem.202200022
      [10]
      B. Hu, X. Tu, Y. Wang, H.W. Luo, and X.P. Mao, Recent progress and future research prospects on the plastic instability of medium-Mn steels: A review, Chin. J. Eng., 42(2020), No. 1, p. 48.
      [11]
      E. Pink and A. Grinberg, Serrated flow in a ferritic stainless steel, Mater. Sci. Eng., 51(1981), No. 1, p. 1. doi: 10.1016/0025-5416(81)90099-9
      [12]
      D. Akama, N. Nakada, T. Tsuchiyama, S. Takaki, and A. Hironaka, Discontinuous yielding induced by the addition of nickel to interstitial-free steel, Scripta Mater., 82(2014), p. 13. doi: 10.1016/j.scriptamat.2014.03.012
      [13]
      Y.K. Lee and J. Han, Current opinion in medium manganese steel, Mater. Sci. Technol., 31(2015), No. 7, p. 843. doi: 10.1179/1743284714Y.0000000722
      [14]
      H.W. Luo, H. Dong, and M.X. Huang, Effect of intercritical annealing on the Lüders strains of medium Mn transformation-induced plasticity steels, Mater. Des., 83(2015), p. 42. doi: 10.1016/j.matdes.2015.05.085
      [15]
      B.H. Sun, F. Fazeli, C. Scott, N. Brodusch, R. Gauvin, and S. Yue, The influence of silicon additions on the deformation behavior of austenite–ferrite duplex medium manganese steels, Acta Mater., 148(2018), p. 249. doi: 10.1016/j.actamat.2018.02.005
      [16]
      J. Han, S.H. Kang, S.J. Lee, and Y.K. Lee, Fabrication of bimodal-grained Al-free medium Mn steel by double intercritical annealing and its tensile properties, J. Alloys Compd., 681(2016), p. 580. doi: 10.1016/j.jallcom.2016.04.014
      [17]
      B.H. Sun, F. Fazeli, C. Scott, et al., Microstructural characteristics and tensile behavior of medium manganese steels with different manganese additions, Mater. Sci. Eng. A, 729(2018), p. 496. doi: 10.1016/j.msea.2018.04.115
      [18]
      J.H. Ryu, J.I. Kim, H.S. Kim, C.S. Oh, H.K.D.H. Bhadeshia, and D.W. Suh, Austenite stability and heterogeneous deformation in fine-grained transformation-induced plasticity-assisted steel, Scripta Mater., 68(2013), No. 12, p. 933. doi: 10.1016/j.scriptamat.2013.02.026
      [19]
      J.W. Ma, Q. Lu, L. Sun, and Y. Shen, Two-step intercritical annealing to eliminate Lüders band in a strong and ductile medium Mn steel, Metall. Mater. Trans. A, 49(2018), No. 10, p. 4404. doi: 10.1007/s11661-018-4791-0
      [20]
      Y. Zhang and H. Ding, Ultrafine also can be ductile: On the essence of Lüders band elongation in ultrafine-grained medium manganese steel, Mater. Sci. Eng. A, 733(2018), p. 220. doi: 10.1016/j.msea.2018.07.052
      [21]
      Z.C. Li, H. Ding, R.D.K. Misra, and Z.H. Cai, Deformation behavior in cold-rolled medium-manganese TRIP steel and effect of pre-strain on the Lüders bands, Mater. Sci. Eng. A, 679(2017), p. 230. doi: 10.1016/j.msea.2016.10.042
      [22]
      X.G. Wang, B.B. He, C.H. Liu, C. Jiang, and M.X. Huang, Extraordinary Lüders-strain-rate in medium Mn steels, Materialia, 6(2019), art. No. 100288. doi: 10.1016/j.mtla.2019.100288
      [23]
      X.G. Wang, C.H. Liu, B.B. He, C. Jiang, and M.X. Huang, Microscopic strain partitioning in Lüders band of an ultrafine-grained medium Mn steel, Mater. Sci. Eng. A, 761(2019), art. No. 138050. doi: 10.1016/j.msea.2019.138050
      [24]
      Y. Dong, M. Qi, Y. Du, H.Y. Wu, X.H. Gao, and L.X. Du, Significance of retained austenite stability on yield point elongation phenomenon in a hot-rolled and intercritically annealed medium-Mn steel, Steel Res. Int., 93(2022), No. 11, art. No. 2200400. doi: 10.1002/srin.202200400
      [25]
      J.Y. Zhang, Y.B. Xu, D.T. Han, and Z.L. Tong, Improving yield strength and elongation combination by tailoring austenite characteristics and deformation mechanism in medium Mn steel, Scripta Mater., 218(2022), art. No. 114790. doi: 10.1016/j.scriptamat.2022.114790
      [26]
      P.J. Gibbs, E. De Moor, M.J. Merwin, B. Clausen, J.G. Speer, and D.K. Matlock, Austenite stability effects on tensile behavior of manganese-enriched-austenite transformation-induced plasticity steel, Metall. Mater. Trans. A, 42(2011), No. 12, p. 3691. doi: 10.1007/s11661-011-0687-y
      [27]
      I. Miyazaki, T. Furuta, K. Oh-ishi, et al., Overcoming the strength-ductility trade-off via the formation of a thermally stable and plastically unstable austenitic phase in cold-worked steel, Mater. Sci. Eng. A, 721(2018), p. 74. doi: 10.1016/j.msea.2018.02.075
      [28]
      J. Han, S.J. Lee, J.G. Jung, and Y.K. Lee, The effects of the initial martensite microstructure on the microstructure and tensile properties of intercritically annealed Fe–9Mn–0.05C steel, Acta Mater., 78(2014), p. 369. doi: 10.1016/j.actamat.2014.07.005
      [29]
      A. Dutta, D. Ponge, S. Sandlöbes, and D. Raabe, Strain partitioning and strain localization in medium manganese steels measured by in situ microscopic digital image correlation, Materialia, 5(2019), art. No. 100252. doi: 10.1016/j.mtla.2019.100252
      [30]
      K. Steineder, D. Krizan, R. Schneider, C. Béal, and C. Sommitsch, On the microstructural characteristics influencing the yielding behavior of ultra-fine grained medium-Mn steels, Acta Mater., 139(2017), p. 39. doi: 10.1016/j.actamat.2017.07.056
      [31]
      B.H. Sun, Y. Ma, N. Vanderesse, et al., Macroscopic to nanoscopic in situ investigation on yielding mechanisms in ultrafine grained medium Mn steels: Role of the austenite-ferrite interface, Acta Mater., 178(2019), p. 10. doi: 10.1016/j.actamat.2019.07.043
      [32]
      M.S. Jeong, T.M. Park, S. Choi, S.J. Lee, and J. Han, Recovering the ductility of medium-Mn steel by restoring the original microstructure, Scripta Mater., 190(2021), p. 16. doi: 10.1016/j.scriptamat.2020.08.022
      [33]
      T.W.J. Kwok and D. Dye, A review of the processing, microstructure and property relationships in medium Mn steels, Int. Mater. Rev., 68(2023), No. 8, p. 1058.
      [34]
      B. Hu, F.L. Ding, X. Tu, et al., Influence of lamellar and equiaxed microstructural morphologies on yielding behaviour of a medium Mn steel, Materialia, 20(2021), art. No. 101252. doi: 10.1016/j.mtla.2021.101252
      [35]
      Y. Ma, B.H. Sun, A. Schökel, et al., Phase boundary segregation-induced strengthening and discontinuous yielding in ultrafine-grained duplex medium-Mn steels, Acta Mater., 200(2020), p. 389. doi: 10.1016/j.actamat.2020.09.007
      [36]
      B. Hu, X. Shen, Q.Y. Guo, et al., Yielding behavior of triplex medium Mn steel alternated with cooling strategies altering martensite/ferrite interfacial feature, J. Mater. Sci. Technol., 126(2022), p. 60. doi: 10.1016/j.jmst.2022.04.003
      [37]
      Y. Wang, M. Zhang, Q.Y. Cen, W.J. Wang, and X.Y. Sun, A novel process combining thermal deformation and intercritical annealing to enhance mechanical properties and avoid Lüders strain of Fe–0.2C–7Mn TRIP steel, Mater. Sci. Eng. A, 839(2022), art. No. 142849. doi: 10.1016/j.msea.2022.142849
      [38]
      M.H. Zhang, L.F. Li, J. Ding, et al., Temperature-dependent micromechanical behavior of medium-Mn transformation-induced-plasticity steel studied by in situ synchrotron X-ray diffraction, Acta Mater., 141(2017), p. 294. doi: 10.1016/j.actamat.2017.09.030
      [39]
      X.G. Wang and M.X. Huang, Temperature dependence of Lüders strain and its correlation with martensitic transformation in a medium Mn transformation-induced plasticity steel, J. Iron Steel Res. Int., 24(2017), No. 11, p. 1073. doi: 10.1016/S1006-706X(17)30156-5
      [40]
      C.P. Tong, Q. Rong, V.A. Yardley, et al., Investigation of deformation behaviour with yield point phenomenon in cold-rolled medium-Mn steel under hot stamping conditions, J. Mater. Process. Technol., 306(2022), art. No. 117623. doi: 10.1016/j.jmatprotec.2022.117623
      [41]
      D. Hull and D.J. Bacon, Introduction to Dislocations, 4th ed., Butterworth-Heinemann, Oxford, 2001, p. 214.
      [42]
      S. Gao, Y. Bai, R.X. Zheng, et al., Mechanism of huge Lüders-type deformation in ultrafine grained austenitic stainless steel, Scripta Mater., 159(2019), p. 28. doi: 10.1016/j.scriptamat.2018.09.007
      [43]
      J.W. Ma, H.T. Liu, Q. Lu, Y. Zhong, L. Wang, and Y. Shen, Transformation kinetics of retained austenite in the tensile Lüders strain range in medium Mn steel, Scripta Mater., 169(2019), p. 1. doi: 10.1016/j.scriptamat.2019.04.044
      [44]
      W.Q. Mao, S. Gao, W. Gong, S. Harjo, T. Kawasaki, and N. Tsuji, Quantitatively evaluating the huge Lüders band deformation in an ultrafine grain stainless steel by combining in situ neutron diffraction and digital image correlation analysis, Scripta Mater., 235(2023), art. No. 115642. doi: 10.1016/j.scriptamat.2023.115642
      [45]
      W.J. Yin, F. Briffod, H.Y. Hu, K. Yamazaki, T. Shiraiwa, and M. Enoki, Quantitative investigation of strain partitioning and failure mechanism in ultrafine grained medium Mn steel through high resolution digital image correlation, Scripta Mater., 229(2023), art. No. 115386. doi: 10.1016/j.scriptamat.2023.115386
      [46]
      M. Çobanoğlu, R.K. Ertan, C. Şimşir, and M. Efe, Excessive damage increase in dual phase steels under high strain rates and temperatures, Int. J. Damage Mech., 30(2021), No. 2, p. 283. doi: 10.1177/1056789520958053
      [47]
      M. Calcagnotto, D. Ponge, E. Demir, and D. Raabe, Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD, Mater. Sci. Eng. A, 527(2010), No. 10-11, p. 2738. doi: 10.1016/j.msea.2010.01.004
      [48]
      D.A. Korzekwa, D.K. Matlock, and G. Krauss, Dislocation substructure as a function of strain in a dual-phase steel, Metall. Trans. A, 15(1984), No. 6, p. 1221. doi: 10.1007/BF02644716
      [49]
      J. Kadkhodapour, S. Schmauder, D. Raabe, S. Ziaei-Rad, U. Weber, and M. Calcagnotto, Experimental and numerical study on geometrically necessary dislocations and non-homogeneous mechanical properties of the ferrite phase in dual phase steels, Acta Mater., 59(2011), No. 11, p. 4387. doi: 10.1016/j.actamat.2011.03.062
      [50]
      H.J. Pan, X.Y. Li, B. Qiao, et al., A medium-Mn steel stamped parts overcoming lüders deformation by increasing dislocation density, J. Mater. Eng. Perform., 31(2022), No. 2, p. 1. doi: 10.1007/s11665-021-06255-5
      [51]
      G.Q. Su, H.B. Xie, M.S. Huo, et al., Yielding behavior and strengthening mechanisms of a high strength ultrafine-grained Cr–Mn–Ni–N stainless steel, Steel Res. Int., 93(2022), No. 5, art. No. 2100524. doi: 10.1002/srin.202100524
      [52]
      Z.H. Cai, H. Ding, R.D.K. Misra, and Z.Y. Ying, Austenite stability and deformation behavior in a cold-rolled transformation-induced plasticity steel with medium manganese content, Acta Mater., 84(2015), p. 229. doi: 10.1016/j.actamat.2014.10.052
      [53]
      M.H. Barati Rizi, M. Ghiasabadi Farahani, M. Aghaahmadi, J.H. Kim, L.P. Karjalainen, and P. Sahu, Analysis of strain hardening behavior of a high-Mn TWIP steel using electron microscopy and cyclic stress relaxation, Acta Mater., 240(2022), art. No. 118309. doi: 10.1016/j.actamat.2022.118309
      [54]
      B.H. Sun, N. Vanderesse, F. Fazeli, et al., Discontinuous strain-induced martensite transformation related to the Portevin–Le Chatelier effect in a medium manganese steel, Scripta Mater., 133(2017), p. 9. doi: 10.1016/j.scriptamat.2017.01.022
      [55]
      A. Müller, C. Segel, M. Linderov, A. Vinogradov, A. Weidner, and H. Biermann, The Portevin–Le Châtelier effect in a metastable austenitic stainless steel, Metall. Mater. Trans. A, 47(2016), No. 1, p. 59. doi: 10.1007/s11661-015-2953-x
      [56]
      X.G. Wang, L. Wang, and M.X. Huang, Kinematic and thermal characteristics of Lüders and Portevin–Le Châtelier bands in a medium Mn transformation-induced plasticity steel, Acta Mater., 124(2017), p. 17. doi: 10.1016/j.actamat.2016.10.069
      [57]
      F. Yang, H.W. Luo, E.X. Pu, S.L. Zhang, and H. Dong, On the characteristics of Portevin–Le Chatelier bands in cold-rolled 7Mn steel showing transformation-induced plasticity, Int. J. Plast., 103(2018), p. 188. doi: 10.1016/j.ijplas.2018.01.010
      [58]
      J.Y. Min, L.G. Hector Jr, L. Zhang, L. Sun, J.E. Carsley, and J.P. Lin, Plastic instability at elevated temperatures in a TRIP-assisted steel, Mater. Des., 95(2016), p. 370. doi: 10.1016/j.matdes.2016.01.113
      [59]
      B. Grzegorczyk, A. Kozłowska, M. Morawiec, R. Muszyński, and A. Grajcar, Effect of deformation temperature on the Portevin–Le Chatelier effect in medium-Mn steel, Metals, 9(2018), No. 1, art. No. 2. doi: 10.3390/met9010002
      [60]
      P Lan and J.Q. Zhang, Serrated flow and dynamic strain aging in Fe–Mn–C TWIP steel. Metall. Mater. Trans. A, 49(2018), No. 1, p. 147. doi: 10.1007/s11661-017-4421-2
      [61]
      A. Kipelova, R. Kaibyshev, V. Skorobogatykh, and I. Schenkova, Portevin–Le Chatelier effect in an E911 creep resistant steel with 3%Co additives, J. Phys. Conf. Ser., 240(2010), art. No. 012100. doi: 10.1088/1742-6596/240/1/012100
      [62]
      A. Rusinek and J.R. Klepaczko, Experiments on heat generated during plastic deformation and stored energy for TRIP steels, Mater. Des., 30(2009), No. 1, p. 35. doi: 10.1016/j.matdes.2008.04.048
      [63]
      S. Sevsek, C. Haase, and W. Bleck, Strain-rate-dependent deformation behavior and mechanical properties of a multi-phase medium-manganese steel, Metals, 9(2019), No. 3, art. No. 344. doi: 10.3390/met9030344
      [64]
      P. Rodriguez, Serrated plastic flow, Bull. Mater. Sci., 6(1984), No. 4, p. 653. doi: 10.1007/BF02743993
      [65]
      B. M. Gonzalez, L. Marchi, E. J. Fonseca, P. J. Modenesi, and V. Buono, Measurement of dynamic strain aging in pearlitic steels by tensile test, ISIJ Int., 43(2003), p. 428. doi: 10.2355/isijinternational.43.428
      [66]
      B. Bayramin, C. Şimşir, and M. Efe, Dynamic strain aging in DP steels at forming relevant strain rates and temperatures, Mater. Sci. Eng. A, 704(2017), p. 164. doi: 10.1016/j.msea.2017.08.006
      [67]
      M.J. Molaei and A. Ekrami, The effect of dynamic strain aging on subsequent mechanical properties of dual-phase steels, J. Mater. Eng. Perform., 19(2010), No. 4, p. 607. doi: 10.1007/s11665-009-9429-3
      [68]
      A.H. Cottrell and B.A. Bilby, Dislocation theory of yielding and strain ageing of iron, Proc. Phys. Soc. A, 62(1949), No. 1, p. 49. doi: 10.1088/0370-1298/62/1/308
      [69]
      H.W. Zhou, J.F. Fang, Y. Chen, et al., Internal friction studies on dynamic strain aging in P91 ferritic steel, Mater. Sci. Eng. A, 676(2016), p. 361. doi: 10.1016/j.msea.2016.08.117
      [70]
      B.K. Choudhary, K. Bhanu Sankara Rao, S.L. Mannan, and B.P. Kashyap, Serrated yielding in 9Cr–1Mo ferritic steel, Mater. Sci. Technol., 15(1999), No. 7, p. 791. doi: 10.1179/026708399101506580
      [71]
      S. Chandran, W.Q. Liu, J.H. Lian, S. Münstermann, and P. Verleysen, Dynamic strain aging in DP1000: Effect of temperature and strain rate, Mater. Sci. Eng. A, 832(2022), art. No. 142509. doi: 10.1016/j.msea.2021.142509
      [72]
      R.R.U. Queiroz, F.G.G. Cunha, and B.M. Gonzalez, Study of dynamic strain aging in dual phase steel, Mater. Sci. Eng. A, 543(2012), p. 84. doi: 10.1016/j.msea.2012.02.050
      [73]
      D.D. Li, L.H. Qian, C.Z. Wei, S. Liu, F.C. Zhang, and J.Y. Meng, The tensile properties and microstructure evolution of cold-rolled Fe–Mn–C TWIP steels with different carbon contents, Mater. Sci. Eng. A, 839(2022), art. No. 142862. doi: 10.1016/j.msea.2022.142862
      [74]
      W. Bleck, New insights into the properties of high-manganese steel, Int. J. Miner. Metall. Mater., 28(2021), No. 5, p. 782. doi: 10.1007/s12613-020-2166-1
      [75]
      B. Hu and H.W. Luo, A novel two-step intercritical annealing process to improve mechanical properties of medium Mn steel, Acta Mater., 176(2019), p. 250. doi: 10.1016/j.actamat.2019.07.014
      [76]
      S.J. Lee, J. Kim, S.N. Kane, and B.C. De Cooman, On the origin of dynamic strain aging in twinning-induced plasticity steels, Acta Mater., 59(2011), No. 17, p. 6809. doi: 10.1016/j.actamat.2011.07.040
      [77]
      S. Lee, J. Kim, S.J. Lee, and B.C. De Cooman, Effect of nitrogen on the critical strain for dynamic strain aging in high-manganese twinning-induced plasticity steel, Scripta Mater., 65(2011), No. 6, p. 528. doi: 10.1016/j.scriptamat.2011.06.017
      [78]
      J.H. Kang, T. Ingendahl, J. von Appen, R. Dronskowski, and W. Bleck, Impact of short-range ordering on yield strength of high manganese austenitic steels, Mater. Sci. Eng. A, 614(2014), p. 122. doi: 10.1016/j.msea.2014.07.016
      [79]
      L. Bracke, J. Penning, and N. Akdut, The influence of Cr and N additions on the mechanical properties of FeMnC steels, Metall. Mater. Trans. A, 38(2007), No. 3, p. 520. doi: 10.1007/s11661-006-9084-3
      [80]
      A. Grajcar, P. Skrzypczyk, and D. Wozniak, Thermomechanically rolled medium-Mn steels containing retained austenite/walcowane termomechanicznie stale średniomanganowe zawierające austenit szczątkowy, Arch. Metall. Mater., 59(2014), No. 4, p. 1691. doi: 10.2478/amm-2014-0286
      [81]
      D.M. Field and D.C. Van Aken, Dynamic strain aging phenomena and tensile response of medium-Mn TRIP steel, Metall. Mater. Trans. A, 49(2018), No. 4, p. 1152. doi: 10.1007/s11661-018-4481-y
      [82]
      H.Y. Liu, S. Liu, C.Z. Wei, L.H. Qian, Y.L. Feng, and F.C. Zhang, Effect of grain size on dynamic strain aging behavior of C-bearing high Mn twinning-induced plasticity steel, J. Mater. Res. Technol., 15(2021), p. 6387. doi: 10.1016/j.jmrt.2021.11.083
      [83]
      B.H. Sun, A. Kwiatkowski da Silva, Y.X. Wu, et al., Physical metallurgy of medium-Mn advanced high-strength steels, Int. Mater. Rev., 68(2023), No. 7, p. 786. doi: 10.1080/09506608.2022.2153220
      [84]
      J.H. Nam, S.K. Oh, M.H. Park, and Y.K. Lee, The mechanism of dynamic strain aging for type A serrations in tensile curves of a medium-Mn steel, Acta Mater., 206(2021), art. No. 116613. doi: 10.1016/j.actamat.2020.116613
      [85]
      S.S. Li and H.W. Luo, Medium-Mn steels for hot forming application in the automotive industry, Int. J. Miner. Metall. Mater., 28(2021), No. 5, p. 741. doi: 10.1007/s12613-020-2179-9
      [86]
      P.Y. Wen, J.S. Han, H.W. Luo, and X.P. Mao, Effect of flash processing on recrystallization behavior and mechanical performance of cold-rolled IF steel, Int. J. Miner. Metall. Mater., 27(2020), No. 9, p. 1234. doi: 10.1007/s12613-020-2023-2
      [87]
      Y.J. Wang, S. Zhao, R.B. Song, and B. Hu, Hot ductility behavior of a Fe–0.3C–9Mn–2Al medium Mn steel, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 422. doi: 10.1007/s12613-020-2206-x
      [88]
      H. Xu, X.B. Liu, D. Zhang, and X.F. Zhang, Minimizing serrated flow in Al–Mg alloys by electroplasticity, J. Mater. Sci. Technol., 35(2019), No. 6, p. 1108. doi: 10.1016/j.jmst.2018.12.007
      [89]
      K. Yi, S. Zhou, and X.F. Zhang, Suppression of serrated flow in medium Mn steel under pulsed electric current, Mater. Sci. Eng. A, 846(2022), art. No. 143271. doi: 10.1016/j.msea.2022.143271
      [90]
      B. Hu, Q.H. Wen, Q.Y. Guo, Y.J. Wang, H. Sui, and H.W. Luo, A novel electric pulse pathway to suppress plastic localization and enhance strain hardening of medium Mn steel, Scripta Mater., 221(2022), art. No. 114991. doi: 10.1016/j.scriptamat.2022.114991
      [91]
      B. Hu and H.W. Luo, A Method and Process of Inhibiting the Local Plastic Instability of High /Medium Mn Steel, Chinese Patent, Appl. 202011497048.X, 2022.
      [92]
      A. Gramlich, T. Schmiedl, S. Schönborn, T. Melz, and W. Bleck, Development of air-hardening martensitic forging steels, Mater. Sci. Eng. A, 784(2020), art. No. 139321. doi: 10.1016/j.msea.2020.139321
      [93]
      A. Gramlich, W. Hagedorn, K. Greiff, and U. Krupp, Air cooling martensites—The future of carbon neutral steel forgings?, Adv. Eng. Mater., 25(2023), No. 15, art. No. 2201931. doi: 10.1002/adem.202201931
      [94]
      Z.J. Xie, C.J. Shang, X.L. Wang, X.M. Wang, G. Han, and R.D.K. Misra, Recent progress in third-generation low alloy steels developed under M3 microstructure control, Int. J. Miner. Metall. Mater., 27(2020), No. 1, p. 1. doi: 10.1007/s12613-019-1939-x
      [95]
      B.H. Sun, W. Krieger, M. Rohwerder, D. Ponge, and D. Raabe, Dependence of hydrogen embrittlement mechanisms on microstructure-driven hydrogen distribution in medium Mn steels, Acta Mater., 183(2020), p. 313. doi: 10.1016/j.actamat.2019.11.029
      [96]
      J. Han, J.H. Nam, and Y.K. Lee, The mechanism of hydrogen embrittlement in intercritically annealed medium Mn TRIP steel, Acta Mater., 113(2016), p. 1. doi: 10.1016/j.actamat.2016.04.038
      [97]
      L. Cho, Y.R. Kong, J.G. Speer, and K.O. Findley, Hydrogen embrittlement of medium Mn steels, Metals, 11(2021), No. 2, art. No. 358. doi: 10.3390/met11020358

    Catalog


    • /

      返回文章
      返回