留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 4
Apr.  2024

图(13)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  288
  • HTML全文浏览量:  146
  • PDF下载量:  21
  • 被引次数: 0
Dajun Zhai, Xiaoping Li,  and Jun Shen, Mechanism of microarc oxidation on AZ91D Mg alloy induced by β-Mg17Al12 phase, Int. J. Miner. Metall. Mater., 31(2024), No. 4, pp. 712-724. https://doi.org/10.1007/s12613-023-2752-0
Cite this article as:
Dajun Zhai, Xiaoping Li,  and Jun Shen, Mechanism of microarc oxidation on AZ91D Mg alloy induced by β-Mg17Al12 phase, Int. J. Miner. Metall. Mater., 31(2024), No. 4, pp. 712-724. https://doi.org/10.1007/s12613-023-2752-0
引用本文 PDF XML SpringerLink
研究论文

β-Mg17Al12相诱导AZ91D 镁合金微弧氧化过程机理


  • 通讯作者:

    沈骏    E-mail: shenjun@cqu.edu.cn

文章亮点

  • (1) 通过控制AZ91D镁合金中β-Mg17Al12相的含量和分布,提出了一种间接诱导均匀微弧放电的策略。
  • (2) 通过摩擦搅拌加工将纳米ZrO2颗粒固定在晶界上,促进了晶粒中β-Mg17Al12相的沉淀,有效抑制了微弧放电的“级联”现象。
  • (3) 通过减弱β-Mg17Al12相引起的放电“级联”强度而获得的微弧氧化涂层具有良好的湿润性和耐腐蚀性。
  • 由于镁合金中元素的不均匀分布以及金属间相的存在,导致合金表面的电化学特性是不均匀的。通过在镁合金中控制第二相β-Mg17Al12的含量和分布来间接诱导均匀微弧放电的方法有着巨大的研究潜力。本文通过搅拌摩擦处理(FSP)将两种纳米颗粒(ZrO2和TiO2)加入到镁合金基体中。然后,在磷酸盐和硅酸盐混合电解液中对设计的具有不同沉淀形态的β-Mg17Al12相的镁合金样品进行微弧氧化处理。利用扫描电子显微镜(SEM)、能谱仪(EDS)、X射线衍射仪(XRD)、X光电子能谱仪、接触角仪和动电位极化仪对微弧氧化涂层的特性和性能进行分析。结果表明,FSP工艺细化了AZ91D轧制镁合金内的α-Mg晶粒,搅碎了β-Mg17Al12相的网状结构,使β相弥散分布。纳米ZrO2颗粒通过FSP工艺可钉扎在镁合金晶界处,不仅促进了α-Mg晶粒的细化,而且还促进了β相在α-Mg晶界处和晶内的弥散析出。由此有效地抑制了镁合金表面微弧氧化“级联”放电现象,从而导致放电孔隙的均匀分布。因此,通过FSP工艺将纳米ZrO2颗粒固定在晶界上,调控了基体中的β-Mg17Al12相结构和分布,提高了基体表面微弧氧化涂层的润湿性和耐腐蚀性。然而,在Ti-FSP样品上的微弧氧化涂层中几乎没有检测到TiO2颗粒。
  • Research Article

    Mechanism of microarc oxidation on AZ91D Mg alloy induced by β-Mg17Al12 phase

    + Author Affiliations
    • This work proposed a strategy of indirectly inducing uniform microarc discharge by controlling the content and distribution of β-Mg17Al12 phase in AZ91D Mg alloy. Two kinds of nano-particles (ZrO2 and TiO2) were designed to be added into the substrate of Mg alloy by friction stir processing (FSP). Then, Mg alloy sample designed with different precipitated morphology of β-Mg17Al12 phase was treated by microarc oxidation (MAO) in Na3PO4/Na2SiO3 electrolyte. The characteristics and performance of the MAO coating was analyzed using scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), contact angle meter, and potentiodynamic polarization. It was found that the coarse α-Mg grains in extruded AZ91D Mg alloy were refined by FSP, and the β-Mg17Al12 phase with reticular structure was broken and dispersed. The nano-ZrO2 particles were pinned at the grain boundary by FSP, which refined the α-Mg grain and promoted the precipitation of β-Mg17Al12 phase in grains. It effectively inhibited the “cascade” phenomenon of microarcs, which induced the uniform distribution of discharge pores. The MAO coating on Zr-FSP sample had good wettability and corrosion resistance. However, TiO2 particles were hardly detected in the coating on Ti-FSP sample.
    • loading
    • [1]
      A.A. Hegy, R. Smith, E.R. Gauthier, and J.E. Gray-Munro, Investigation of a cyanine dye assay for the evaluation of the biocompatibility of magnesium alloys by direct and indirect methods, Bioact. Mater., 5(2020), No. 1, p. 26.
      [2]
      H.W. Chen, B. Yuan, R. Zhao, et al., Evaluation on the corrosion resistance, antibacterial property and osteogenic activity of biodegradable Mg–Ca and Mg–Ca–Zn–Ag alloys, J. Magnesium Alloys, 10(2022), No. 12, p. 3380. doi: 10.1016/j.jma.2021.05.013
      [3]
      S.S. Park, U. Farwa, I. Park, B.G. Moon, S.B. Im, and B.T. Lee, In-vivo bone remodeling potential of Sr–d-Ca–P/PLLA-HAp coated biodegradable ZK60 alloy bone plate, Mater. Today Bio, 18(2023), art. No. 100533. doi: 10.1016/j.mtbio.2022.100533
      [4]
      W.H. Yao, L. Wu, J.F. Wang, et al., Micro-arc oxidation of magnesium alloys: A review, J. Mater. Sci. Technol., 118(2022), p. 158. doi: 10.1016/j.jmst.2021.11.053
      [5]
      A. Fattah-alhosseini, R. Chaharmahali, K. Babaei, M. Nouri, M.K. Keshavarz, and M. Kaseem, A review of effective strides in amelioration of the biocompatibility of PEO coatings on Mg alloys, J. Magnesium Alloys, 10(2022), No. 9, p. 2354. doi: 10.1016/j.jma.2022.09.002
      [6]
      D.D. Wang, X.T. Liu, Y. Wang, et al., Role of the electrolyte composition in establishing plasma discharges and coating growth process during a micro-arc oxidation, Surf. Coat. Technol., 402(2020), art. No. 126349. doi: 10.1016/j.surfcoat.2020.126349
      [7]
      X.N. Ly, S. Yang, and T. Nguyen, Effect of equal channel angular pressing as the pretreatment on microstructure and corrosion behavior of micro-arc oxidation (MAO) composite coating on biodegradable Mg–Zn–Ca alloy, Surf. Coat. Technol., 395(2020), art. No. 125923. doi: 10.1016/j.surfcoat.2020.125923
      [8]
      T. Mi, B. Jiang, Z. Liu, et al., Self-organization kinetics of microarc oxidation: Nonequilibrium-state electrode reaction kinetics, J. Electrochem. Soc., 163(2016), No. 5, p. C184. doi: 10.1149/2.0631605jes
      [9]
      L. Casanova, M. Arosio, M.T. Hashemi, M. Pedeferri, G.A. Botton, and M. Ormellese, A nanoscale investigation on the influence of anodization parameters during plasma electrolytic oxidation of titanium by high-resolution electron energy loss spectroscopy, Appl. Surf. Sci., 570(2021), art. No. 151133. doi: 10.1016/j.apsusc.2021.151133
      [10]
      D.S. Tsai and C.C. Chou, Influences of growth species and inclusions on the current–voltage behavior of plasma electrolytic oxidation: A review, Coatings, 11(2021), No. 3, art. No. 270. doi: 10.3390/coatings11030270
      [11]
      C.C. Liu, T. Xu, Q.Y. Shao, et al., Effects of beta phase on the growth behavior of plasma electrolytic oxidation coating formed on magnesium alloys, J. Alloys Compd., 784(2019), p. 414. doi: 10.1016/j.jallcom.2019.01.095
      [12]
      Y.N. Xue, X. Pang, B.L. Jiang, H. Jahed, and D. Wang, Characterization of the corrosion performances of as-cast Mg–Al and Mg–Zn magnesium alloys with microarc oxidation coatings, Mater. Corros., 71(2020), No. 6, p. 992. doi: 10.1002/maco.201911384
      [13]
      E.Y. Liu, Y.F. Niu, S.R. Yu, et al., Micro-arc oxidation behavior of fly ash cenospheres/magnesium alloy degradable composite and corrosion resistance of coatings, Surf. Coat. Technol., 391(2020), art. No. 125693. doi: 10.1016/j.surfcoat.2020.125693
      [14]
      Y.Q. Wang, X.J. Wang, T. Zhang, K. Wu, and F.H. Wang, Role of β phase during microarc oxidation of Mg alloy AZ91D and corrosion resistance of the oxidation coating, J. Mater. Sci. Technol., 29(2013), No. 12, p. 1129. doi: 10.1016/j.jmst.2013.10.014
      [15]
      Y. Chen, Y.G. Yang, W. Zhang, T. Zhang, and F.H. Wang, Influence of second phase on corrosion performance and formation mechanism of PEO coating on AZ91 Mg alloy, J. Alloys Compd., 718(2017), p. 92. doi: 10.1016/j.jallcom.2017.05.010
      [16]
      R.S. Mishra, M.W. Mahoney, S.X. McFadden, N.A. Mara, and A.K. Mukherjee, High strain rate superplasticity in a friction stir processed 7075 Al alloy, Scr. Mater., 42(1999), No. 2, p. 163 doi: 10.1016/S1359-6462(99)00329-2
      [17]
      A. Maqbool, N.Z. Khan, A.N. Siddiquee, I.A. Badruddin, M. Hussien, and M.I. Khan, Overcoming challenges in using magnesium-based materials for industrial applications using friction-stir engineering, Mater. Sci. Technol., 39(2023), No. 9, p. 1039. doi: 10.1080/02670836.2022.2158539
      [18]
      A.R. Eivani, M. Mehdizade, S. Chabok, and J. Zhou, Applying multi-pass friction stir processing to refine the microstructure and enhance the strength, ductility and corrosion resistance of WE43 magnesium alloy, J. Mater. Res. Technol., 12(2021), p. 1946. doi: 10.1016/j.jmrt.2021.03.021
      [19]
      T.S. Kumar, S. Shalini, and T. Thankachan, Friction stir processing based surface modification of AZ31 magnesium alloy, Mater. Manuf. Process., 38(2023), No. 11, p. 1426. doi: 10.1080/10426914.2023.2165670
      [20]
      M.A. Khan, R. Butola, and N. Gupta, A review of nanoparticle reinforced surface composites processed by friction stir processing, J. Adhes. Sci. Technol., 37(2023), No. 4, p. 565. doi: 10.1080/01694243.2022.2037054
      [21]
      T. Qiu, L.M. Tan, D.J. Zhai, P. Ni, and J. Shen, Correlation between plasma electrolytic oxidation coating on Ti6Al4V alloy and cathode current, Metall. Mater. Trans. A, 54(2023), No. 1, p. 333. doi: 10.1007/s11661-022-06883-z
      [22]
      X.M. Wang and F.Q. Zhang, Influence of anions in phosphate and tetraborate electrolytes on growth kinetics of microarc oxidation coatings on Ti6Al4V alloy, Trans. Nonferrous Met. Soc. China, 32(2022), No. 7, p. 2243. doi: 10.1016/S1003-6326(22)65944-2
      [23]
      G. Mortazavi, J.C. Jiang, and E.I. Meletis, Investigation of the plasma electrolytic oxidation mechanism of titanium, Appl. Surf. Sci., 488(2019), p. 370. doi: 10.1016/j.apsusc.2019.05.250
      [24]
      Y.S. Yi, Y. Meng, D.Q. Li, S. Sugiyama, and J. Yanagimoto, Partial melting behavior and thixoforming properties of extruded magnesium alloy AZ91 with and without addition of SiC particles with a volume fraction of 15%, J. Mater. Sci. Technol., 34(2018), No. 7, p. 1149. doi: 10.1016/j.jmst.2017.11.044
      [25]
      J. Gao, S. Jiang, H. Zhang, et al., Facile route to bulk ultrafine-grain steels for high strength and ductility, Nature, 590(2021), No. 7845, p. 262. doi: 10.1038/s41586-021-03246-3
      [26]
      Y. Wang, B.W. Yang, M.Q. Gao, E.T. Zhao, and R.G. Guan, Microstructure evolution, mechanical property response and strengthening mechanism induced by compositional effects in Al–6Mg alloys, Mater. Des., 220(2022), art. No. 110849. doi: 10.1016/j.matdes.2022.110849
      [27]
      S. Fatimah, H.W. Yang, M.P. Kamil, and Y.G. Ko, Control of surface plasma discharge considering the crystalline size of Al substrate, Appl. Surf. Sci., 477(2019), p. 60. doi: 10.1016/j.apsusc.2017.12.208
      [28]
      G.B. Darband, M. Aliofkhazraei, P. Hamghalam, and N. Valizade, Plasma electrolytic oxidation of magnesium and its alloys: Mechanism, properties and applications, J. Magnesium Alloys, 5(2017), No. 1, p. 74. doi: 10.1016/j.jma.2017.02.004
      [29]
      D.J. Zhai, T. Qiu, J. Shen, and K.Q. Feng, Mechanism of tetraborate and silicate ions on the growth kinetics of microarc oxidation coating on a Ti6Al4V alloy, RSC Adv., 13(2023), No. 8, p. 5382. doi: 10.1039/D2RA07755H
      [30]
      D.J. Zhai, K.Q. Feng, and H.F. Yue, Growth kinetics of microarc oxidation TiO2 ceramic film on Ti6Al4V alloy in tetraborate electrolyte, Metall. Mater. Trans. A, 50(2019), No. 5, p. 2507. doi: 10.1007/s11661-019-05185-1
      [31]
      T. Wu, C. Blawert, M. Serdechnova, et al., PEO processing of AZ91Nd/Al2O3 MMC-the role of alumina fibers, J. Magnesium Alloys, 10(2022), No. 2, p. 423. doi: 10.1016/j.jma.2021.09.017
      [32]
      J.W. Lin, S.Q. He, X.X. Wang, H.H. Zhang, and Y.H. Zhan, Removal of phosphate from aqueous solution by a novel Mg(OH)2/ZrO2 composite: Adsorption behavior and mechanism, Colloids Surf. A, 561(2019), p. 301. doi: 10.1016/j.colsurfa.2018.11.001
      [33]
      S.K. Yang, C. Wang, F.Z. Li, et al., One-step in situ growth of a simple and efficient pore-sealing coating on micro-arc oxidized AZ31B magnesium alloy, J. Alloys Compd., 909(2022), art. No. 164710. doi: 10.1016/j.jallcom.2022.164710
      [34]
      L. Liu, S.R. Yu, G. Zhu, et al., Corrosion and wear resistance of micro-arc oxidation coating on glass microsphere reinforced Mg alloy composite, J. Mater. Sci., 56(2021), No. 27, p. 15379. doi: 10.1007/s10853-021-06252-y
      [35]
      M. Stern, Electrochemical polarization, J. Electrochem. Soc., 104(1957), No. 9, art. No. 559. doi: 10.1149/1.2428653
      [36]
      G.L. Song, A. Atrens, X.L. Wu, and B. Zhang, Corrosion behaviour of AZ21, AZ501 and AZ91 in sodium chloride, Corros. Sci., 40(1998), No. 10, p. 1769. doi: 10.1016/S0010-938X(98)00078-X
      [37]
      C.H. Shih, C.Y. Huang, T.H. Hsiao, and C.S. Lin, The effect of the secondary phases on the corrosion of AZ31B and WE43–T5 Mg alloys, Corros. Sci., 211(2023), art. No. 110920. doi: 10.1016/j.corsci.2022.110920
      [38]
      J. Muldoon, C.B. Bucur, and T. Gregory, Fervent hype behind magnesium batteries: An open call to synthetic chemists—Electrolytes and cathodes needed, Angew. Chem. Int. Ed., 56(2017), No. 40, p. 12064. doi: 10.1002/anie.201700673
      [39]
      S.W. Guan, M. Qi, Y.D. Li, and W.Q. Wang, Morphology evolution of the porous coatings on Ti– xAl alloys by Al adding into Ti during micro-arc oxidation in Na2B4O7 electrolyte, Surf. Coat. Technol., 395(2020), art. No. 125948.

    Catalog


    • /

      返回文章
      返回