留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 2
Feb.  2024

图(9)  / 表(5)

数据统计

分享

计量
  • 文章访问数:  1756
  • HTML全文浏览量:  533
  • PDF下载量:  92
  • 被引次数: 0
Rui Han, Anning Zhou, Ningning Zhang, Kaiqiang Guo, Mengyan Cheng, Heng Chen,  and Cuicui Li, Structural properties of residual carbon in coal gasification fine slag and their influence on flotation separation and resource utilization: A review, Int. J. Miner. Metall. Mater., 31(2024), No. 2, pp. 217-230. https://doi.org/10.1007/s12613-023-2753-z
Cite this article as:
Rui Han, Anning Zhou, Ningning Zhang, Kaiqiang Guo, Mengyan Cheng, Heng Chen,  and Cuicui Li, Structural properties of residual carbon in coal gasification fine slag and their influence on flotation separation and resource utilization: A review, Int. J. Miner. Metall. Mater., 31(2024), No. 2, pp. 217-230. https://doi.org/10.1007/s12613-023-2753-z
引用本文 PDF XML SpringerLink
特约综述

煤气化细渣中残碳结构特性及对浮选分离和资源利用的影响综述


  • 通讯作者:

    周安宁    E-mail: psu564@139.com

    张宁宁    E-mail: ningningzhang@xust.edu.cn

文章亮点

  • (1)总结了煤气化细渣中残炭在孔隙结构、表面官能团、微晶结构等方面的独特性质
  • (2)得出了煤气化细渣中残炭结构特性与气化类型及颗粒大小的相关关系
  • (3)明晰了各结构特性对煤气化细渣中残炭浮选分离的影响规律
  • (4)归纳了基于各结构特性的煤气化细渣中残炭的资源化利用途径
  • 煤气化细渣是煤气化过程中产生的典型固体废弃物,现有堆存和填埋的处理方式已造成严重的地质和生态危害;气化残炭的分离回收和高值化利用是实现煤化工产业经济效益和环境效益“双赢”的关键。相比于粉煤灰、煤矸石等煤基固废,煤气化细渣具有独特的孔结构、表面官能团结构和微晶结构。这些独特的结构性质不仅是煤气化细渣资源化应用的基础,同时也是影响残炭浮选回收效率的关键因素。本文在全面梳理煤气化细渣残炭孔结构、表面官能团和微晶结构等特性的基础上,深入剖析了特殊结构形成原因及其与气化类型和颗粒大小的相关关系,总结归纳了各结构特性对煤气化细渣中残炭浮选分离和资源化应用的影响规律。同时对未来相关研究进行了展望,针对气化细渣中残炭的多孔结构提出,超声波预处理–孔隙阻塞浮选、孔隙破碎–絮凝浮选等适配性技术有望解决残炭浮选回收率低的瓶颈问题;根据残炭的表面官能团和微晶结构提出,含极性基团捕收剂的靶向设计有望解决煤气化细渣浮选药耗高的现实难题。在煤气化细渣的资源化利用方面提出,应以残炭的物理化学结构特性为切入点,对其特殊结构进行放大和极致利用,进而建立气化细渣独特的绿色高值化利用体系。本综述对于全面认识煤气化细渣中残炭的结构特性,突破煤气化细渣高效浮选分离的技术瓶颈,拓展煤气化细渣的高附加值利用领域具有重要意义。
  • Invited Review

    Structural properties of residual carbon in coal gasification fine slag and their influence on flotation separation and resource utilization: A review

    + Author Affiliations
    • Coal gasification fine slag (FS) is a typical solid waste generated in coal gasification. Its current disposal methods of stockpiling and landfilling have caused serious soil and ecological hazards. Separation recovery and the high-value utilization of residual carbon (RC) in FS are the keys to realizing the win-win situation of the coal chemical industry in terms of economic and environmental benefits. The structural properties, such as pore, surface functional group, and microcrystalline structures, of RC in FS (FS-RC) not only affect the flotation recovery efficiency of FS-RC but also form the basis for the high-value utilization of FS-RC. In this paper, the characteristics of FS-RC in terms of pore structure, surface functional groups, and microcrystalline structure are sorted out in accordance with gasification type and FS particle size. The reasons for the formation of the special structural properties of FS-RC are analyzed, and their influence on the flotation separation and high-value utilization of FS-RC is summarized. Separation methods based on the pore structural characteristics of FS-RC, such as ultrasonic pretreatment–pore-blocking flotation and pore breaking–flocculation flotation, are proposed to be the key development technologies for improving FS-RC recovery in the future. The design of low-cost, low-dose collectors containing polar bonds based on the surface and microcrystalline structures of FS-RC is proposed to be an important breakthrough point for strengthening the flotation efficiency of FS-RC in the future. The high-value utilization of FS should be based on the physicochemical structural properties of FS-RC and should focus on the environmental impact of hazardous elements and the recyclability of chemical waste liquid to establish an environmentally friendly utilization method. This review is of great theoretical importance for the comprehensive understanding of the unique structural properties of FS-RC, the breakthrough of the technological bottleneck in the efficient flotation separation of FS, and the expansion of the field of the high value-added utilization of FS-RC.
    • loading
    • [1]
      M. Shahabuddin and T. Alam, Gasification of solid fuels (coal, biomass and MSW): Overview, challenges and mitigation strategies, Energies, 15(2022), No. 12, p. 1.
      [2]
      B. Lv, X.W. Deng, F.S. Jiao, B.B. Dong, C.J. Fang, and B.L. Xing, Enrichment and utilization of residual carbon from coal gasification slag: A review, Process. Saf. Environ. Prot., 171(2023), p. 859. doi: 10.1016/j.psep.2023.01.079
      [3]
      Y. Yang, J. Xu, Z.Y. Liu, et al., Progress in coal chemical technologies of China, Rev. Chem. Eng., 36(2020), No. 1, p. 21.
      [4]
      X.D. Liu, Z.W. Jin, Y.H. Jing, et al., Review of the characteristics and graded utilisation of coal gasification slag, Chin. J. Chem. Eng., 35(2021), p. 92. doi: 10.1016/j.cjche.2021.05.007
      [5]
      A. Mishra, S. Gautam, and T. Sharma, Effect of operating parameters on coal gasification, Int. J. Coal Sci. Technol., 5(2018), No. 2, p. 113. doi: 10.1007/s40789-018-0196-3
      [6]
      Z.J. Shen, H. Nikolic, L.S. Caudill, and K.L. Liu, A deep insight on the coal ash-to-slag transformation behavior during the entrained flow gasification process, Fuel, 289(2021), art. No. 119953. doi: 10.1016/j.fuel.2020.119953
      [7]
      X.L. Zhao, C. Zeng, Y.Y. Mao, et al., The surface characteristics and reactivity of residual carbon in coal gasification slag, Energy Fuels, 24(2010), No. 1, p. 91. doi: 10.1021/ef9005065
      [8]
      B. Lv, X.M. Chai, X.W. Deng, et al. Recovery of residual carbon from coal gasification fine slag by a combined gravity separation-flotation process, J. Environ. Manage., 348(2023), art. No. 119351. doi: 10.1016/j.jenvman.2023.119351
      [9]
      W.Y. Wang, W. Li, C. Liang, L. Zhou, and Q.Q. Ren, Decarburization and ash characteristics during melting combustion of fine ash from entrained-flow gasifier, Energy, 263(2023), art. No. 125676. doi: 10.1016/j.energy.2022.125676
      [10]
      T. Wu, M. Gong, E. Lester, F.C. Wang, Z.J. Zhou, and Z.H. Yu, Characterisation of residual carbon from entrained-bed coal water slurry gasifiers, Fuel, 86(2007), No. 7-8, p. 972. doi: 10.1016/j.fuel.2006.09.033
      [11]
      C.C. Pan, Q.F. Liang, X.L. Guo, Z.H. Dai, H.F. Liu, and X. Gong, Characteristics of different sized slag particles from entrained-flow coal gasification, Energy Fuels, 30(2016), No. 2, p. 1487. doi: 10.1021/acs.energyfuels.5b01326
      [12]
      K.Z. Fang, D.M. Wang, and Y. Gu, Utilization of gasification coarse slag powder as cement partial replacement: Hydration kinetics characteristics, microstructure and hardening properties, Materials, 16(2023), No. 5, art. No. 1922. doi: 10.3390/ma16051922
      [13]
      B. Kim, S. Lee, C.M. Chon, and H.S. Choi, Potential of coal gasification slag as an alkali-activated cement, Resour. Recycl., 27(2018), No. 2, p. 38.
      [14]
      B. Fu, Z.Y. Cheng, D.Z. Wang, and N. Li, Investigation on the utilization of coal gasification slag in Portland cement: Reaction kinetics and microstructure, Constr. Build. Mater., 323(2022), art. No. 126587. doi: 10.1016/j.conbuildmat.2022.126587
      [15]
      J. Xin, L. Liu, Q. Jiang, P. Yang, H.S. Qu, and G. Xie, Early-age hydration characteristics of modified coal gasification slag–cement–aeolian sand paste backfill, Constr. Build. Mater., 322(2022), art. No. 125936. doi: 10.1016/j.conbuildmat.2021.125936
      [16]
      N. Yuan, A.J. Zhao, Z.K. Hu, K.Q. Tan, and J.B. Zhang, Preparation and application of porous materials from coal gasification slag for wastewater treatment: A review, Chemosphere, 287(2022), art. No. 132227. doi: 10.1016/j.chemosphere.2021.132227
      [17]
      Y. Guo, F.H. Guo, L. Zhou, et al., Investigation on co-combustion of coal gasification fine slag residual carbon and sawdust char blends: Physiochemical properties, combustion characteristic and kinetic behavior, Fuel, 292(2021), art. No. 120387. doi: 10.1016/j.fuel.2021.120387
      [18]
      W. Yu, H.L. Zhang, X.B. Wang, et al., Enrichment of residual carbon from coal gasification fine slag by spiral separator, J. Environ. Manage., 315(2022), art. No. 115149. doi: 10.1016/j.jenvman.2022.115149
      [19]
      S.J. Zhu, X.L. Chen, Y.X. Qian, H.F. Lu, and X. Gong, Separation performance of coal gasification fine ash by hydrocyclone, Proc. Chin. Soc. Elect. Eng., 38(2018), No. 13, p. 3873.
      [20]
      B. Lv, Z.Y. Zhao, B.B. Dong, X.W. Deng, C.J. Fang, and B. Zhang, Enrichment of residual carbon from coal gasification fine slag in an inflatable-inclined liquid-solid fluidized bed, J. Clean. Prod., 344(2022), art. No. 131132. doi: 10.1016/j.jclepro.2022.131132
      [21]
      R. Zhang, F.Y. Guo, Y.C. Xia, J.L. Tan, Y.W. Xing, and X.H. Gui, Recovering unburned carbon from gasification fly ash using saline water, Waste Manage., 98(2019), p. 29. doi: 10.1016/j.wasman.2019.08.014
      [22]
      D.H. Liu, W.D. Wang, Y.N. Tu, et al., Flotation specificity of coal gasification fine slag based on release analysis, J. Clean. Prod., 363(2022), art. No. 132426. doi: 10.1016/j.jclepro.2022.132426
      [23]
      F.H. Guo, Z.K. Miao, Z.K. Guo, J. Li, Y.X. Zhang, and J.J. Wu, Properties of flotation residual carbon from gasification fine slag, Fuel, 267(2020), art. No. 117043. doi: 10.1016/j.fuel.2020.117043
      [24]
      F.H. Guo, J.J. Wu, Y.X. Zhang, K. Hou, and L.X. Jiang, Characterization of gasification-coke prepared with coal by-product and a high ratio of low-rank coal addition, Energy Sources Part A : Recovery Util. Environ. Eff., 2020. DOI: 10.1080/15567036.2020.1725691
      [25]
      F.H. Guo, Y. Guo, Z.K. Guo, et al., Recycling residual carbon from gasification fine slag and its application for preparing slurry fuels, ACS Sustainable Chem. Eng., 8(2020), p. 8830. doi: 10.1021/acssuschemeng.0c02997
      [26]
      Y.T. Xu and X.L. Chai, Characterization of coal gasification slag-based activated carbon and its potential application in lead removal, Environ. Technol., 39(2018), No. 3, p. 382. doi: 10.1080/09593330.2017.1301569
      [27]
      Z. Chai, P. Lv, Y.H. Bai, et al., Low-cost Y-type zeolite/carbon porous composite from coal gasification fine slag and its application in the phenol removal from wastewater: Fabrication, characterization, equilibrium, and kinetic studies, RSC Adv., 12(2022), No. 11, p. 6715. doi: 10.1039/D1RA08419D
      [28]
      Z.K. Miao, J.J. Wu, Y.J. Niu, Z.K. Guo, F.H. Guo, and Y.X. Zhang, Development of a novel type hierarchical porous composite from coal gasification fine slag for CO2 capture, Chem. Eng. J., 435(2022), art. No. 134909. doi: 10.1016/j.cej.2022.134909
      [29]
      C. Miao, L.X. Liang, F. Zhang, et al., Review of the fabrication and application of porous materials from silicon-rich industrial solid waste, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 424. doi: 10.1007/s12613-021-2360-9
      [30]
      Y.C. Zhang, S.T. Gao, J. He, H.X. Li, C.L. Wu, and Y.H. Bai, PANI-wrapped high-graphitized residual carbon hybrid with boosted electromagnetic wave absorption performance, Synth. Met., 287(2022), art. No. 117077. doi: 10.1016/j.synthmet.2022.117077
      [31]
      S.X Xiong, W. Zhang, J. Cheng, et al. Preparation of coal gasification fine slag-based supercapacitive carbon using hydrothermal deashing and alkali activation, J. Mater. Sci. Mater. Electron., 35(2024), art. No. 99. doi: 10.1007/s10854-023-11825-5
      [32]
      B. Xu, M.K. Yang, X.J. Cao, et al., Adsorption behaviors of phenol onto gasification residual cokes with different structural and surface properties, Environ. Prog. Sustainable Energy, 40(2021), No. 4, art. No. e13619. doi: 10.1002/ep.13619
      [33]
      S.Y. Wu, S. Huang, L.Y. Ji, Y.Q. Wu, and J.S. Gao, Structure characteristics and gasification activity of residual carbon from entrained-flow coal gasification slag, Fuel, 122(2014), p. 67. doi: 10.1016/j.fuel.2014.01.011
      [34]
      A.N. Zhou, Y. Gao, Z. Li, W. Zhao, N.N. Zhang, and Z.M. Zhang, Composition structure and separation processing of ash and slag during coal gasification, J. Xi’an Univ. Sci. Technol., 41(2021), No. 04, p. 575.
      [35]
      Q.M. Shi, B.Y. Kou, Q. Sun, and H.L. Jia, Experimental study on pore structure evolution of high volatile bituminous coal with thermal treatment, Case Stud. Therm. Eng., 32(2022), art. No. 101862. doi: 10.1016/j.csite.2022.101862
      [36]
      G.N. Okolo, R.C. Everson, H.W.J.P. Neomagus, M.J. Roberts, and R. Sakurovs, Comparing the porosity and surface areas of coal as measured by gas adsorption, mercury intrusion and SAXS techniques, Fuel, 141(2015), p. 293. doi: 10.1016/j.fuel.2014.10.046
      [37]
      J.N. Pan, Y.Q. Zhao, Q.L. Hou, and Y. Jin, Nanoscale pores in coal related to coal rank and deformation structures, Transp. Porous Medium., 107(2015), No. 2, p. 543. doi: 10.1007/s11242-015-0453-5
      [38]
      Y.B. Yao and D.M. Liu, Comparison of low-field NMR and mercury intrusion porosimetry in characterizing pore size distributions of coals, Fuel, 95(2012), p. 152. doi: 10.1016/j.fuel.2011.12.039
      [39]
      Z.S. Liu, D.M. Liu, Y.D. Cai, Y.B. Yao, Z.J. Pan, and Y.F. Zhou, Application of nuclear magnetic resonance (NMR) in coalbed methane and shale reservoirs: A review, Int. J. Coal Geol., 218(2020), art. No. 103261. doi: 10.1016/j.coal.2019.103261
      [40]
      G.F. Dai, S.J. Zheng, X.B. Wang, et al., Combustibility analysis of high-carbon fine slags from an entrained flow gasifier, J. Environ. Manage., 271(2020), art. No. 111009. doi: 10.1016/j.jenvman.2020.111009
      [41]
      Z.K. Miao, L.Q. Chen, K.N. Chen, X.X. Zhang, Y.X. Zhang, and J.J. Wu, Physical properties and microstructures of residual carbon and slag particles present in fine slag from entrained-flow coal gasification, Adv. Powder Technol., 31(2020), No. 9, p. 3781. doi: 10.1016/j.apt.2020.07.019
      [42]
      Y. Gao, W. Zhao, A.N. Zhou, et al., Study on the composition and structure characteristics and dry decarbonization separation of coal water slurry gasification fine slag, J. Fuel Chem. Technol., 50(2022), No. 8, p. 954. doi: 10.1016/S1872-5813(22)60007-0
      [43]
      M.M. Maroto-Valer, D.N. Taulbee, and J.C. Hower, Novel separation of the differing forms of unburned carbon present in fly ash using density gradient centrifugation, Energy Fuels, 13(1999), No. 4, p. 947. doi: 10.1021/ef990029s
      [44]
      Q.Y. Wang, Y.H. Bai, P. Lv, et al. Separation and characterization of different types of residual carbon in fine slag from entrained flow coal gasification, Fuel, 339 (2023), art. No. 127437. doi: 10.1016/j.fuel.2023.127437
      [45]
      N. Malumbazo, N.J. Wagner, J.R. Bunt, D. Van Niekerk, and H. Assumption, Structural analysis of chars generated from South African inertinite coals in a pipe-reactor combustion unit, Fuel Process. Technol., 92(2011), No. 4, p. 743. doi: 10.1016/j.fuproc.2010.09.009
      [46]
      N. Malumbazo, N.J. Wagner, and J.R. Bunt, The petrographic determination of reactivity differences of two South African inertinite-rich lump coals, J. Anal. Appl. Pyrolysis, 93(2012), p. 139. doi: 10.1016/j.jaap.2011.10.008
      [47]
      N. Malumbazo, N.J. Wagner, and J.R. Bunt, The impact of particle size and maceral segregation on char formation in a packed bed combustion unit, Fuel, 111(2013), p. 350. doi: 10.1016/j.fuel.2013.03.056
      [48]
      N.J. Wagner, R.H. Matjie, J.H. Slaghuis, and J.H.P. van Heerden, Characterization of unburned carbon present in coarse gasification ash, Fuel, 87(2008), No. 6, p. 683. doi: 10.1016/j.fuel.2007.05.022
      [49]
      Y. Shen, G.H. Lu, Y.H. Bai, et al., Structural features of residue carbon formed by gasification of different coal macerals, Fuel, 320(2022), art. No. 123918. doi: 10.1016/j.fuel.2022.123918
      [50]
      F.H. Guo, X. Zhao, Y. Guo, Y.X. Zhang, and J.J. Wu, Fractal analysis and pore structure of gasification fine slag and its flotation residual carbon, Colloids Surf. A: Physicochem. Eng. Aspects, 585(2020), art. No. 124148. doi: 10.1016/j.colsurfa.2019.124148
      [51]
      Y.C. Zhang, H.X. Li, and C.L. Wu, Study on distribution, chemical states and binding energy shifts of elements on the surface of gasification fine ash, Res. Chem. Intermed., 45(2019), No. 7, p. 3855. doi: 10.1007/s11164-019-03824-1
      [52]
      Y.C. Zhang, H.X. Li, S.T. Gao, Y. Geng, and C.L. Wu, A study on the chemical state of carbon present in fine ash from gasification, Asia Pac. J. Chem. Eng., 14(2019), No. 4, art. No. e2336. doi: 10.1002/apj.2336
      [53]
      J.W. Li, S.B. Fan, X.Y. Zhang, et al., Physicochemical structure, combustion characteristics and SiO2 properties of entrained flow gasification ash, Energy, 251(2022), art. No. 123930. doi: 10.1016/j.energy.2022.123930
      [54]
      D.P. Lü, Y.H. Bai, J.F. Wang, et al., Structural features and combustion reactivity of residual carbon in fine slag from entrained-flow gasification, J. Fuel Chem. Technol., 49(2021), No. 2, p. 129. doi: 10.1016/S1872-5813(21)60011-7
      [55]
      Y.J. Niu, J. Xu, Z.K. Miao, F.H. Guo, Y.X. Zhang, and J.J. Wu, Distribution modes of residual carbon and ash in coal gasification fine slag and its feasibility analysis as particle electrodes, Chemosphere, 303(2022), art. No. 135159. doi: 10.1016/j.chemosphere.2022.135159
      [56]
      Z.H. Xue, L.P. Dong, X.T. Fan, et al., Physical and chemical properties of coal gasification fine slag and its carbon products by hydrophobic-hydrophilic separation, ACS Omega, 7(2022), No. 19, p. 16484. doi: 10.1021/acsomega.2c00484
      [57]
      M.J. Du, J.J. Huang, Z.Y. Liu, et al., Reaction characteristics and evolution of constituents and structure of a gasification slag during acid treatment, Fuel, 224(2018), p. 178. doi: 10.1016/j.fuel.2018.03.073
      [58]
      W. Yu, L.J. Liu, B. Gao, L.N. Wang, and S.L. Yue, Pore structure of coal gasification fine slag based on nitrogen adsorption and nuclear magnetic resonance analysis, J. Fuel Chem. Technol., 50(2022), No. 8, p. 966.
      [59]
      Z.J. Shen, J.L. Xu, H.F. Liu, and Q.F. Liang, Modeling study for the effect of particle size on char gasification with CO2, AlChE. J., 63(2017), No. 2, p. 716. doi: 10.1002/aic.15417
      [60]
      H. Han, A. Liu, C.L. Wang, R.Q. Yang, S. Li, and H.F. Wang, Flotation kinetics performance of different coal size fractions with nanobubbles, Int. J. Miner. Metall. Mater., 29(2022), No. 8, p. 1502. doi: 10.1007/s12613-021-2280-8
      [61]
      Y. Guo, C.F. Ma, Y.X. Zhang, et al., Comparative study on the structure characteristics, combustion reactivity, and potential environmental impacts of coal gasification fine slag with different particle size fractions, Fuel, 311(2022), art. No. 122493. doi: 10.1016/j.fuel.2021.122493
      [62]
      M. Cheng, X.H. Fu, and J.Q. Kang, Compressibility of different pore and fracture structures and its relationship with heterogeneity and minerals in low-rank coal reservoirs: An experimental study based on nuclear magnetic resonance and micro-CT, Energy Fuels, 34(2020), No. 9, p. 10894. doi: 10.1021/acs.energyfuels.0c02119
      [63]
      X.H. Shi, J.N. Pan, Q.L. Hou, et al., Micrometer-scale fractures in coal related to coal rank based on micro-CT scanning and fractal theory, Fuel, 212(2018), p. 162. doi: 10.1016/j.fuel.2017.09.115
      [64]
      J.N. Pan, Q.H. Niu, K. Wang, X.H. Shi, and M. Li, The closed pores of tectonically deformed coal studied by small-angle X-ray scattering and liquid nitrogen adsorption, Microporous Mesoporous Mater., 224(2016), p. 245. doi: 10.1016/j.micromeso.2015.11.057
      [65]
      A.P. Radlinski, M. Mastalerz, A.L. Hinde, et al., Application of SAXS and SANS in evaluation of porosity, pore size distribution and surface area of coal, Int. J. Coal Geol., 59(2004), No. 3-4, p. 245. doi: 10.1016/j.coal.2004.03.002
      [66]
      B. Vaziri Hassas, H. Caliskan, O. Guven, F. Karakas, M. Cinar, and M.S. Celik, Effect of roughness and shape factor on flotation characteristics of glass beads, Colloids Surf. A: Physicochem. Eng. Aspects, 492(2016), p. 88. doi: 10.1016/j.colsurfa.2015.12.025
      [67]
      N.N. Zhang, T. Pang, R. Han, Z.L. Zhu, and Z. Li, Insight into anionic and cationic flotation discrepancy of quartz with altered surface roughness by acid etching, J. Mol. Liq., 381(2023), art. No. 121816. doi: 10.1016/j.molliq.2023.121816
      [68]
      Z.L. Zhu, Z. Li, W.Z. Yin, et al., Effect of surface roughness on the flotation separation of hematite from fine quartz, J. Ind. Eng. Chem., 109(2022), p. 431. doi: 10.1016/j.jiec.2022.02.029
      [69]
      L. Ren, Y. Gong, Q.H. Guo, and G.S. Yu, Enhanced flotation of coal gasification fine slag based on ultrasonic pretreatment pulp and composite collector, Powder Technol., 424(2023), art. No. 118530. doi: 10.1016/j.powtec.2023.118530
      [70]
      W.D. Wang, D.H. Liu, Y.N. Tu, L.Z. Jin, and H. Wang, Enrichment of residual carbon in entrained-flow gasification coal fine slag by ultrasonic flotation, Fuel, 278(2020), art. No. 118195. doi: 10.1016/j.fuel.2020.118195
      [71]
      N.N. Zhang, M.Y. Cheng, R. Han, et al., Innovative flotation separation considering pores blocking to facilitate residual carbon recovery from coal gasification fine slag, Sep. Purif. Technol., 310(2023), art. No. 123254. doi: 10.1016/j.seppur.2023.123254
      [72]
      R. Han, N.N. Zhang, A.N. Zhou, et al., Enhancing flotation recovery of residual carbon from gasification waste by mixing hydrophobic powder with diesel as collector, Particuology, 89(2024), p. 211-217. doi: 10.1016/j.partic.2023.11.011
      [73]
      R. Zhang, H.S. Huang, J.C. Liu, et al., Improving flotation decarbonization efficiency of coal gasification fly ash by mechanically breaking pore: An experimental and molecular dynamics simulation study, Colloids Surf. A: Physicochem. Eng. Aspects, 663(2023), art. No. 131074. doi: 10.1016/j.colsurfa.2023.131074
      [74]
      D. Shi, J.B. Zhang, H.Q. Li, et al., Insight into the mechanism of gasification fine slag enhanced flotation with selective dispersion flocculation, Fuel, 336(2023), art. No. 127134. doi: 10.1016/j.fuel.2022.127134
      [75]
      S. Liu, J.L. Wei, X.T. Chen, W.D. Ai, and C.D. Wei, Low-cost route for preparing carbon–silica composite mesoporous material from coal gasification slag: Synthesis, characterization and application in purifying dye wastewater, Arab. J. Sci. Eng., 45(2020), No. 6, p. 4647. doi: 10.1007/s13369-020-04383-z
      [76]
      Y.H. Wu, K. Xue, Q.L. Ma, et al., Removal of hazardous crystal violet dye by low-cost P-type zeolite/carbon composite obtained from in situ conversion of coal gasification fine slag, Microporous Mesoporous Mater., 312(2021), art. No. 110742. doi: 10.1016/j.micromeso.2020.110742
      [77]
      Y. Chen, I. Kone, Y. Gong, et al., Ultra-thin carbon nanosheets-assembled 3D hierarchically porous carbon for high performance zinc-air batteries, Carbon, 152(2019), p. 325. doi: 10.1016/j.carbon.2019.06.026
      [78]
      L.J. Kennedy, T. Ratnaji, N. Konikkara, and J.J. Vijaya, Value added porous carbon from leather wastes as potential supercapacitor electrode using neutral electrolyte, J. Cleaner Prod., 197(2018), p. 930. doi: 10.1016/j.jclepro.2018.06.244
      [79]
      Q.H. Guo, Y.C. Huang, Y. Gong, X.D. Zhuang, A. Richter, and G.S. Yu, Recovered carbon from coal gasification fine slag as electrocatalyst for oxygen reduction reaction and zinc–air battery, Energy Technol., 9(2021), No. 4, art. No. 2000890.
      [80]
      R. Han, A.N. Zhou, N.N. Zhang, and Z. Li, A review of kinetic studies on evaporative dehydration of lignite, Fuel, 329(2022), art. No. 125445. doi: 10.1016/j.fuel.2022.125445
      [81]
      X. Zhao, F.H. Guo, Y.X. Zhang, and J.J. Wu, Water distribution and adsorption behaviors of two typical coal gasification fine slags from Ningxia Region, Colloids Surf. A: Physicochem. Eng. Aspects, 625(2021), art. No. 126935. doi: 10.1016/j.colsurfa.2021.126935
      [82]
      V.L. Snoeyink and W.J. Weber, The surface chemistry of active carbon; a discussion of structure and surface functional groups, Environ. Sci. Technol., 1(1967), No. 3, p. 228. doi: 10.1021/es60003a003
      [83]
      N.N. Zhang, T. Pang, R. Han, et al., Interactions between bubble and particles of key minerals of diasporic bauxite through the extended DLVO theory, Int. J. Min. Sci. Technol., 32(2022), No. 1, p. 201. doi: 10.1016/j.ijmst.2021.11.002
      [84]
      Z.X. Wan, L.Y. Duan, X.D. Hu, et al., Removal of mercury from flue gas using coal gasification slag, Fuel Process. Technol., 231(2022), art. No. 107258. doi: 10.1016/j.fuproc.2022.107258
      [85]
      J.W. Li, Z.C. Chen, L.K. Li, et al., Study on pore and chemical structure characteristics of atmospheric circulating fluidized bed coal gasification fly ash, J. Cleaner Prod., 308(2021), art. No. 127395. doi: 10.1016/j.jclepro.2021.127395
      [86]
      Y. Zhang, H. Li, and C. Wu, Study on distribution, chemical states and binding energy shifts of elements on the surface of gasification fine ash, Res. Chem. Intermed., 45(2019), p. 3855.
      [87]
      G.X. Fan, M.Y. Zhang, W.J. Peng, et al., Clean products from coal gasification waste by flotation using waste engine oil as collector: Synergetic cleaner disposal of wastes, J. Cleaner Prod., 286(2021), art. No. 124943. doi: 10.1016/j.jclepro.2020.124943
      [88]
      D. Shi, J.B. Zhang, X.J. Hou, et al., Occurrence mode and molecular structure model of unburned carbon in coal gasification fine slags, Fuel, 323(2022), art. No. 124364. doi: 10.1016/j.fuel.2022.124364
      [89]
      S.X. Xiong, N.N. Yang, X.Q. Wang, et al., Preparation of hierarchical porous activated carbons for high performance supercapacitors from coal gasification fine slag, J. Mater. Sci. Mater. Electron., 33(2022), No. 18, p. 14722. doi: 10.1007/s10854-022-08392-6
      [90]
      Z.H. Xue, F. Gao, L.P. Dong, et al. Promotion of hydrophobic-hydrophilic separation of coal gasification fine slag through ultrasonic pre-treatment, J. Environ. Chem. Eng., 11 (2023), art. No. 110653. doi: 10.1016/j.jece.2023.110653
      [91]
      X.D. Ge, Surface properties analysis of coal gasification coal cinder and flotation extraction research, China Coal, 45(2019), No. 1, p. 107.
      [92]
      C.C. Pan, X. Liu, W. Huo, X.L. Guo, and X. Gong, Functional groups and pyrolysis characteristics of fine gasification ashes and raw coals, CIESC J., 66(2015), No. 4, p. 1449.
      [93]
      S.J. Zhu, L. Xu, L. Yang, X.L. Chen, and H.F. Lu, Effect of physicochemical properties of coal gasification fine ash on its wettability, Adv. Powder Technol., 32(2021), No. 7, p. 2123. doi: 10.1016/j.apt.2021.04.020
      [94]
      Z.H. Xue, L.P. Dong, H.P. Li, et al., Study on the mechanism of flotation of coal gasification fine slag reinforced with naphthenic acids, Fuel, 324(2022), art. No. 124557. doi: 10.1016/j.fuel.2022.124557
      [95]
      H.S. Hu, M. Li, L.L. Li, and X.X. Tao, Improving bubble-particle attachment during the flotation of low rank coal by surface modification, Int. J. Min. Sci. Technol., 30(2020), No. 2, p. 217. doi: 10.1016/j.ijmst.2019.04.001
      [96]
      Y.Y. Liu and J. Wilcox, Effects of surface heterogeneity on the adsorption of CO2 in microporous carbons, Environ. Sci. Technol., 46(2012), No. 3, p. 1940. doi: 10.1021/es204071g
      [97]
      C.L. Lu, S.P. Xu, M. Wang, L.G. Wei, S.Q. Liu, and C.H. Liu, Effect of pre-oxidation on the development of porosity in activated carbons from petroleum coke, Carbon, 45(2007), No. 1, p. 206. doi: 10.1016/j.carbon.2006.10.003
      [98]
      Z.K. Miao, G.F. Qiu, X. Zhao, F.H. Guo, Y.X. Zhang, and J.J. Wu, Influence of pre-oxidization on the characterizations of coal gasification fine slag-derived activated carbons for CO2 capture, J. CO 2 Util., 54(2021), art. No. 101754.
      [99]
      B. Petrovic, M. Gorbounov, and S. Masoudi Soltani, Influence of surface modification on selective CO2 adsorption: A technical review on mechanisms and methods, Microporous Mesoporous Mater., 312(2021), art. No. 110751. doi: 10.1016/j.micromeso.2020.110751
      [100]
      J.P. Zhang, J. Zuo, W.D. Ai, et al., Preparation of mesoporous coal-gasification fine slag adsorbent via amine modification and applications in CO2 capture, Appl. Surf. Sci., 537(2021), art. No. 147938. doi: 10.1016/j.apsusc.2020.147938
      [101]
      S.T. Gao, C.L. Wu, Y.C. Zhang, and H.X. Li, Dielectric regulation of high-graphitized fine ash wrapped cube-like ZnSnO3 composites with boosted microwave absorption performance, Ceram. Int., 47(2021), No. 4, p. 4994. doi: 10.1016/j.ceramint.2020.10.074
      [102]
      S.T. Gao, Y.C. Zhang, H.X. Li, J. He, H. Xu, and C.L. Wu, The microwave absorption properties of residual carbon from coal gasification fine slag, Fuel, 290(2021), art. No. 120050. doi: 10.1016/j.fuel.2020.120050
      [103]
      Y.K. Xiong, L.J. Jin, H. Yang, Y. Li, and H.Q. Hu, Insight into the aromatic ring structures of a low-rank coal by step-wise oxidation degradation, Fuel Process. Technol., 210(2020), art. No. 106563. doi: 10.1016/j.fuproc.2020.106563
      [104]
      J.T. Wei, Q.H. Guo, X.D. Song, et al., Effect of hydrothermal carbonization temperature on reactivity and synergy of co-gasification of biomass hydrochar and coal, Appl. Therm. Eng., 183(2021), art. No. 116232. doi: 10.1016/j.applthermaleng.2020.116232
      [105]
      A. Coccato, J. Jehlicka, L. Moens, and P. Vandenabeele, Raman spectroscopy for the investigation of carbon-based black pigments, J. Raman Spectrosc., 46(2015), No. 10, p. 1003. doi: 10.1002/jrs.4715
      [106]
      J.Q. Yu, Q.H. Guo, L. Ding, Y. Gong, and G.S. Yu, Studying effects of solid structure evolution on gasification reactivity of coal chars by in situ Raman spectroscopy, Fuel, 270(2020), art. No. 117603. doi: 10.1016/j.fuel.2020.117603
      [107]
      N. Zhang, G.W. Wang, J.L. Zhang, et al., Study on co-combustion characteristics of hydrochar and anthracite coal, J. Energy Inst., 93(2020), No. 3, p. 1125. doi: 10.1016/j.joei.2019.10.006
      [108]
      S. Huang, S.Y. Wu, Y.Q. Wu, and J.S. Gao, Structure characteristics and gasification activity of residual carbon from updraft fixed-bed biomass gasification ash, Energy Convers. Manage., 136(2017), p. 108. doi: 10.1016/j.enconman.2016.12.091
      [109]
      H.D. Wu, F.H. Shao, P. Lü, et al., Study on the relationship between structure, properties and size distribution of fine slag from entrained flow gasification, J. Fuel Chem. Technol., 50(2022), No. 5, p. 513.
      [110]
      S.W. Wei, L.Y. Zhang, Y.L. Qiu, D.F. Ding, and H.L. Liu, Study on the relationship between graphite crystal structure and flotation rate, Metal Mine, 11(2021), p. 104.
      [111]
      C.D. Ma, X.T. Li, J.Q. Lyu, et al., Study on characteristics of coal gasification fine slag–coal water slurry slurrying, combustion, and ash fusion, Fuel, 332(2023), art. No. 126039. doi: 10.1016/j.fuel.2022.126039
      [112]
      F.H. Guo, H.G. Wang, H.C. Li, et al., Waste coal gasification fine slag disposal mode via a promising “efficient non-evaporative dewatering & mixed combustion”: A comprehensive theoretical analysis of energy recovery and environmental benefits, Fuel, 339(2023), art. No. 126924. doi: 10.1016/j.fuel.2022.126924
      [113]
      X. Zhao, K.J. Liu, F.H. Guo, Y.X. Zhang, and J.J. Wu, Catalytic graphitization of residual carbon from gasification fine slag with ferric chloride as catalyst, Colloids Surf. A: Physicochem. Eng. Aspects, 636(2022), art. No. 128142. doi: 10.1016/j.colsurfa.2021.128142
      [114]
      Q.H. Guo, H. Li, S.M. Wang, Y. Gong, L. Ren, and G.S. Yu, Experimental study on preparation of oxygen reduction catalyst from coal gasification residual carbon, Chem. Eng. J., 446(2022), art. No. 137256. doi: 10.1016/j.cej.2022.137256
      [115]
      S.M. Wang, H. Li, Y. Gong, Q.H. Guo, and G.S. Yu, Investigation of the heteroatom doping effect on gasification fine slag residue carbon oxygen reduction reaction catalysts, SSRN Electron. J., (2022), art. No. 2201425.
      [116]
      J. He, S.T. Gao, Y.C. Zhang, and H.X. Li, Nanoferric tetroxide decorated N-doped residual carbon from entrained-flow coal gasification fine slag for enhancing the electromagnetic wave absorption capacity, J. Alloys Compd., 874(2021), art. No. 159878. doi: 10.1016/j.jallcom.2021.159878

    Catalog


    • /

      返回文章
      返回