留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 3
Mar.  2024

图(12)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  597
  • HTML全文浏览量:  278
  • PDF下载量:  69
  • 被引次数: 0
Qipeng Bao, Lei Guo, Hong Yong Sohn, Haibin Zuo, Feng Liu, Yongliang Gao, and Zhancheng Guo, New process for treating boron-bearing iron ore by flash reduction coupled with magnetic separation, Int. J. Miner. Metall. Mater., 31(2024), No. 3, pp. 473-484. https://doi.org/10.1007/s12613-023-2756-9
Cite this article as:
Qipeng Bao, Lei Guo, Hong Yong Sohn, Haibin Zuo, Feng Liu, Yongliang Gao, and Zhancheng Guo, New process for treating boron-bearing iron ore by flash reduction coupled with magnetic separation, Int. J. Miner. Metall. Mater., 31(2024), No. 3, pp. 473-484. https://doi.org/10.1007/s12613-023-2756-9
引用本文 PDF XML SpringerLink
研究论文

闪速还原熔分–磁选处理硼铁精矿的新方法



  • 通讯作者:

    郭磊    E-mail: leiguo@ustb.edu.cn

    郭占成    E-mail: zcguo@ustb.edu.cn

文章亮点

  • (1) 提出了一种闪速还原熔分-磁选处理硼铁精矿的新方法。
  • (2) 研究了一步、两步处理方法的还原和渣铁熔分效果。
  • (3) 解析了矿粉颗粒闪速还原熔分过程中的矿相转变和形貌演变规律。
  • 硼是一种重要的工业原料,硼资源常常与铁、镁等矿相伴生,而且矿相之间以细密的形式掺杂在一起,很难通过常规的选矿工艺实现不同矿相的解离和分离。本文提出一种闪速还原熔分–磁选处理硼铁精矿的新方法,该方法可以实现矿粉在颗粒尺度的渣铁熔分,结合破碎–磁选操作获得金属铁粉和富硼渣。分离出的渣相中B2O3含量可达18%以上,而金属铁中B含量低于0.03%。本文分别对一步法和两步法闪速还原熔分开展了研究,探究了矿粉粒度、温度等因素对还原和熔分过程的影响规律。并对闪速还原熔分过程中矿粉颗粒的矿相转变和形貌演变规律进行了深度解析。
  • Research Article

    New process for treating boron-bearing iron ore by flash reduction coupled with magnetic separation

    + Author Affiliations
    • Boron is an important industrial raw material often sourced from minerals containing different compounds that cocrystallize, which makes it difficult to separate the mineral phases through conventional beneficiation. This study proposed a new treatment called flash reduction–melting separation (FRMS) for boron-bearing iron concentrates. In this method, the concentrates were first flash-reduced at the temperature under which the particles melt, and the slag and the reduced iron phases disengaged at the particle scale. Good reduction and melting effects were achieved above 1550°C. The B2O3 content in the separated slag was over 18wt%, and the B content in the iron was less than 0.03wt%. The proposed FRMS method was tested to investigate the effects of factors such as ore particle size and temperature on the reduction and melting steps with and without pre-reducing the raw concentrate. The mineral phase transformation and morphology evolution in the ore particles during FRMS were also comprehensively analyzed.
    • loading
    • Supplementary Information-s12613-023-2756-9.docx
    • [1]
      X.J. Fu, J.Q. Zhao, S.Y. Chen, Z.G. Liu, T.L. Guo, and M.S. Chu, Comprehensive utilization of ludwigite ore based on metallizing reduction and magnetic separation, J. Iron Steel Res. Int., 22(2015), No. 8, p. 672. doi: 10.1016/S1006-706X(15)30056-X
      [2]
      Y.G. Chabak, K. Shimizu, V.G. Efremenko, et al., Microstructure and phase elemental distribution in high-boron multi-component cast irons, Int. J. Miner. Metall. Mater., 29(2022), No. 1, p. 78. doi: 10.1007/s12613-020-2135-8
      [3]
      G.J. Cheng, X.Z. Liu, H. Yang, X.X. Xue, and L.J. Li, Sintering and smelting property investigations of ludwigite, Processes, 10(2022), No. 1, art. No. 159. doi: 10.3390/pr10010159
      [4]
      B. Dai, H. Long, Y. Wen, and Y. Ji, Effect of ludwigite (B2O3) on high Al2O3 slag and its mechanism used as a new blast furnace welding flux, Metalurgija, 59(2020), No. 4, p. 455.
      [5]
      G. Wang, J.S. Wang, Y.G. Ding, S. Ma, and Q.G. Xue, New separation method of boron and iron from ludwigite based on carbon bearing pellet reduction and melting technology, ISIJ Int., 52(2012), No. 1, p. 45. doi: 10.2355/isijinternational.52.45
      [6]
      W.J. Huang, T. Jiang, Y.J. Liu, and T.L. Guo, Mineralogical properties of ludwigite and the effects of microwave radiation on its particle characteristics and mineral liberation properties, J. Microw. Power Electromagn. Energy, 56(2022), No. 2, p. 124. doi: 10.1080/08327823.2022.2066770
      [7]
      Y.J. Liu, T. Jiang, C.H. Liu, W.J. Huang, J.P. Wang, and X.X. Xue, Effect of microwave pre-treatment on the magnetic properties of Ludwigite and its implications on magnetic separation, Metall. Res. Technol., 116(2019), No. 1, art. No. 107. doi: 10.1051/metal/2018087
      [8]
      G. Wang, Fundamental Research on Comprehensive Utilization of Boron-bearing Iron Concentrate by Coal-Based Reduction and Melting Separation [Dissertation], University of Science and Technology Beijing, Beijing, 2016.
      [9]
      W.J. Huang and Y.J. Liu, Effect of microwave radiation on the magnetic properties of ludwigite and iron-boron separation, J. Microw. Power Electromagn. Energy, 55(2021), No. 2, p. 93. doi: 10.1080/08327823.2021.1916682
      [10]
      Y.J. Liu, T. Jiang, W.J. Huang, C.H. Liu, J.P. Wang, and X.X. Xue, High temperature dielectric properties of ludwigite and its effect on microwave heating process, J. Microw. Power Electromagn. Energy, 53(2019), No. 3, p. 195. doi: 10.1080/08327823.2019.1643650
      [11]
      X. Fu, M. Chu, L. Gao, and Z. Liu, Mechanism and kinetics studies on non-isothermal decomposition of ludwigite in inert atmosphere, Arch. Metall. Mater. 63(2018), p. 1217.
      [12]
      Z.P. Zhu, J.X. You, X. Zhang, et al., Recycling excessive alkali from reductive soda ash roasted ludwigite ore: Toward a zero-waste approach, ACS Sustainable Chem. Eng., 8(2020), No. 13, p. 5317. doi: 10.1021/acssuschemeng.0c00582
      [13]
      X. Zhang, G.H. Li, J.X. You, et al., Extraction of boron from ludwigite ore: Mechanism of soda-ash roasting of lizardite and szaibelyite, Minerals, 9(2019), No. 9, art. No. 533. doi: 10.3390/min9090533
      [14]
      G.H. Li, L. Fang, X. Zhang, et al., Utilization of the MgO-rich residue originated from ludwigite ore: Hydrothermal synthesis of MHSH whiskers, Minerals, 7(2017), No. 8, art. No. 138. doi: 10.3390/min7080138
      [15]
      B.J. Liang, G.H. Li, M.J. Rao, Z.W. Peng, Y.B. Zhang, and T. Jiang, Water leaching of boron from soda-ash-activated ludwigite ore, Hydrometallurgy, 167(2017), p. 101. doi: 10.1016/j.hydromet.2016.11.004
      [16]
      L. Ye, Z.W. Peng, R. Tian, et al., A novel process for highly efficient separation of boron and iron from ludwigite ore based on low-temperature microwave roasting, Powder Technol., 410(2022), art. No. 117848. doi: 10.1016/j.powtec.2022.117848
      [17]
      X.J. Fu, M.S. Chu, L.H. Gao, and Z.G. Liu, Stepwise recovery of magnesium from low-grade ludwigite ore based on innovative and clean technological route, Trans. Nonferrous Met. Soc. China, 28(2018), No. 11, p. 2383. doi: 10.1016/S1003-6326(18)64884-8
      [18]
      G.H. Li, B.J. Liang, M.J. Rao, Y.B. Zhang, and T. Jiang, An innovative process for extracting boron and simultaneous recovering metallic iron from ludwigite ore, Miner. Eng., 56(2014), p. 57. doi: 10.1016/j.mineng.2013.10.030
      [19]
      G.X. Huang, C.L. Zhen, J.C. Zhang, and G.Q. Liang, Industrial test research of magnesia pellet production with addition of boric magnesium iron concentrate, Sintering Pelletizing, 41(2016), No. 6, p. 48. doi: 10.13403/j.sjqt.2016.06.076
      [20]
      G. Wang, Q.G. Xue, and J.S. Wang, Effect of Na2CO3 on reduction and melting separation of ludwigite/coal composite pellet and property of boron-rich slag, Trans. Nonferrous Met. Soc. China, 26(2016), No. 1, p. 282. doi: 10.1016/S1003-6326(16)64116-X
      [21]
      G. Wang, Q.G. Xue, and J.S. Wang, Carbothermic reduction characteristics of ludwigite and boron–iron magnetic separation, Int. J. Miner. Metall. Mater., 25(2018), No. 9, p. 1000. doi: 10.1007/s12613-018-1650-3
      [22]
      G. Wang, Q.G. Xue, and J.S. Wang, Volume shrinkage of ludwigite/coal composite pellet during isothermal and non-isothermal reduction, Thermochim. Acta, 621(2015), p. 90. doi: 10.1016/j.tca.2015.10.013
      [23]
      J.X. You, J. Wang, M.J. Rao, et al., An integrated and efficient process for borax preparation and magnetite recovery from soda-ash roasted ludwigite ore under CO–CO2–N2 atmosphere, Int. J. Miner. Metall. Mater., 30(2023), No. 11, p. 2169. doi: 10.1007/s12613-023-2643-4
      [24]
      M.E. Choi and H.Y. Sohn, Development of green suspension ironmaking technology based on hydrogen reduction of iron oxide concentrate: Rate measurements, Ironmaking Steelmaking, 37(2010), No. 2, p. 81. doi: 10.1179/030192309X12506804200663
      [25]
      L. Guo, J.T. Gao, Y.W. Zhong, and Z.C. Guo, Flash suspension reduction of ultra-fine Fe2O3 powders and the kinetic analyzing, ISIJ Int., 55(2015), No. 9, p. 1797. doi: 10.2355/isijinternational.ISIJINT-2014-834
      [26]
      Z.Y. Chen, C. Zeilstra, J. van der Stel, J. Sietsma, and Y.X. Yang, Reduction mechanism of fine hematite ore particles in suspension, Metall. Mater. Trans. B, 52(2021), No. 4, p. 2239. doi: 10.1007/s11663-021-02173-y
      [27]
      X.N. Wang, G.Q. Fu, W. Li, and M.Y. Zhu, Numerical simulation and optimization of flash reduction of iron ore particles with hydrogen-rich gases, Powder Technol., 366(2020), p. 587. doi: 10.1016/j.powtec.2020.02.075
      [28]
      B.J. Cheng, J. Xiong, M. Li, Y. Feng, W.Y. Hou, and H.S. Li, Numerical investigation into gas-particle inter-phase combustion and reduction in the flash ironmaking process, Metals, 10(2020), No. 6, art. No. 711. doi: 10.3390/met10060711
      [29]
      B. Abolpour, M.M. Afsahi, A. Soltani Goharrizi, and M. Azizkarimi, Investigation of in-flight reduction of magnetite concentrate by hydrogen, Ironmaking Steelmaking, 46(2019), No. 5, p. 443. doi: 10.1080/03019233.2017.1405146
      [30]
      H.J. Lee, C.K. Choi, and S.H. Lee, Local heating effect on thermal Marangoni flow and heat transfer characteristics of an evaporating droplet, Int. J. Heat Mass Transf., 195(2022), art. No. 123206. doi: 10.1016/j.ijheatmasstransfer.2022.123206
      [31]
      C.P. Wang, X.J. Liu, I. Ohnuma, R. Kainuma, and K. Ishida, Formation of immiscible alloy powders with egg-type microstructure, Science, 297(2002), No. 5583, p. 990. doi: 10.1126/science.1073050
      [32]
      Q.P. Bao, L. Guo, and Z.C. Guo, A novel direct reduction-flash smelting separation process of treating high phosphorous iron ore fines, Powder Technol., 377(2021), p. 149. doi: 10.1016/j.powtec.2020.08.066
      [33]
      Y.R. Yang, Q.P. Bao, L. Guo, Z. Wang, and Z.C. Guo, Numerical simulation of flash reduction in a drop tube reactor with variable temperatures, Int. J. Miner. Metall. Mater., 29(2022), No. 2, p. 228. doi: 10.1007/s12613-020-2210-1

    Catalog


    • /

      返回文章
      返回