Cite this article as: |
Qipeng Bao, Lei Guo, Hong Yong Sohn, Haibin Zuo, Feng Liu, Yongliang Gao, and Zhancheng Guo, New process for treating boron-bearing iron ore by flash reduction coupled with magnetic separation, Int. J. Miner. Metall. Mater., 31(2024), No. 3, pp. 473-484. https://doi.org/10.1007/s12613-023-2756-9 |
郭磊 E-mail: leiguo@ustb.edu.cn
郭占成 E-mail: zcguo@ustb.edu.cn
Supplementary Information-s12613-023-2756-9.docx |
[1] |
X.J. Fu, J.Q. Zhao, S.Y. Chen, Z.G. Liu, T.L. Guo, and M.S. Chu, Comprehensive utilization of ludwigite ore based on metallizing reduction and magnetic separation, J. Iron Steel Res. Int., 22(2015), No. 8, p. 672. doi: 10.1016/S1006-706X(15)30056-X
|
[2] |
Y.G. Chabak, K. Shimizu, V.G. Efremenko, et al., Microstructure and phase elemental distribution in high-boron multi-component cast irons, Int. J. Miner. Metall. Mater., 29(2022), No. 1, p. 78. doi: 10.1007/s12613-020-2135-8
|
[3] |
G.J. Cheng, X.Z. Liu, H. Yang, X.X. Xue, and L.J. Li, Sintering and smelting property investigations of ludwigite, Processes, 10(2022), No. 1, art. No. 159. doi: 10.3390/pr10010159
|
[4] |
B. Dai, H. Long, Y. Wen, and Y. Ji, Effect of ludwigite (B2O3) on high Al2O3 slag and its mechanism used as a new blast furnace welding flux, Metalurgija, 59(2020), No. 4, p. 455.
|
[5] |
G. Wang, J.S. Wang, Y.G. Ding, S. Ma, and Q.G. Xue, New separation method of boron and iron from ludwigite based on carbon bearing pellet reduction and melting technology, ISIJ Int., 52(2012), No. 1, p. 45. doi: 10.2355/isijinternational.52.45
|
[6] |
W.J. Huang, T. Jiang, Y.J. Liu, and T.L. Guo, Mineralogical properties of ludwigite and the effects of microwave radiation on its particle characteristics and mineral liberation properties, J. Microw. Power Electromagn. Energy, 56(2022), No. 2, p. 124. doi: 10.1080/08327823.2022.2066770
|
[7] |
Y.J. Liu, T. Jiang, C.H. Liu, W.J. Huang, J.P. Wang, and X.X. Xue, Effect of microwave pre-treatment on the magnetic properties of Ludwigite and its implications on magnetic separation, Metall. Res. Technol., 116(2019), No. 1, art. No. 107. doi: 10.1051/metal/2018087
|
[8] |
G. Wang, Fundamental Research on Comprehensive Utilization of Boron-bearing Iron Concentrate by Coal-Based Reduction and Melting Separation [Dissertation], University of Science and Technology Beijing, Beijing, 2016.
|
[9] |
W.J. Huang and Y.J. Liu, Effect of microwave radiation on the magnetic properties of ludwigite and iron-boron separation, J. Microw. Power Electromagn. Energy, 55(2021), No. 2, p. 93. doi: 10.1080/08327823.2021.1916682
|
[10] |
Y.J. Liu, T. Jiang, W.J. Huang, C.H. Liu, J.P. Wang, and X.X. Xue, High temperature dielectric properties of ludwigite and its effect on microwave heating process, J. Microw. Power Electromagn. Energy, 53(2019), No. 3, p. 195. doi: 10.1080/08327823.2019.1643650
|
[11] |
X. Fu, M. Chu, L. Gao, and Z. Liu, Mechanism and kinetics studies on non-isothermal decomposition of ludwigite in inert atmosphere, Arch. Metall. Mater. 63(2018), p. 1217.
|
[12] |
Z.P. Zhu, J.X. You, X. Zhang, et al., Recycling excessive alkali from reductive soda ash roasted ludwigite ore: Toward a zero-waste approach, ACS Sustainable Chem. Eng., 8(2020), No. 13, p. 5317. doi: 10.1021/acssuschemeng.0c00582
|
[13] |
X. Zhang, G.H. Li, J.X. You, et al., Extraction of boron from ludwigite ore: Mechanism of soda-ash roasting of lizardite and szaibelyite, Minerals, 9(2019), No. 9, art. No. 533. doi: 10.3390/min9090533
|
[14] |
G.H. Li, L. Fang, X. Zhang, et al., Utilization of the MgO-rich residue originated from ludwigite ore: Hydrothermal synthesis of MHSH whiskers, Minerals, 7(2017), No. 8, art. No. 138. doi: 10.3390/min7080138
|
[15] |
B.J. Liang, G.H. Li, M.J. Rao, Z.W. Peng, Y.B. Zhang, and T. Jiang, Water leaching of boron from soda-ash-activated ludwigite ore, Hydrometallurgy, 167(2017), p. 101. doi: 10.1016/j.hydromet.2016.11.004
|
[16] |
L. Ye, Z.W. Peng, R. Tian, et al., A novel process for highly efficient separation of boron and iron from ludwigite ore based on low-temperature microwave roasting, Powder Technol., 410(2022), art. No. 117848. doi: 10.1016/j.powtec.2022.117848
|
[17] |
X.J. Fu, M.S. Chu, L.H. Gao, and Z.G. Liu, Stepwise recovery of magnesium from low-grade ludwigite ore based on innovative and clean technological route, Trans. Nonferrous Met. Soc. China, 28(2018), No. 11, p. 2383. doi: 10.1016/S1003-6326(18)64884-8
|
[18] |
G.H. Li, B.J. Liang, M.J. Rao, Y.B. Zhang, and T. Jiang, An innovative process for extracting boron and simultaneous recovering metallic iron from ludwigite ore, Miner. Eng., 56(2014), p. 57. doi: 10.1016/j.mineng.2013.10.030
|
[19] |
G.X. Huang, C.L. Zhen, J.C. Zhang, and G.Q. Liang, Industrial test research of magnesia pellet production with addition of boric magnesium iron concentrate, Sintering Pelletizing, 41(2016), No. 6, p. 48. doi: 10.13403/j.sjqt.2016.06.076
|
[20] |
G. Wang, Q.G. Xue, and J.S. Wang, Effect of Na2CO3 on reduction and melting separation of ludwigite/coal composite pellet and property of boron-rich slag, Trans. Nonferrous Met. Soc. China, 26(2016), No. 1, p. 282. doi: 10.1016/S1003-6326(16)64116-X
|
[21] |
G. Wang, Q.G. Xue, and J.S. Wang, Carbothermic reduction characteristics of ludwigite and boron–iron magnetic separation, Int. J. Miner. Metall. Mater., 25(2018), No. 9, p. 1000. doi: 10.1007/s12613-018-1650-3
|
[22] |
G. Wang, Q.G. Xue, and J.S. Wang, Volume shrinkage of ludwigite/coal composite pellet during isothermal and non-isothermal reduction, Thermochim. Acta, 621(2015), p. 90. doi: 10.1016/j.tca.2015.10.013
|
[23] |
J.X. You, J. Wang, M.J. Rao, et al., An integrated and efficient process for borax preparation and magnetite recovery from soda-ash roasted ludwigite ore under CO–CO2–N2 atmosphere, Int. J. Miner. Metall. Mater., 30(2023), No. 11, p. 2169. doi: 10.1007/s12613-023-2643-4
|
[24] |
M.E. Choi and H.Y. Sohn, Development of green suspension ironmaking technology based on hydrogen reduction of iron oxide concentrate: Rate measurements, Ironmaking Steelmaking, 37(2010), No. 2, p. 81. doi: 10.1179/030192309X12506804200663
|
[25] |
L. Guo, J.T. Gao, Y.W. Zhong, and Z.C. Guo, Flash suspension reduction of ultra-fine Fe2O3 powders and the kinetic analyzing, ISIJ Int., 55(2015), No. 9, p. 1797. doi: 10.2355/isijinternational.ISIJINT-2014-834
|
[26] |
Z.Y. Chen, C. Zeilstra, J. van der Stel, J. Sietsma, and Y.X. Yang, Reduction mechanism of fine hematite ore particles in suspension, Metall. Mater. Trans. B, 52(2021), No. 4, p. 2239. doi: 10.1007/s11663-021-02173-y
|
[27] |
X.N. Wang, G.Q. Fu, W. Li, and M.Y. Zhu, Numerical simulation and optimization of flash reduction of iron ore particles with hydrogen-rich gases, Powder Technol., 366(2020), p. 587. doi: 10.1016/j.powtec.2020.02.075
|
[28] |
B.J. Cheng, J. Xiong, M. Li, Y. Feng, W.Y. Hou, and H.S. Li, Numerical investigation into gas-particle inter-phase combustion and reduction in the flash ironmaking process, Metals, 10(2020), No. 6, art. No. 711. doi: 10.3390/met10060711
|
[29] |
B. Abolpour, M.M. Afsahi, A. Soltani Goharrizi, and M. Azizkarimi, Investigation of in-flight reduction of magnetite concentrate by hydrogen, Ironmaking Steelmaking, 46(2019), No. 5, p. 443. doi: 10.1080/03019233.2017.1405146
|
[30] |
H.J. Lee, C.K. Choi, and S.H. Lee, Local heating effect on thermal Marangoni flow and heat transfer characteristics of an evaporating droplet, Int. J. Heat Mass Transf., 195(2022), art. No. 123206. doi: 10.1016/j.ijheatmasstransfer.2022.123206
|
[31] |
C.P. Wang, X.J. Liu, I. Ohnuma, R. Kainuma, and K. Ishida, Formation of immiscible alloy powders with egg-type microstructure, Science, 297(2002), No. 5583, p. 990. doi: 10.1126/science.1073050
|
[32] |
Q.P. Bao, L. Guo, and Z.C. Guo, A novel direct reduction-flash smelting separation process of treating high phosphorous iron ore fines, Powder Technol., 377(2021), p. 149. doi: 10.1016/j.powtec.2020.08.066
|
[33] |
Y.R. Yang, Q.P. Bao, L. Guo, Z. Wang, and Z.C. Guo, Numerical simulation of flash reduction in a drop tube reactor with variable temperatures, Int. J. Miner. Metall. Mater., 29(2022), No. 2, p. 228. doi: 10.1007/s12613-020-2210-1
|