留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 3
Mar.  2024

图(10)  / 表(4)

数据统计

分享

计量
  • 文章访问数:  177
  • HTML全文浏览量:  65
  • PDF下载量:  20
  • 被引次数: 0
Liping Tang, Pengfei Wei, Zhili Hu, and Qiu Pang, Microstructure and mechanical properties stability of pre-hardening treatment in Al–Cu alloys for pre-hardening forming process, Int. J. Miner. Metall. Mater., 31(2024), No. 3, pp. 539-551. https://doi.org/10.1007/s12613-023-2758-7
Cite this article as:
Liping Tang, Pengfei Wei, Zhili Hu, and Qiu Pang, Microstructure and mechanical properties stability of pre-hardening treatment in Al–Cu alloys for pre-hardening forming process, Int. J. Miner. Metall. Mater., 31(2024), No. 3, pp. 539-551. https://doi.org/10.1007/s12613-023-2758-7
引用本文 PDF XML SpringerLink
研究论文

铝合金预强化成形工艺中Al–Cu合金的微观组织和力学性能稳定性研究


  • 通讯作者:

    胡志力    E-mail: zhilihuhit@163.com

    庞秋    E-mail: pqiuhit@126.com

文章亮点

  • (1) PHF处理的Al–Cu合金表现出稳定的力学性能:室温存储1个月后抗拉强度偏差为1%、屈服强度偏差为2%,杯突值偏差为1%。
  • (2) 在PHF过程中引入48–720小时的自然时效处理,板材屈服强度虽然提升了20 MPa,但延伸率仍保持不变,板材强韧性在48–720小时自然时效处理期间保持稳定。
  • (3) PHF过程中引入的自然时效促进了部分GP(II) → θ'',θ''相的形成抑制了GP区的成核和生长,板材的强韧性保持稳定。
  • 预强化成形工艺(Pre-hardening Forming, PHF)中预强化板材的微观组织和力学性能的室温存储稳定性直接决定了构件的成形质量,也是工程批量应用的关键。通过DSC、TEM和SAXS研究预强化板材的微观组织稳定性,通过单轴拉伸试验和板料成形试验分析其力学性能和成形性。研究发现PHF板材经1个月室温存储(自然时效处理)力学性能稳定:极限抗拉强度(UTS)、屈服强度(YS)和板材成形性(埃里克森值)的偏差均小于2%。在PHF过程中对板材进行48–720小时的自然时效处理,有趣的是,自然时效对板材实现了20 MPa的屈服强度增长,而延伸率保持不变。PHF过程中的自然时效处理对板材的强韧性有一定的促进作用,这种有限的促进作用主要归因于预强化处理的早期阶段只有部分的团簇转化为GP区,随着析出相的析出演变θ''相的形成抑制了GP区的成核和生长。
  • Research Article

    Microstructure and mechanical properties stability of pre-hardening treatment in Al–Cu alloys for pre-hardening forming process

    + Author Affiliations
    • The stability of the microstructure and mechanical properties of the pre-hardened sheets during the pre-hardening forming (PHF) process directly determines the quality of the formed components. The microstructure stability of the pre-hardened sheets was investigated by differential scanning calorimetry (DSC), transmission electron microscopy (TEM), and small angle X-ray scattering (SAXS), while the mechanical properties and formability were analyzed through uniaxial tensile tests and formability tests. The results indicate that the mechanical properties of the pre-hardened alloys exhibited negligible changes after experiencing 1-month natural aging (NA). The deviations of ultimate tensile strength (UTS), yield strength (YS), and sheet formability (Erichsen value) are all less than 2%. Also, after different NA time (from 48 h to 1 month) is applied to alloys before pre-hardening treatment, the pre-hardened alloys possess stable microstructure and mechanical properties as well. Interestingly, with the extension of NA time before pre-hardening treatment from 48 h to 1 month, the contribution of NA to the pre-hardening treatment is limited. Only a yield strength increment of 20 MPa is achieved, with no loss in elongation. The limited enhancement is mainly attributed to the fact that only a limited number of clusters are transformed into Guinier-Preston (GP) zones at the early stage of pre-hardening treatment, and the formation of θ'' phase inhibits the nucleation and growth of GP zones as the precipitated phase evolves.
    • loading
    • [1]
      G.R. Ebrahimi, A. Zarei-Hanzaki, M. Haghshenas, and H. Arabshahi, The effect of heat treatment on hot deformation behaviour of Al 2024, J. Mater. Process. Technol., 206(2008), No. 1-3, p. 25. doi: 10.1016/j.jmatprotec.2007.11.261
      [2]
      R. Khatami, A. Fattah-alhosseini, Y. Mazaheri, M.K. Keshavarz, and M. Haghshenas, Microstructural evolution and mechanical properties of ultrafine grained AA2024 processed by accumulative roll bonding, Int. J. Adv. Manuf. Technol., 93(2017), No. 1, p. 681.
      [3]
      Y.Z. Chen, W. Liu, and S.J. Yuan, Strength and formability improvement of Al–Cu–Mn aluminum alloy complex parts by thermomechanical treatment with sheet hydroforming, JOM, 67(2015), No. 5, p. 938. doi: 10.1007/s11837-015-1294-y
      [4]
      A.A. El-Aty, Y. Xu, X. Guo, S.H. Zhang, Y. Ma, and D. Chen, Strengthening mechanisms, deformation behavior, and anisotropic mechanical properties of Al–Li alloys: A review, J. Adv. Res., 10(2018), p. 49. doi: 10.1016/j.jare.2017.12.004
      [5]
      L. Hua, W.P. Zhang, H.J. Ma, and Z.L. Hu, Investigation of formability, microstructures and post-forming mechanical properties of heat-treatable aluminum alloys subjected to pre-aged hardening warm forming, Int. J. Mach. Tools Manuf., 169(2021), art. No. 103799. doi: 10.1016/j.ijmachtools.2021.103799
      [6]
      R. Braun, Investigations on the long-term stability of 6013-T6 sheet, Mater. Charact., 56(2006), No. 2, p. 85. doi: 10.1016/j.matchar.2005.03.006
      [7]
      P. Dong, D.Q. Sun, and H.M. Li, Natural aging behaviour of friction stir welded 6005A-T6 aluminium alloy, Mater. Sci. Eng. A, 576(2013), p. 29. doi: 10.1016/j.msea.2013.03.077
      [8]
      L.P. Ding, Y. He, Z. Wen, P.Z. Zhao, Z.H. Jia, and Q. Liu, Optimization of the pre-aging treatment for an AA6022 alloy at various temperatures and holding times, J. Alloys Compd., 647(2015), p. 238. doi: 10.1016/j.jallcom.2015.05.188
      [9]
      Y. Aruga, M. Kozuka, Y. Takaki, and T. Sato, Effects of natural aging after pre-aging on clustering and bake-hardening behavior in an Al–Mg–Si alloy, Scripta Mater., 116(2016), p. 82. doi: 10.1016/j.scriptamat.2016.01.019
      [10]
      Y. Takaki, T. Masuda, E. Kobayashi, and T. Sato, Effects of natural aging on bake hardening behavior of Al–Mg–Si alloys with multi-step aging process, Mater. Trans., 55(2014), No. 8, p. 1257. doi: 10.2320/matertrans.L-M2014827
      [11]
      L. Wan, Y.L. Deng, L.Y. Ye, and Y. Zhang, The natural ageing effect on pre-ageing kinetics of Al–Zn–Mg alloy, J. Alloys Compd., 776(2019), p. 469. doi: 10.1016/j.jallcom.2018.10.338
      [12]
      G.J. Li, M.X. Guo, J.Q. Du, and L.Z. Zhuang, Synergistic improvement in bake-hardening response and natural aging stability of Al–Mg–Si–Cu–Zn alloys via non-isothermal pre-aging treatment, Mater. Des., 218(2022), art. No. 110714. doi: 10.1016/j.matdes.2022.110714
      [13]
      J.A. Österreicher, G. Kirov, S.S.A. Gerstl, E. Mukeli, F. Grabner, and M. Kumar, Stabilization of 7xxx aluminium alloys, J. Alloys Compd., 740(2018), p. 167. doi: 10.1016/j.jallcom.2018.01.003
      [14]
      J.A. Österreicher, D. Nebeling, F. Grabner, et al., Secondary ageing and formability of an Al–Cu–Mg alloy (2024) in W and under-aged tempers, Mater. Des., 226(2023), art. No. 111634. doi: 10.1016/j.matdes.2023.111634
      [15]
      P.A. Rometsch, S.X. Gao, and M.J. Couper, Effect of composition and pre-ageing on the natural ageing and paint-baking behaviour of Al–Mg–Si Alloys, [in] H. Weiland, A.D. Rollett, and W.A. Cassada, eds., The 13th International Conference on Aluminum Alloys, Pittsburgh, PA, 2012, p. 15.
      [16]
      W.B. Tu, J.G. Tang, L.H. Ma, S.L. Wang, and W.H. Chen, The combined effect of pre-aging and Sn addition on age hardening response and precipitation behavior of Al–1.0Mg–0.6Si (–0.3Cu) alloy, J. Mater. Res. Technol., 23(2023), p. 4606. doi: 10.1016/j.jmrt.2023.02.075
      [17]
      S.Z. Zhu, D. Wang, B.L. Xiao, and Z.Y. Ma, Effects of natural aging on precipitation behavior and hardening ability of peak artificially aged SiCp/Al–Mg–Si composites, Composites Part B, 236(2022), art. No. 109851. doi: 10.1016/j.compositesb.2022.109851
      [18]
      P.P. Ma, C.H. Liu, Q.Y. Chen, Q. Wang, L.H. Zhan, and J.J. Li, Natural-ageing-enhanced precipitation near grain boundaries in high-strength aluminum alloy, J. Mater. Sci. Technol., 46(2020), p. 107. doi: 10.1016/j.jmst.2019.11.035
      [19]
      J.G. Zhao, Z.Y. Liu, S. Bai, D.P. Zeng, L. Luo, and J. Wang, Effects of natural aging on the formation and strengthening effect of G.P. zones in a retrogression and re-aged Al–Zn–Mg–Cu alloy, J. Alloys Compd., 829(2020), art. No. 154469. doi: 10.1016/j.jallcom.2020.154469
      [20]
      C.H. Liu, Z.Y. Ma, P.P. Ma, L.H. Zhan, and M.H. Huang, Multiple precipitation reactions and formation of θ'-phase in a pre-deformed Al–Cu alloy, Mater. Sci. Eng. A, 733(2018), p. 28. doi: 10.1016/j.msea.2018.07.039
      [21]
      K.C. Yu, L.G. Hou, M.X. Guo, et al., A method for determining R-value of aluminum sheets with the Portevin-Le Chatelier effect, Mater. Sci. Eng. A, 814(2021), art. No. 141246. doi: 10.1016/j.msea.2021.141246
      [22]
      S. Gupta, A.J. Beaudoin, and J. Chevy, Strain rate jump induced negative strain rate sensitivity (NSRS) in aluminum alloy 2024: Experiments and constitutive modeling, Mater. Sci. Eng. A, 683(2017), p. 143. doi: 10.1016/j.msea.2016.12.010
      [23]
      S.K. Son, M. Takeda, M. Mitome, Y. Bando, and T. Endo, Precipitation behavior of an Al–Cu alloy during isothermal aging at low temperatures, Mater. Lett., 59(2005), No. 6, p. 629. doi: 10.1016/j.matlet.2004.10.058
      [24]
      J.M. Papazian, A calorimetric study of precipitation in aluminum alloy 2219, Metall. Trans. A, 12(1981), No. 2, p. 269. doi: 10.1007/BF02655200
      [25]
      T. Sato, S. Hirosawa, K. Hirose, and T. Maeguchi, Roles of microalloying elements on the cluster formation in the initial stage of phase decomposition of Al-based alloys, Metall. Mater. Trans. A, 34(2003), No. 12, p. 2745. doi: 10.1007/s11661-003-0176-z
      [26]
      G.A. Li, Z. Ma, J.T. Jiang, W.Z. Shao, W. Liu, and L. Zhen, Effect of pre-stretch on the precipitation behavior and the mechanical properties of 2219 Al alloy, Materials, 14(2021), No. 9, art. No. 2101. doi: 10.3390/ma14092101
      [27]
      W.P. Zhang, H.H. Li, Z.L. Hu, and L. Hua, Investigation on the deformation behavior and post-formed microstructure/properties of AA7075-T6 alloy under pre-hardened hot forming process, Mater. Sci. Eng. A, 792(2020), art. No. 139749. doi: 10.1016/j.msea.2020.139749
      [28]
      Y.C. Lin, J.L. Zhang, G. Liu, and Y.J. Liang, Effects of pre-treatments on aging precipitates and corrosion resistance of a creep-aged Al–Zn–Mg–Cu alloy, Mater. Des., 83(2015), p. 866. doi: 10.1016/j.matdes.2015.06.029
      [29]
      H.M. Wang, Y.P. Yi, and S.Q. Huang, Influence of pre-deformation and subsequent ageing on the hardening behavior and microstructure of 2219 aluminum alloy forgings, J. Alloys Compd., 685(2016), p. 941. doi: 10.1016/j.jallcom.2016.06.111
      [30]
      E.M. Elgallad, Z. Zhang, and X.G. Chen, Effect of two-step aging on the mechanical properties of AA2219 DC cast alloy, Mater. Sci. Eng. A, 625(2015), p. 213. doi: 10.1016/j.msea.2014.12.002
      [31]
      R. Santos-Güemes, L. Capolungo, J. Segurado, and J. LLorca, Dislocation dynamics prediction of the strength of Al–Cu alloys containing shearable θ'' precipitates, J. Mech. Phys. Solids, 151(2021), art. No. 104375. doi: 10.1016/j.jmps.2021.104375
      [32]
      J.Y. Li, S.L. Lü, S.S. Wu, D.J. Zhao, and W. Guo, Micro-mechanism of simultaneous improvement of strength and ductility of squeeze-cast Al–Cu alloy, Mater. Sci. Eng. A, 833(2022), art. No. 142538. doi: 10.1016/j.msea.2021.142538
      [33]
      A. Deschamps and F. De Geuser, On the validity of simple precipitate size measurements by small-angle scattering in metallic systems, J. Appl. Crystallogr., 44(2011), p. 343. doi: 10.1107/S0021889811003049
      [34]
      A. Biswas, D.J. Siegel, C. Wolverton, and D.N. Seidman, Precipitates in Al–Cu alloys revisited: Atom-probe tomographic experiments and first-principles calculations of compositional evolution and interfacial segregation, Acta Mater., 59(2011), No. 15, p. 6187. doi: 10.1016/j.actamat.2011.06.036
      [35]
      Z.G. Chen, J.L. He, Y.Y. Zheng, and C.H. Lu, Mechanical performance improvement of Al–Cu–Mg using various thermomechanical treatments, Mater. Sci. Eng. A, 841(2022), art. No. 142869. doi: 10.1016/j.msea.2022.142869
      [36]
      V.L. Tellkamp, E.J. Lavernia, and A. Melmed, Mechanical behavior and microstructure of a thermally stable bulk nanostructured Al alloy, Metall. Mater. Trans. A, 32(2001), No. 9, p. 2335. doi: 10.1007/s11661-001-0207-6
      [37]
      T. Shanmugasundaram, M. Heilmaier, B.S. Murty, and V.S. Sarma, Microstructure and mechanical properties of nanostructured Al–4Cu alloy produced by mechanical alloying and vacuum hot pressing, Metall. Mater. Trans. A, 40(2009), No. 12, p. 2798. doi: 10.1007/s11661-009-0005-0
      [38]
      D.H. Liu, D.J. Wu, G. Ma, et al., Effect of post-deposition heat treatment on laser-TIG hybrid additive manufactured Al–Cu alloy, Virtual Phys. Prototyp., 15(2020), p. 445. doi: 10.1080/17452759.2020.1818021
      [39]
      J. Lan, X.J. Shen, J. Liu, and L. Hua, Strengthening mechanisms of 2A14 aluminum alloy with cold deformation prior to artificial aging, Mater. Sci. Eng. A, 745(2019), p. 517. doi: 10.1016/j.msea.2018.12.051
      [40]
      S. Spriano, R. Doglione, and M. Baricco, Texture, hardening and mechanical anisotropy in A.A. 8090-T851 plate, Mater. Sci. Eng. A, 257(1998), No. 1, p. 134. doi: 10.1016/S0921-5093(98)00831-4
      [41]
      M.J. Starink, P. Wang, I. Sinclair, and P.J. Gregson, Microstrucure and strengthening of Al–Li–Cu–Mg alloys and MMCs: II. Modelling of yield strength, Acta Mater., 47(1999), No. 14, p. 3855. doi: 10.1016/S1359-6454(99)00228-1
      [42]
      B.X. Xie, L. Huang, Z.Y. Wang, X.X. Li, and J.J. Li, Microstructural evolution and mechanical properties of 2219 aluminum alloy from different aging treatments to subsequent electromagnetic forming, Mater. Charact., 181(2021), art. No. 111470. doi: 10.1016/j.matchar.2021.111470
      [43]
      K.K. Ma, H.M. Wen, T. Hu, et al., Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy, Acta Mater., 62(2014), p. 141. doi: 10.1016/j.actamat.2013.09.042
      [44]
      H.M. Wen, T.D. Topping, D. Isheim, D.N. Seidman, and E.J. Lavernia, Strengthening mechanisms in a high-strength bulk nanostructured Cu–Zn–Al alloy processed via cryomilling and spark plasma sintering, Acta Mater., 61(2013), No. 8, p. 2769. doi: 10.1016/j.actamat.2012.09.036
      [45]
      Z.Y. Ma, L.H. Zhan, C.H. Liu, et al., Stress-level-dependency and bimodal precipitation behaviors during creep ageing of Al–Cu alloy: Experiments and modeling, Int. J. Plast., 110(2018), p. 183. doi: 10.1016/j.ijplas.2018.07.001
      [46]
      Z.J. Shen, Q.Q. Ding, C.H. Liu, et al., Atomic-scale mechanism of the θ'' → θ' phase transformation in Al–Cu alloys, J. Mater. Sci. Technol., 33(2017), No. 10, p. 1159.
      [47]
      J.S. Yang, C.H. Liu, P.P. Ma, L.H. Chen, L.H. Zhan, and N. Yan, Superposed hardening from precipitates and dislocations enhances strength-ductility balance in Al–Cu alloy, Int. J. Plast., 158(2022), art. No. 103413. doi: 10.1016/j.ijplas.2022.103413
      [48]
      Z.Q. Li, W.R. Ren, H.W. Chen, and J.F. Nie, θ''' precipitate phase, GP zone clusters and their origin in Al–Cu alloys, J. Alloys Compd., 930(2023), art. No. 167396. doi: 10.1016/j.jallcom.2022.167396
      [49]
      Y. Chen, A.Q. Wang, J.P. Xie, and Y.C. Guo, Deformation mechanisms in Al/Al2Cu/Cu multilayer under compressive loading, J. Alloys Compd., 885(2021), art. No. 160921. doi: 10.1016/j.jallcom.2021.160921
      [50]
      H. Liu, I. Papadimitriou, F.X. Lin, and J. LLorca, Precipitation during high temperature aging of Al–Cu alloys: A multiscale analysis based on first principles calculations, Acta Mater., 167(2019), p. 121. doi: 10.1016/j.actamat.2019.01.024
      [51]
      H. Miyoshi, H. Kimizuka, A. Ishii, and S. Ogata, Competing nucleation of single- and double-layer Guinier-Preston zones in Al–Cu alloys, Sci. Rep., 11(2021), No. 1, art. No. 4503. doi: 10.1038/s41598-021-83920-8
      [52]
      D. Sadeghi-Nezhad, S.H.M. Anijdan, H. Lee, et al., The effect of cold rolling, double aging and overaging processes on the tensile property and precipitation of AA2024 alloy, J. Mater. Res. Technol., 9(2020), No. 6, p. 15475. doi: 10.1016/j.jmrt.2020.11.005
      [53]
      S. Fu, H.Q. Liu, N. Qi, et al., On the electrostatic potential assisted nucleation and growth of precipitates in Al–Cu alloy, Scripta Mater., 150(2018), p. 13. doi: 10.1016/j.scriptamat.2018.02.017
      [54]
      A. Somoza, M.P. Petkov, K.G. Lynn, and A. Dupasquier, Stability of vacancies during solute clustering in Al–Cu-based alloys, Phys. Rev. B, 65(2002), No. 9, art. No. 094107. doi: 10.1103/PhysRevB.65.094107
      [55]
      M. Murayama and K. Hono, Pre-precipitate clusters and precipitation processes in Al–Mg–Si alloys, Acta Mater., 47(1999), No. 5, p. 1537. doi: 10.1016/S1359-6454(99)00033-6
      [56]
      R.K.W. Marceau, G. Sha, R. Ferragut, A. Dupasquier, and S.P. Ringer, Solute clustering in Al–Cu–Mg alloys during the early stages of elevated temperature ageing, Acta Mater., 58(2010), No. 15, p. 4923. doi: 10.1016/j.actamat.2010.05.020
      [57]
      H. Miyoshi, H. Kimizuka, A. Ishii, and S. Ogata, Temperature-dependent nucleation kinetics of Guinier-Preston zones in Al–Cu alloys: An atomistic kinetic Monte Carlo and classical nucleation theory approach, Acta Mater., 179(2019), p. 262. doi: 10.1016/j.actamat.2019.08.032

    Catalog


    • /

      返回文章
      返回