Cite this article as: |
Hongxia Li, Wenjun Xu, Yufei Zhang, Shenglan Yang, Lijun Zhang, Bin Liu, Qun Luo, and Qian Li, Prediction of the thermal conductivity of Mg–Al–La alloys by CALPHAD method, Int. J. Miner. Metall. Mater., 31(2024), No. 1, pp. 129-137. https://doi.org/10.1007/s12613-023-2759-6 |
罗群 E-mail: qunluo@shu.edu.cn
李谦 E-mail: cquliqian@cqu.edu.cn
[1] |
B. Liu, J. Yang, X.Y. Zhang, Q. Yang, J.S. Zhang, and X.Q. Li, Development and application of magnesium alloy parts for automotive OEMs: A review, J. Magnes. Alloys, 11(2023), No. 1, p. 15. doi: 10.1016/j.jma.2022.12.015
|
[2] |
J.F. Song, J. She, D.L. Chen, and F.S. Pan, Latest research advances on magnesium and magnesium alloys worldwide, J. Magnes. Alloys, 8(2020), No. 1, p. 1. doi: 10.1016/j.jma.2020.02.003
|
[3] |
P.P. Wang, H.T. Jiang, Y.J. Wang, et al., Role of trace additions of Ca and Sn in improving the corrosion resistance of Mg–3Al–1Zn alloy, Int. J. Miner. Metall. Mater., 29(2022), No. 8, p. 1559. doi: 10.1007/s12613-021-2268-4
|
[4] |
K. Yang, H.C. Pan, S. Du, et al., Low-cost and high-strength Mg–Al–Ca–Zn–Mn wrought alloy with balanced ductility, Int. J. Miner. Metall. Mater., 29(2022), No. 7, p. 1396. doi: 10.1007/s12613-021-2395-y
|
[5] |
S.B. Li, X.Y. Yang, J.T. Hou, and W.B. Du, A review on thermal conductivity of magnesium and its alloys, J. Magnes. Alloys, 8(2020), No. 1, p. 78. doi: 10.1016/j.jma.2019.08.002
|
[6] |
Q. Luo, Y.L. Guo, B. Liu, et al., Thermodynamics and kinetics of phase transformation in rare earth–magnesium alloys: A critical review, J. Mater. Sci. Technol., 44(2020), p. 171. doi: 10.1016/j.jmst.2020.01.022
|
[7] |
H.B. Liao, L.L. Mo, X. Zhou, Z.Z. Yuan, and J. Du, Revealing the nucleation event of Mg–Al alloy induced by Fe impurity, Int. J. Miner. Metall. Mater., 29(2022), No. 7, p. 1317. doi: 10.1007/s12613-021-2406-z
|
[8] |
J. Rong, W.L. Xiao, X.Q. Zhao, et al., High thermal conductivity and high strength magnesium alloy for high pressure die casting ultrathin-walled components, Int. J. Miner. Metall. Mater., 29(2022), No. 1, p. 88. doi: 10.1007/s12613-021-2318-y
|
[9] |
H.C. Chen, T.C. Xie, Q. Liu, et al., Mechanism and prediction of aging time related thermal conductivity evolution of Mg–Zn alloys, J. Alloys Compd., 930(2023), art. No. 167392. doi: 10.1016/j.jallcom.2022.167392
|
[10] |
V.E. Bazhenov, A.V. Koltygin, M.C. Sung, et al., Development of Mg–Zn–Y–Zr casting magnesium alloy with high thermal conductivity, J. Magnes. Alloys, 9(2021), No. 5, p. 1567. doi: 10.1016/j.jma.2020.11.020
|
[11] |
H.G. Zhong, Z.H. Lin, Q.Y. Han, et al., Hot tearing behavior of AZ91D magnesium alloy, J. Magnes. Alloys, (2023) DOI: 10.1016/j.jma. 2023.02.010
|
[12] |
G.Y. Yuan, G.Q. You, S.L. Bai, and W. Guo, Effects of heat treatment on the thermal properties of AZ91D magnesium alloys in different casting processes, J. Alloys Compd., 766(2018), p. 410. doi: 10.1016/j.jallcom.2018.06.370
|
[13] |
Y.X. Zhang, H.H. Kang, H. Nagaumi, and X.Y. Yang, Tracing the microstructures, mechanical properties and thermal conductivity of low-temperature extruded MgMn alloys with various cerium additions, Mater. Charact., 196(2023), art. No. 112658. doi: 10.1016/j.matchar.2023.112658
|
[14] |
H.B. Ma, J.H. Wang, H.Y. Wang, et al., Influence of nano-diamond content on the microstructure, mechanical and thermal properties of the ZK60 composites, J. Magnes. Alloys, 10(2022), No. 2, p. 440. doi: 10.1016/j.jma.2021.03.034
|
[15] |
L.P. Zhong, J. Peng, S. Sun, Y.J. Wang, Y. Lu, and F.S. Pan, Microstructure and thermal conductivity of As-cast and As-solutionized Mg–rare earth binary alloys, J. Mater. Sci. Technol., 33(2017), No. 11, p. 1240. doi: 10.1016/j.jmst.2016.08.026
|
[16] |
F.J. Yao, G.Q. You, S. Zeng, D.S. Lu, and Y. Ming, Reaction-tunable diffusion bonding to multilayered Cu mesh/ZK61 Mg foil composites with thermal conductivity and lightweight synergy, J. Mater. Sci. Technol., 139(2023), p. 10. doi: 10.1016/j.jmst.2022.07.060
|
[17] |
T.C. Xie, H. Shi, H.B. Wang, Q. Luo, Q. Li, and K.C. Chou, Thermodynamic prediction of thermal diffusivity and thermal conductivity in Mg–Zn–La/Ce system, J. Mater. Sci. Technol., 97(2022), p. 147. doi: 10.1016/j.jmst.2021.04.044
|
[18] |
F.J. Yao, D.J. Li, Z.X. Li, B. Hu, Y. Huang, and X.Q. Zeng, Ultra-high thermal conductivity of Mg–4Sm–2Al alloy by MWCNTs addition, Mater. Lett., 341(2023), art. No. 134224. doi: 10.1016/j.matlet.2023.134224
|
[19] |
C.Y. Su, D.J. Li, A.A. Luo, T. Ying, and X.Q. Zeng, Effect of solute atoms and second phases on the thermal conductivity of Mg–RE alloys: A quantitative study, J. Alloys Compd., 747(2018), p. 431. doi: 10.1016/j.jallcom.2018.03.070
|
[20] |
X.X. Dong, L.Y. Feng, S.H. Wang, et al., A quantitative strategy for achieving the high thermal conductivity of die-cast Mg–Al-based alloys, Materialia, 22(2022), art. No. 101426. doi: 10.1016/j.mtla.2022.101426
|
[21] |
Y.F. Liu, X.J. Jia, X.G. Qiao, S.W. Xu, and M.Y. Zheng, Effect of La content on microstructure, thermal conductivity and mechanical properties of Mg–4Al magnesium alloys, J. Alloys Compd., 806(2019), p. 71. doi: 10.1016/j.jallcom.2019.07.267
|
[22] |
M.F. Qi, L.Y. Wei, Y.Z. Xu, et al., Effect of trace yttrium on the microstructure, mechanical property and corrosion behavior of homogenized Mg–2Zn–0.1Mn–0.3Ca–xY biological magnesium alloy, Int. J. Miner. Metall. Mater., 29(2022), No. 9, p. 1746. doi: 10.1007/s12613-021-2327-x
|
[23] |
M. Rodchom, P. Wimuktiwan, K. Soongprasit, D. Atong, and S. Vichaphund, Preparation and characterization of ceramic materials with low thermal conductivity and high strength using high-calcium fly ash, Int. J. Miner. Metall. Mater., 29(2022), No. 8, p. 1635. doi: 10.1007/s12613-021-2367-2
|
[24] |
G.H. Wu, C.L. Wang, M. Sun, and W.J. Ding, Recent developments and applications on high-performance cast magnesium rare-earth alloys, J. Magnes. Alloys, 9(2020), No. 1, p. 1.
|
[25] |
X.Q. Zeng, J. Wang, T. Ying, W.J. Ding, Recent progress on thermal conductivity of magnesium and its alloys, Acta Metall. Sin., 58(2022), No. 4, p. 400.
|
[26] |
X.F. Zhao, Z.X. Li, W.K. Zhou, D.J. Li, M. Qin, and X.Q. Zeng, Effect of Al content on microstructure, thermal conductivity, and mechanical properties of Mg–La–Al–Mn alloys, J. Mater. Res., 36(2021), No. 15, p. 3145. doi: 10.1557/s43578-021-00319-x
|
[27] |
S.M. Zhu, M.A. Gibson, J.F. Nie, M.A. Easton, and T.B. Abbott, Microstructural analysis of the creep resistance of die-cast Mg–4Al–2RE alloy, Scripta Mater., 58(2008), No. 6, p. 477. doi: 10.1016/j.scriptamat.2007.10.041
|
[28] |
J.M. Kim, S.J. Lee, Microstructure and Castability of Mg–Al–La alloys for high conductivity applications, Int. J. Metalcast., 9(2015), No. 3, p. 15. doi: 10.1007/BF03355619
|
[29] |
C. Wong, K. Nogita, M.J. Styles, et al., Solidification path and microstructure evolution of Mg–3Al–14La alloy: Implications for the Mg-rich corner of the Mg–Al–La phase diagram, J. Alloys Compd., 784(2019), No. 5, p. 527.
|
[30] |
W.K. Zhou, Z.X. Li, D.J. Li, et al., Comparative study of corrosion behaviors of die cast LA42 and AZ91 alloys, J. Magnes. Alloys, (2022). DOI: 10.1016/j.jma.2022.10.022
|
[31] |
E.Y. Guo, S.S. Shuai, D. Kazantsev, et al., The influence of nanoparticles on dendritic grain growth in Mg alloys, Acta Mater., 152(2018), p. 127. doi: 10.1016/j.actamat.2018.04.023
|
[32] |
C. Wong, M.J. Styles, S.M. Zhu, et al., (Al,Mg)3La: A new phase in the Mg–Al–La system, Acta Cryst., 74(2018), p. 370.
|
[33] |
J.H. Zhang, D.P. Zhang, Z. Tian, et al., Microstructures, tensile properties and corrosion behavior of die-cast Mg–4Al-based alloys containing La and/or Ce, Mater. Sci. Eng. A, 489(2008), No. 1-2, p. 113. doi: 10.1016/j.msea.2007.12.024
|
[34] |
L.Y. Feng, X.X. Dong, M.X. Xia, et al., Development of high thermal conductivity, enhanced strength and cost-effective die-cast Mg alloy compared with AE44 alloy, J. Mater. Res. Technol., 22(2023), p. 2955. doi: 10.1016/j.jmrt.2022.12.125
|
[35] |
S.M. Zhu, C. Wong, M.J. Styles, T.B. Abbott, J.F. Nie, and M.A. Easton, Revisiting the intermetallic phases in high-pressure die-cast Mg–4Al–4Ce and Mg–4Al–4La alloys, Mater. Charact., 156(2019), art. No. 109839. doi: 10.1016/j.matchar.2019.109839
|
[36] |
X. Zhang, L. Li, Z. Wang, et al., Ultrafine-grained Al–La–Mg–Mn alloy with superior thermal stability and strength-ductility synergy, Mater. Sci. Eng. A, 873(2023), art. No. 145035. doi: 10.1016/j.msea.2023.145035
|
[37] |
X.K. Zhang, L.J. Li, Z. Wang, H.L. Peng, J.X. Gao and Z.W. Peng, A novel high-strength Al–La–Mg–Mn alloy for selective laser melting, J. Mater. Sci. Technol., 137(2023), No. 20, p. 205.
|
[38] |
C. Liu, Q. Luo, Q.F. Gu, Q. Li, and K.C. Chou, Thermodynamic assessment of Mg−Ni−Y system focusing on long-period stacking ordered phases in the Mg-rich corner, J. Magnes. Alloys, 10(2022), No. 11, p. 3250. doi: 10.1016/j.jma.2021.03.011
|
[39] |
H.C. Chen, W. Xu, Q. Luo, et al., Thermodynamic prediction of martensitic transformation temperature in Fe–C–X (X = Ni, Mn, Si, Cr) systems with dilatational coefficient model, J. Mater. Sci. Technol., 112(2022), p. 291. doi: 10.1016/j.jmst.2021.09.060
|
[40] |
Q. Zhang, H.C. Chen, Q. Luo, Y. Yuan, H.Q. Liu, and Q. Li, The design of Ti–Cu–Ni–Zr titanium alloy solder: Thermodynamic calculation and experimental validation, J. Mater. Sci., 57(2022), No. 12, p. 6819. doi: 10.1007/s10853-022-07063-5
|
[41] |
S. Zhang, Q.Q. Li, H.C. Chen, Q. Luo, and Q. Li, Icosahedral quasicrystal structure of the Mg40Zn55Nd5 phase and its thermodynamic stability, Int. J. Miner. Metall. Mater., 29(2022), No. 8, p. 1543. doi: 10.1007/s12613-021-2391-2
|
[42] |
Q. Luo, C. Zhai, Q.F. Gu, W.F. Zhu, and Q. Li, Experimental study and thermodynamic evaluation of Mg–La–Zn system, J. Alloys Compd., 814(2020), art. No. 152297. doi: 10.1016/j.jallcom.2019.152297
|
[43] |
Q. Luo, C. Zhai, D.K. Sun, W. Chen, and Q. Li, Interpolation and extrapolation with the CALPHAD method, J. Mater. Sci. Technol., 35(2019), No. 9, p. 2115. doi: 10.1016/j.jmst.2019.05.016
|
[44] |
L. Huang, S.H. Liu, Y. Du, and C. Zhang, Thermal conductivity of the Mg–Al–Zn alloys: Experimental measurement and CALPHAD modeling, Calphad, 62(2018), p. 99. doi: 10.1016/j.calphad.2018.05.011
|
[45] |
C. Zhai, Q. Luo, Q. Cai, R.G. Guan, and Q. Li, Thermodynamically analyzing the formation of Mg12Nd and Mg41Nd5 in Mg–Nd system under a static magnetic field, J. Alloys Compd., 773(2019), p. 202. doi: 10.1016/j.jallcom.2018.09.203
|
[46] |
Y. Wang, H.J. Kang, Y. Guo, H.T. Chen, M.L. Hu, and Z.S. Ji, Design and preparation of aluminum alloy with high thermal conductivity based on CALPHAD and first-principles calculation, China Foundry, 19(2022), No. 3, p. 225. doi: 10.1007/s41230-022-1122-2
|
[47] |
C. Zhang, Y. Du, S.H. Liu, Y.L. Liu, and B. Sundman, Thermal conductivity of Al–Cu–Mg–Si alloys: Experimental measurement and CALPHAD modeling, Thermochim. Acta, 635(2016), p. 8. doi: 10.1016/j.tca.2016.04.019
|
[48] |
M. Hosseinifar and D.V. Malakhov, On the fabricability of a composite material containing the FCC matrix with embedded ductile B2 intermetallics, J. Alloys Compd., 505(2010), No. 2, p. 459. doi: 10.1016/j.jallcom.2010.04.254
|
[49] |
J.M. Joubert, B. Kaplan, and M. Selleby, The specific heat of Al-based compounds, evaluation of the Neumann–Kopp rule and proposal for a modified Neumann-Kopp rule, Calphad, 81(2023), art. No. 102562. doi: 10.1016/j.calphad.2023.102562
|
[50] |
D.K. Lee, J. In, and S. Lee, Standard deviation and standard error of the mean, Korean J. Anesthesiol., 68(2015), No. 3, p. 220. doi: 10.4097/kjae.2015.68.3.220
|
[51] |
C.Y. Su, D.J. Li, A.A. Luo, R.H. Shi, and X.Q. Zeng, Quantitative study of microstructure-dependent thermal conductivity in Mg–4Ce–xAl–0.5Mn alloys, Metall. Mater. Trans. A, 50(2019), No. 4, p. 1970. doi: 10.1007/s11661-019-05136-w
|
[52] |
C.Y. Ho, M.W. Ackerman, K.Y. Wu, et al., Electrical resistivity of ten selected binary alloy systems, J. Phys. Chem. Ref. Data, 12(1983), No. 2, p. 183. doi: 10.1063/1.555684
|
[53] |
H. Shi, Q. Li, J.Y. Zhang, Q. Luo, and K.C. Chou, Re-assessment of the Mg–Zn–Ce system focusing on the phase equilibria in Mg-rich corner, Calphad, 68(2020), art. No. 101742. doi: 10.1016/j.calphad.2020.101742
|