留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 1
Jan.  2024

图(5)  / 表(4)

数据统计

分享

计量
  • 文章访问数:  2494
  • HTML全文浏览量:  363
  • PDF下载量:  111
  • 被引次数: 0
Hongxia Li, Wenjun Xu, Yufei Zhang, Shenglan Yang, Lijun Zhang, Bin Liu, Qun Luo, and Qian Li, Prediction of the thermal conductivity of Mg–Al–La alloys by CALPHAD method, Int. J. Miner. Metall. Mater., 31(2024), No. 1, pp. 129-137. https://doi.org/10.1007/s12613-023-2759-6
Cite this article as:
Hongxia Li, Wenjun Xu, Yufei Zhang, Shenglan Yang, Lijun Zhang, Bin Liu, Qun Luo, and Qian Li, Prediction of the thermal conductivity of Mg–Al–La alloys by CALPHAD method, Int. J. Miner. Metall. Mater., 31(2024), No. 1, pp. 129-137. https://doi.org/10.1007/s12613-023-2759-6
引用本文 PDF XML SpringerLink
研究论文

运用CALPHAD 方法预测Mg–Al–La 合金的热导率


  • 通讯作者:

    罗群    E-mail: qunluo@shu.edu.cn

    李谦    E-mail: cquliqian@cqu.edu.cn

文章亮点

  • (1)通过构建热扩散热阻与温度之间的关系,建立了Mg–Al–La合金体系的热导率数据库
  • (2)采用建立的热导率数据库,成功预测了富镁角Mg–Al–La合金的热导率分布
  • (3)总结并提出了,与第二相相比,α-Mg相中Al的固溶度对导热系数影响更为显着
  • Mg–Al合金作为最常用的铸造镁合金,以其卓越的强度和延展性而得到广泛应用,然而由于Al元素的添加导致热导率显著降低。准确预测导热系数是设计高导热镁铝合金的关键先决条件。因此,须建立用于预测与温度和成分相关的热导率的数据库。本研究通过热力学计算设计了六种含有不同Al2La、Al3La、Al11La3相含量以及Al在α-Mg相中固溶度不同的Mg–Al–La合金。实验结果表明,在La量保持恒定的情况下,随着Al含量的增加,合金中的第二相由Al2La相向Al3La相转变,并进一步向Al11La3相转变。其中第二相对Mg–Al–La合金热扩散率的负面影响为:Al2La相 > Al3La相 > Al11La3相。然而,在第二相含量相同但种类不同的三元合金中发现位于α-Mg + Al11La3两相区内且Al在基体α-Mg中固溶度最大的三元合金对应的热导率最小。这表明,与第二相相比,Al在基体α-Mg 中固溶度的增加显着降低了合金的热导率。基于实验数据,采用相图计算(CALPHAD)方法构建了Mg–Al–La体系的热扩散热阻数据库,得到的计算结果与实验结果吻合较好,标准误差为±1.2 W/(m·K)。Mg–Al系合金热导率数据库的建立可以为高导热镁铝合金的设计提供理论指导并拓展其应用前景。
  • Research Article

    Prediction of the thermal conductivity of Mg–Al–La alloys by CALPHAD method

    + Author Affiliations
    • Mg−Al alloys have excellent strength and ductility but relatively low thermal conductivity due to Al addition. The accurate prediction of thermal conductivity is a prerequisite for designing Mg−Al alloys with high thermal conductivity. Thus, databases for predicting temperature- and composition-dependent thermal conductivities must be established. In this study, Mg−Al−La alloys with different contents of Al2La, Al3La, and Al11La3 phases and solid solubility of Al in the α-Mg phase were designed. The influence of the second phase(s) and Al solid solubility on thermal conductivity was investigated. Experimental results revealed a second phase transformation from Al2La to Al3La and further to Al11La3 with the increasing Al content at a constant La amount. The degree of the negative effect of the second phase(s) on thermal diffusivity followed the sequence of Al2La > Al3La > Al11La3. Compared with the second phase, an increase in the solid solubility of Al in α-Mg remarkably reduced the thermal conductivity. On the basis of the experimental data, a database of the reciprocal thermal diffusivity of the Mg−Al−La system was established by calculation of the phase diagram (CALPHAD) method. With a standard error of ±1.2 W/(m·K), the predicted results were in good agreement with the experimental data. The established database can be used to design Mg−Al alloys with high thermal conductivity and provide valuable guidance for expanding their application prospects.
    • loading
    • [1]
      B. Liu, J. Yang, X.Y. Zhang, Q. Yang, J.S. Zhang, and X.Q. Li, Development and application of magnesium alloy parts for automotive OEMs: A review, J. Magnes. Alloys, 11(2023), No. 1, p. 15. doi: 10.1016/j.jma.2022.12.015
      [2]
      J.F. Song, J. She, D.L. Chen, and F.S. Pan, Latest research advances on magnesium and magnesium alloys worldwide, J. Magnes. Alloys, 8(2020), No. 1, p. 1. doi: 10.1016/j.jma.2020.02.003
      [3]
      P.P. Wang, H.T. Jiang, Y.J. Wang, et al., Role of trace additions of Ca and Sn in improving the corrosion resistance of Mg–3Al–1Zn alloy, Int. J. Miner. Metall. Mater., 29(2022), No. 8, p. 1559. doi: 10.1007/s12613-021-2268-4
      [4]
      K. Yang, H.C. Pan, S. Du, et al., Low-cost and high-strength Mg–Al–Ca–Zn–Mn wrought alloy with balanced ductility, Int. J. Miner. Metall. Mater., 29(2022), No. 7, p. 1396. doi: 10.1007/s12613-021-2395-y
      [5]
      S.B. Li, X.Y. Yang, J.T. Hou, and W.B. Du, A review on thermal conductivity of magnesium and its alloys, J. Magnes. Alloys, 8(2020), No. 1, p. 78. doi: 10.1016/j.jma.2019.08.002
      [6]
      Q. Luo, Y.L. Guo, B. Liu, et al., Thermodynamics and kinetics of phase transformation in rare earth–magnesium alloys: A critical review, J. Mater. Sci. Technol., 44(2020), p. 171. doi: 10.1016/j.jmst.2020.01.022
      [7]
      H.B. Liao, L.L. Mo, X. Zhou, Z.Z. Yuan, and J. Du, Revealing the nucleation event of Mg–Al alloy induced by Fe impurity, Int. J. Miner. Metall. Mater., 29(2022), No. 7, p. 1317. doi: 10.1007/s12613-021-2406-z
      [8]
      J. Rong, W.L. Xiao, X.Q. Zhao, et al., High thermal conductivity and high strength magnesium alloy for high pressure die casting ultrathin-walled components, Int. J. Miner. Metall. Mater., 29(2022), No. 1, p. 88. doi: 10.1007/s12613-021-2318-y
      [9]
      H.C. Chen, T.C. Xie, Q. Liu, et al., Mechanism and prediction of aging time related thermal conductivity evolution of Mg–Zn alloys, J. Alloys Compd., 930(2023), art. No. 167392. doi: 10.1016/j.jallcom.2022.167392
      [10]
      V.E. Bazhenov, A.V. Koltygin, M.C. Sung, et al., Development of Mg–Zn–Y–Zr casting magnesium alloy with high thermal conductivity, J. Magnes. Alloys, 9(2021), No. 5, p. 1567. doi: 10.1016/j.jma.2020.11.020
      [11]
      H.G. Zhong, Z.H. Lin, Q.Y. Han, et al., Hot tearing behavior of AZ91D magnesium alloy, J. Magnes. Alloys, (2023) DOI: 10.1016/j.jma. 2023.02.010
      [12]
      G.Y. Yuan, G.Q. You, S.L. Bai, and W. Guo, Effects of heat treatment on the thermal properties of AZ91D magnesium alloys in different casting processes, J. Alloys Compd., 766(2018), p. 410. doi: 10.1016/j.jallcom.2018.06.370
      [13]
      Y.X. Zhang, H.H. Kang, H. Nagaumi, and X.Y. Yang, Tracing the microstructures, mechanical properties and thermal conductivity of low-temperature extruded MgMn alloys with various cerium additions, Mater. Charact., 196(2023), art. No. 112658. doi: 10.1016/j.matchar.2023.112658
      [14]
      H.B. Ma, J.H. Wang, H.Y. Wang, et al., Influence of nano-diamond content on the microstructure, mechanical and thermal properties of the ZK60 composites, J. Magnes. Alloys, 10(2022), No. 2, p. 440. doi: 10.1016/j.jma.2021.03.034
      [15]
      L.P. Zhong, J. Peng, S. Sun, Y.J. Wang, Y. Lu, and F.S. Pan, Microstructure and thermal conductivity of As-cast and As-solutionized Mg–rare earth binary alloys, J. Mater. Sci. Technol., 33(2017), No. 11, p. 1240. doi: 10.1016/j.jmst.2016.08.026
      [16]
      F.J. Yao, G.Q. You, S. Zeng, D.S. Lu, and Y. Ming, Reaction-tunable diffusion bonding to multilayered Cu mesh/ZK61 Mg foil composites with thermal conductivity and lightweight synergy, J. Mater. Sci. Technol., 139(2023), p. 10. doi: 10.1016/j.jmst.2022.07.060
      [17]
      T.C. Xie, H. Shi, H.B. Wang, Q. Luo, Q. Li, and K.C. Chou, Thermodynamic prediction of thermal diffusivity and thermal conductivity in Mg–Zn–La/Ce system, J. Mater. Sci. Technol., 97(2022), p. 147. doi: 10.1016/j.jmst.2021.04.044
      [18]
      F.J. Yao, D.J. Li, Z.X. Li, B. Hu, Y. Huang, and X.Q. Zeng, Ultra-high thermal conductivity of Mg–4Sm–2Al alloy by MWCNTs addition, Mater. Lett., 341(2023), art. No. 134224. doi: 10.1016/j.matlet.2023.134224
      [19]
      C.Y. Su, D.J. Li, A.A. Luo, T. Ying, and X.Q. Zeng, Effect of solute atoms and second phases on the thermal conductivity of Mg–RE alloys: A quantitative study, J. Alloys Compd., 747(2018), p. 431. doi: 10.1016/j.jallcom.2018.03.070
      [20]
      X.X. Dong, L.Y. Feng, S.H. Wang, et al., A quantitative strategy for achieving the high thermal conductivity of die-cast Mg–Al-based alloys, Materialia, 22(2022), art. No. 101426. doi: 10.1016/j.mtla.2022.101426
      [21]
      Y.F. Liu, X.J. Jia, X.G. Qiao, S.W. Xu, and M.Y. Zheng, Effect of La content on microstructure, thermal conductivity and mechanical properties of Mg–4Al magnesium alloys, J. Alloys Compd., 806(2019), p. 71. doi: 10.1016/j.jallcom.2019.07.267
      [22]
      M.F. Qi, L.Y. Wei, Y.Z. Xu, et al., Effect of trace yttrium on the microstructure, mechanical property and corrosion behavior of homogenized Mg–2Zn–0.1Mn–0.3Ca–xY biological magnesium alloy, Int. J. Miner. Metall. Mater., 29(2022), No. 9, p. 1746. doi: 10.1007/s12613-021-2327-x
      [23]
      M. Rodchom, P. Wimuktiwan, K. Soongprasit, D. Atong, and S. Vichaphund, Preparation and characterization of ceramic materials with low thermal conductivity and high strength using high-calcium fly ash, Int. J. Miner. Metall. Mater., 29(2022), No. 8, p. 1635. doi: 10.1007/s12613-021-2367-2
      [24]
      G.H. Wu, C.L. Wang, M. Sun, and W.J. Ding, Recent developments and applications on high-performance cast magnesium rare-earth alloys, J. Magnes. Alloys, 9(2020), No. 1, p. 1.
      [25]
      X.Q. Zeng, J. Wang, T. Ying, W.J. Ding, Recent progress on thermal conductivity of magnesium and its alloys, Acta Metall. Sin., 58(2022), No. 4, p. 400.
      [26]
      X.F. Zhao, Z.X. Li, W.K. Zhou, D.J. Li, M. Qin, and X.Q. Zeng, Effect of Al content on microstructure, thermal conductivity, and mechanical properties of Mg–La–Al–Mn alloys, J. Mater. Res., 36(2021), No. 15, p. 3145. doi: 10.1557/s43578-021-00319-x
      [27]
      S.M. Zhu, M.A. Gibson, J.F. Nie, M.A. Easton, and T.B. Abbott, Microstructural analysis of the creep resistance of die-cast Mg–4Al–2RE alloy, Scripta Mater., 58(2008), No. 6, p. 477. doi: 10.1016/j.scriptamat.2007.10.041
      [28]
      J.M. Kim, S.J. Lee, Microstructure and Castability of Mg–Al–La alloys for high conductivity applications, Int. J. Metalcast., 9(2015), No. 3, p. 15. doi: 10.1007/BF03355619
      [29]
      C. Wong, K. Nogita, M.J. Styles, et al., Solidification path and microstructure evolution of Mg–3Al–14La alloy: Implications for the Mg-rich corner of the Mg–Al–La phase diagram, J. Alloys Compd., 784(2019), No. 5, p. 527.
      [30]
      W.K. Zhou, Z.X. Li, D.J. Li, et al., Comparative study of corrosion behaviors of die cast LA42 and AZ91 alloys, J. Magnes. Alloys, (2022). DOI: 10.1016/j.jma.2022.10.022
      [31]
      E.Y. Guo, S.S. Shuai, D. Kazantsev, et al., The influence of nanoparticles on dendritic grain growth in Mg alloys, Acta Mater., 152(2018), p. 127. doi: 10.1016/j.actamat.2018.04.023
      [32]
      C. Wong, M.J. Styles, S.M. Zhu, et al., (Al,Mg)3La: A new phase in the Mg–Al–La system, Acta Cryst., 74(2018), p. 370.
      [33]
      J.H. Zhang, D.P. Zhang, Z. Tian, et al., Microstructures, tensile properties and corrosion behavior of die-cast Mg–4Al-based alloys containing La and/or Ce, Mater. Sci. Eng. A, 489(2008), No. 1-2, p. 113. doi: 10.1016/j.msea.2007.12.024
      [34]
      L.Y. Feng, X.X. Dong, M.X. Xia, et al., Development of high thermal conductivity, enhanced strength and cost-effective die-cast Mg alloy compared with AE44 alloy, J. Mater. Res. Technol., 22(2023), p. 2955. doi: 10.1016/j.jmrt.2022.12.125
      [35]
      S.M. Zhu, C. Wong, M.J. Styles, T.B. Abbott, J.F. Nie, and M.A. Easton, Revisiting the intermetallic phases in high-pressure die-cast Mg–4Al–4Ce and Mg–4Al–4La alloys, Mater. Charact., 156(2019), art. No. 109839. doi: 10.1016/j.matchar.2019.109839
      [36]
      X. Zhang, L. Li, Z. Wang, et al., Ultrafine-grained Al–La–Mg–Mn alloy with superior thermal stability and strength-ductility synergy, Mater. Sci. Eng. A, 873(2023), art. No. 145035. doi: 10.1016/j.msea.2023.145035
      [37]
      X.K. Zhang, L.J. Li, Z. Wang, H.L. Peng, J.X. Gao and Z.W. Peng, A novel high-strength Al–La–Mg–Mn alloy for selective laser melting, J. Mater. Sci. Technol., 137(2023), No. 20, p. 205.
      [38]
      C. Liu, Q. Luo, Q.F. Gu, Q. Li, and K.C. Chou, Thermodynamic assessment of Mg−Ni−Y system focusing on long-period stacking ordered phases in the Mg-rich corner, J. Magnes. Alloys, 10(2022), No. 11, p. 3250. doi: 10.1016/j.jma.2021.03.011
      [39]
      H.C. Chen, W. Xu, Q. Luo, et al., Thermodynamic prediction of martensitic transformation temperature in Fe–C–X (X = Ni, Mn, Si, Cr) systems with dilatational coefficient model, J. Mater. Sci. Technol., 112(2022), p. 291. doi: 10.1016/j.jmst.2021.09.060
      [40]
      Q. Zhang, H.C. Chen, Q. Luo, Y. Yuan, H.Q. Liu, and Q. Li, The design of Ti–Cu–Ni–Zr titanium alloy solder: Thermodynamic calculation and experimental validation, J. Mater. Sci., 57(2022), No. 12, p. 6819. doi: 10.1007/s10853-022-07063-5
      [41]
      S. Zhang, Q.Q. Li, H.C. Chen, Q. Luo, and Q. Li, Icosahedral quasicrystal structure of the Mg40Zn55Nd5 phase and its thermodynamic stability, Int. J. Miner. Metall. Mater., 29(2022), No. 8, p. 1543. doi: 10.1007/s12613-021-2391-2
      [42]
      Q. Luo, C. Zhai, Q.F. Gu, W.F. Zhu, and Q. Li, Experimental study and thermodynamic evaluation of Mg–La–Zn system, J. Alloys Compd., 814(2020), art. No. 152297. doi: 10.1016/j.jallcom.2019.152297
      [43]
      Q. Luo, C. Zhai, D.K. Sun, W. Chen, and Q. Li, Interpolation and extrapolation with the CALPHAD method, J. Mater. Sci. Technol., 35(2019), No. 9, p. 2115. doi: 10.1016/j.jmst.2019.05.016
      [44]
      L. Huang, S.H. Liu, Y. Du, and C. Zhang, Thermal conductivity of the Mg–Al–Zn alloys: Experimental measurement and CALPHAD modeling, Calphad, 62(2018), p. 99. doi: 10.1016/j.calphad.2018.05.011
      [45]
      C. Zhai, Q. Luo, Q. Cai, R.G. Guan, and Q. Li, Thermodynamically analyzing the formation of Mg12Nd and Mg41Nd5 in Mg–Nd system under a static magnetic field, J. Alloys Compd., 773(2019), p. 202. doi: 10.1016/j.jallcom.2018.09.203
      [46]
      Y. Wang, H.J. Kang, Y. Guo, H.T. Chen, M.L. Hu, and Z.S. Ji, Design and preparation of aluminum alloy with high thermal conductivity based on CALPHAD and first-principles calculation, China Foundry, 19(2022), No. 3, p. 225. doi: 10.1007/s41230-022-1122-2
      [47]
      C. Zhang, Y. Du, S.H. Liu, Y.L. Liu, and B. Sundman, Thermal conductivity of Al–Cu–Mg–Si alloys: Experimental measurement and CALPHAD modeling, Thermochim. Acta, 635(2016), p. 8. doi: 10.1016/j.tca.2016.04.019
      [48]
      M. Hosseinifar and D.V. Malakhov, On the fabricability of a composite material containing the FCC matrix with embedded ductile B2 intermetallics, J. Alloys Compd., 505(2010), No. 2, p. 459. doi: 10.1016/j.jallcom.2010.04.254
      [49]
      J.M. Joubert, B. Kaplan, and M. Selleby, The specific heat of Al-based compounds, evaluation of the Neumann–Kopp rule and proposal for a modified Neumann-Kopp rule, Calphad, 81(2023), art. No. 102562. doi: 10.1016/j.calphad.2023.102562
      [50]
      D.K. Lee, J. In, and S. Lee, Standard deviation and standard error of the mean, Korean J. Anesthesiol., 68(2015), No. 3, p. 220. doi: 10.4097/kjae.2015.68.3.220
      [51]
      C.Y. Su, D.J. Li, A.A. Luo, R.H. Shi, and X.Q. Zeng, Quantitative study of microstructure-dependent thermal conductivity in Mg–4Ce–xAl–0.5Mn alloys, Metall. Mater. Trans. A, 50(2019), No. 4, p. 1970. doi: 10.1007/s11661-019-05136-w
      [52]
      C.Y. Ho, M.W. Ackerman, K.Y. Wu, et al., Electrical resistivity of ten selected binary alloy systems, J. Phys. Chem. Ref. Data, 12(1983), No. 2, p. 183. doi: 10.1063/1.555684
      [53]
      H. Shi, Q. Li, J.Y. Zhang, Q. Luo, and K.C. Chou, Re-assessment of the Mg–Zn–Ce system focusing on the phase equilibria in Mg-rich corner, Calphad, 68(2020), art. No. 101742. doi: 10.1016/j.calphad.2020.101742

    Catalog


    • /

      返回文章
      返回