留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

图(13)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  214
  • HTML全文浏览量:  72
  • PDF下载量:  11
  • 被引次数: 0
Jingwen Zhang, Liming Yu, Yongchang Liu, Ran Ding, Chenxi Liu, Zongqing Ma, Huijun Li, Qiuzhi Gao, and Hui Wang, Improving creep strength of the fine-grained heat-affected zone of novel 9Cr martensitic heat-resistant steel via modified thermo-mechanical treatment, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-023-2760-0
Cite this article as:
Jingwen Zhang, Liming Yu, Yongchang Liu, Ran Ding, Chenxi Liu, Zongqing Ma, Huijun Li, Qiuzhi Gao, and Hui Wang, Improving creep strength of the fine-grained heat-affected zone of novel 9Cr martensitic heat-resistant steel via modified thermo-mechanical treatment, Int. J. Miner. Metall. Mater.,(2024). https://doi.org/10.1007/s12613-023-2760-0
引用本文 PDF XML SpringerLink
研究论文

基于形变热处理的新一代9Cr马氏体耐热钢焊接热影响区组织演变与高温蠕变性能调控


文章亮点

  • (1)建立了形变热处理对G115钢焊前基体组织的定向调控机制。
  • (2)揭示了形变热处理遗传行为对焊接热影响区组织演变的控制机理。
  • (3)澄清了焊接热影响区协同强化机制,并实现高温蠕变强度的明显提升。
  • 新一代马氏体耐热钢G115被认为是高参数先进火电机组关键高温部件制造成形的主要备选材料。然而,服役过程中焊接接头细晶热影响区极易引发高温蠕变先行失效行为,严重威胁机组的安全运行。在本研究中,设计开发了一种形变热处理工艺(正火+冷变形+回火),通过焊前形变热处理定向调控G115钢基体组织,以控制焊接过程中热影响区的组织演变行为,进一步实现其高温蠕变强度的明显提升。焊前形变热处理可以细化基体组织中M23C6相尺寸,引入高密度形变位错及界面,有效促进了焊接过程中M23C6相的回溶行为,并缓解了C、Cr元素在原始奥氏体晶界处的偏聚。在焊后热处理过程中,M23C6相在新形成奥氏体晶粒边界及内部各类界面处弥散均匀再析出,有效抑制了此类界面迁移回复行为。此外,形变位错可以为沉淀相提供形核位点,明显提高了板条内部MX相和富Cu相的析出数密度。在高温蠕变过程中,沉淀相、位错及界面三者之间的交互作用明显增强,很大程度上延缓了低硬度亚晶晶粒的形成。相比于初始态,形变热处理后,G115钢焊接接头细晶热影响区的高温蠕变断裂时间延长了将近20%。本研究的开展不仅为G115钢焊接接头服役中面临的关键问题提供了创新性解决策略,也进一步推动了其广泛工业应用。
  • Research Article

    Improving creep strength of the fine-grained heat-affected zone of novel 9Cr martensitic heat-resistant steel via modified thermo-mechanical treatment

    + Author Affiliations
    • The infamous type IV failure within the fine-grained heat-affected zone (FGHAZ) in G115 steel weldments seriously threatens the safe operation of ultra-supercritical (USC) power plants. In this work, the traditional thermo-mechanical treatment was modified via the replacement of hot-rolling with cold rolling, i.e., normalizing, cold rolling, and tempering (NCT), which was developed to improve the creep strength of the FGHAZ in G115 steel weldments. The NCT treatment effectively promoted the dissolution of preformed M23C6 particles and relieved the boundary segregation of C and Cr during welding thermal cycling, which accelerated the dispersed reprecipitation of M23C6 particles within the fresh reaustenitized grains during post-weld heat treatment. In addition, the precipitation of Cu-rich phases and MX particles was promoted evidently due to the deformation-induced dislocations. As a result, the interacting actions between precipitates, dislocations, and boundaries during creep were reinforced considerably. Following this strategy, the creep rupture life of the FGHAZ in G115 steel weldments can be prolonged by 18.6%, which can further push the application of G115 steel in USC power plants.
    • loading
    • [1]
      G. Dak and C. Pandey, A critical review on dissimilar welds joint between martensitic and austenitic steel for power plant application, J. Manuf. Process., 58(2020), p. 377. doi: 10.1016/j.jmapro.2020.08.019
      [2]
      J.W. Zhang, L.M. Yu, Q.Z. Gao, et al., Creep behavior, microstructure evolution and fracture mechanism of a novel martensite heat resistance steel G115 affected by prior cold deformation, Mater. Sci. Eng. A, 850(2022), art. No. 143564. doi: 10.1016/j.msea.2022.143564
      [3]
      H.S. He, L.M. Yu, C.X. Liu, H.J. Li, Q.Z. Gao, and Y.C. Liu, Research progress of a novel martensitic heat-resistant steel G115, Acta Metall. Sin., 58(2022), No. 3, p. 311.
      [4]
      L.Q. Xu, D.T. Zhang, Y.C. Liu, et al., Precipitation behavior and martensite lath coarsening during tempering of T/P92 ferritic heat-resistant steel, Int. J. Miner. Metall. Mater., 21(2014), No. 5, p. 438. doi: 10.1007/s12613-014-0927-4
      [5]
      J.H. Zhou, Y.F. Shen, and N. Jia, Strengthening mechanisms of reduced activation ferritic/martensitic steels: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 335. doi: 10.1007/s12613-020-2121-1
      [6]
      Q.Z. Gao, Z. Yuan, Q.S. Ma, L.M. Yu, and H.J. Li, Strengthening and toughening optimizations of novel G115 martensitic steel: Utilizing secondary normalizing process, Mater. Sci. Eng. A, 852(2022), art. No. 143621. doi: 10.1016/j.msea.2022.143621
      [7]
      H.S. He, J.W. Zhang, L.M. Yu, et al., Effects of Cu-rich phases on microstructure evolution and creep deformation behavior of a novel martensitic heat-resistant steel G115, Mater. Sci. Eng. A, 855(2022), art. No. 143937. doi: 10.1016/j.msea.2022.143937
      [8]
      Z. Liu, Z.D. Liu, X.T. Wang, and Z.Z. Chen, Investigation of the microstructure and strength in G115 steel with the different concentration of tungsten during creep test, Mater. Charact., 149(2019), p. 95. doi: 10.1016/j.matchar.2019.01.015
      [9]
      Z. Liu, X.T. Wang, and C. Dong, Effect of boron on G115 martensitic heat resistant steel during aging at 650°C, Mater. Sci. Eng. A, 787(2020), art. No. 139529. doi: 10.1016/j.msea.2020.139529
      [10]
      B. Xiao, L.Y. Xu, C. Cayron, J. Xue, G. Sha, and R. Logé, Solute-dislocation interactions and creep-enhanced Cu precipitation in a novel ferritic-martensitic steel, Acta Mater., 195(2020), p. 199. doi: 10.1016/j.actamat.2020.05.054
      [11]
      Z. Liu, Z.D. Liu, X.T. Wang, Z.Z. Chen, and L.T. Ma, Evolution of the microstructure in aged G115 steels with the different concentration of tungsten, Mater. Sci. Eng. A, 729(2018), p. 161. doi: 10.1016/j.msea.2018.05.068
      [12]
      Z. Liu, Z.D. Liu, X.T. Wang, C. Dong, Z.Z. Chen, and H.S. Bao, The microstructural evolution and mechanical property in G115 steels during long-term aging at 650°C, Mater. Res. Express, 6(2019), No. 11, art. No. 116527. doi: 10.1088/2053-1591/ab4660
      [13]
      Y.H. Yu, Z.D. Liu, C. Zhang, et al., Correlation of creep fracture lifetime with microstructure evolution and cavity behaviors in G115 martensitic heat-resistant steel, Mater. Sci. Eng. A, 788(2020), art. No. 139468. doi: 10.1016/j.msea.2020.139468
      [14]
      Z.W. Wang, M. Zhang, C. Li, et al., Achieving a high-strength dissimilar joint of T91 heat-resistant steel to 316L stainless steel via friction stir welding, Int. J. Miner. Metall. Mater., 30(2023), No. 1, p. 166. doi: 10.1007/s12613-022-2508-2
      [15]
      J.W. Zhang, L.M. Yu, R. Ding, et al., Deformation behavior, microstructure evolution, and rupture mechanism of the novel G115 steel welded joint during creep, Mater. Charact., 205(2023), art. No. 113275. doi: 10.1016/j.matchar.2023.113275
      [16]
      C. Pandey, M.M. Mahapatra, and P. Kumar, Effect of post weld heat treatments on fracture frontier and type IV cracking nature of the crept P91 welded sample, Mater. Sci. Eng. A, 731(2018), p. 249. doi: 10.1016/j.msea.2018.06.038
      [17]
      Y.Y. Wang, R. Kannan, and L.J. Li, Correlation between intercritical heat-affected zone and type IV creep damage zone in grade 91 steel, Metall. Mater. Trans. A, 49(2018), No. 4, p. 1264. doi: 10.1007/s11661-018-4490-x
      [18]
      J.W. Zhang, L.M. Yu, Q.Z. Gao, et al., A new strategy to improve the creep strength of a novel G115 steel by accelerating the precipitation of nano-sized MX and Cu-rich particles, Scripta Mater., 220(2022), art. No. 114903. doi: 10.1016/j.scriptamat.2022.114903
      [19]
      J. Hoffmann, M. Rieth, M. Klimenkov, and S. Baumgärtner, Improvement of EUROFER’s mechanical properties by optimized chemical compositions and thermo-mechanical treatments, Nucl. Mater. Energy, 16(2018), p. 88. doi: 10.1016/j.nme.2018.05.028
      [20]
      S. Hollner, B. Fournier, J. Le Pendu, et al., High-temperature mechanical properties improvement on modified 9Cr–1Mo martensitic steel through thermomechanical treatments, J. Nucl. Mater., 405(2010), No. 2, p. 101. doi: 10.1016/j.jnucmat.2010.07.034
      [21]
      R.L. Klueh, N. Hashimoto, and P.J. Maziasz, New nano-particle-strengthened ferritic/martensitic steels by conventional thermo-mechanical treatment, J. Nucl. Mater., 367-370(2007), p. 48. doi: 10.1016/j.jnucmat.2007.03.001
      [22]
      T. Sakthivel, P. Shruti, P. Parameswaran, G.V.S.N. Rao, K. Laha, and T.S. Rao, Enhancement in creep strength of modified 9CR–1MO steel through thermo-mechanical treatment, Trans. Indian Inst. Met., 70(2017), No. 5, p. 1177. doi: 10.1007/s12666-016-0902-z
      [23]
      J. Vivas, C. Capdevila, E. Altstadt, M. Houska, and D. San-Martín, Importance of austenitization temperature and ausforming on creep strength in 9Cr ferritic/martensitic steel, Scripta Mater., 153(2018), p. 14. doi: 10.1016/j.scriptamat.2018.04.038
      [24]
      T. Sakthivel, S.M. Nandeswarudu, P. Shruti, et al., An improvement in creep strength of thermo-mechanical treated modified 9Cr–1Mo steel weld joint, Mater. High Temp., 36(2019), No. 1, p. 76. doi: 10.1080/09603409.2018.1460542
      [25]
      P. Prakash, J. Vanaja, N. Srinivasan, P. Parameswaran, G.V.S.N. Rao, and K. Laha, Effect of thermo-mechanical treatment on tensile properties of reduced activation ferritic-martensitic steel, Mater. Sci. Eng. A, 724(2018), p. 171. doi: 10.1016/j.msea.2018.03.080
      [26]
      M. Nöhrer, W. Mayer, S. Primig, S. Zamberger, E. Kozeschnik, and H. Leitner, Influence of deformation on the precipitation behavior of Nb(CN) in austenite and ferrite, Metall. Mater. Trans. A, 45(2014), No. 10, p. 4210. doi: 10.1007/s11661-014-2373-3
      [27]
      P. Prakash, J. Vanaja, G.V P. Reddy, K. Laha, and G.V.S N. Rao, On the effect of thermo-mechanical treatment on creep deformation and rupture behaviour of a reduced activation ferritic-martensitic steel, J. Nucl. Mater., 520(2019), p. 65. doi: 10.1016/j.jnucmat.2019.04.014
      [28]
      B.A. Shassere, Y. Yamamoto, and S.S. Babu, Toward improving the type IV cracking resistance in Cr–Mo steel weld through thermo-mechanical processing, Metall. Mater. Trans. A, 47(2016), No. 5, p. 2188. doi: 10.1007/s11661-016-3387-9
      [29]
      P. Yan, Z.D. Liu, H.S. Bao, Y.Q. Weng, and W. Liu, Effect of normalizing temperature on the strength of 9Cr–3W–3Co martensitic heat resistant steel, Mater. Sci. Eng. A, 597(2014), p. 148. doi: 10.1016/j.msea.2013.12.068
      [30]
      P. Yan, Z.D. Liu, H.S. Bao, Y.Q. Weng, and W. Liu, Effect of tempering temperature on the toughness of 9Cr–3W–3Co martensitic heat resistant steel, Mater. Des., 54(2014), p. 874. doi: 10.1016/j.matdes.2013.09.017
      [31]
      J.W. Zhang, L.M. Yu, Q.Z. Gao, et al., Development of weld filler material to match the advanced martensitic heat resistance steel G115 and tailoring the performance by tempering temperature, J. Mater. Res. Technol., 21(2022), p. 2515. doi: 10.1016/j.jmrt.2022.10.051
      [32]
      J. Vivas, C. Capdevila, E. Altstadt, M. Houska, I. Sabirov, and D. San-Martín, Microstructural degradation and creep fracture behavior of conventionally and thermomechanically treated 9% chromium heat resistant steel, Met. Mater. Int., 25(2019), No. 2, p. 343. doi: 10.1007/s12540-018-0192-6
      [33]
      A. Khajuria, M. Akhtar, R. Bedi, et al., Microstructural investigations on simulated intercritical heat-affected zone of boron modified P91-steel, Mater. Sci. Technol., 36(2020), No. 13, p. 1407. doi: 10.1080/02670836.2020.1784543
      [34]
      M. Dunđer, T. Vuherer, I. Samardžić, and D. Marić, Analysis of heat-affected zone microstructures of steel P92 after welding and after post-weld heat treatment, Int. J. Adv. Manuf. Technol., 102(2019), No. 9-12, p. 3801. doi: 10.1007/s00170-019-03513-8
      [35]
      A. Khajuria, M. Akhtar, R. Bedi, et al., Influence of boron on microstructure and mechanical properties of Gleeble simulated heat-affected zone in P91 steel, Int. J. Press. Vessels Pip., 188(2020), art. No. 104246. doi: 10.1016/j.ijpvp.2020.104246
      [36]
      C. Pandey, M.M. Mahapatra, P. Kumar, J.G. Thakre, and N. Saini, Role of evolving microstructure on the mechanical behaviour of P92 steel welded joint in as-welded and post weld heat treated state, J. Mater. Process. Technol., 263(2019), p. 241. doi: 10.1016/j.jmatprotec.2018.08.032
      [37]
      H.Y. Azad, S.H.M. Anijdan, and H. Najafi, The effect of PWHT on the microstructural evolution, carbides formation and mechanical properties of a Nb containing martensitic heat resistance steel used in gas turbine, Mater. Sci. Eng. A, 793(2020), art. No. 139810. doi: 10.1016/j.msea.2020.139810
      [38]
      Z. Liu, Z.D. Liu, Z.Z. Chen, X.T. Wang, H.S. Bao, and C. Dong, Microstructure and creep strength evolution in G115 steel during creep at 650°C, Mater. Res. Express, 7(2020), No. 1, art. No. 016528. doi: 10.1088/2053-1591/ab611d
      [39]
      Q.Z. Gao, C. Wang, F. Qu, Y.L. Wang, and Z.X. Qiao, Martensite transformation kinetics in 9Cr–1.7W–0.4Mo–Co ferritic steel, J. Alloys Compd., 610(2014), p. 322. doi: 10.1016/j.jallcom.2014.05.060
      [40]
      Y. Liu, S. Tsukamoto, T. Shirane, and F. Abe, Formation mechanism of type IV failure in high Cr ferritic heat-resistant steel-welded joint, Metall. Mater. Trans. A, 44(2013), No. 10, p. 4626. doi: 10.1007/s11661-013-1801-0
      [41]
      T. Matsunaga, H. Hongo, M. Tabuchi, and R. Sahara, Suppression of grain refinement in heat-affected zone of 9Cr–3W–3Co–VNb steels, Mater. Sci. Eng. A, 655(2016), p. 168. doi: 10.1016/j.msea.2015.12.095
      [42]
      Y. Liang, W. Yan, X.B. Shi, et al., On Laves phase in a 9Cr3W3CoB martensitic heat resistant steel when aged at high temperatures, J. Mater. Sci. Technol., 85(2021), p. 129. doi: 10.1016/j.jmst.2020.12.062
      [43]
      F. Abe, Precipitate design for creep strengthening of 9% Cr tempered martensitic steel for ultra-supercritical power plants, Sci. Technol. Adv. Mater., 9(2008), No. 1, art. No. 013002. doi: 10.1088/1468-6996/9/1/013002
      [44]
      F. Abe, New martensitic steels, [in] A.D. Gianfrancesco, ed., Materials for Ultra-Supercritical and Advanced Ultra-Supercritical Power Plants, Woodhead Publishing, Cambridge, 2017, p. 323.
      [45]
      F. Abe, M. Igarashi, S. Wanikawa, et al., Ultra steel project for advanced ferritic steels for 650°C USC boilers, [in] P. Neumann, D. Allen, and E. Teuckhoff, eds., Steels and Materials for Power Plants, Wiley-VCH Verlag GmbH, Weinheim, 2000, p. 299.
      [46]
      Y.K. Wang, Q.S. Ma, Q.Z. Gao, et al., Precipitation and strengthening behavior of M23C6 carbides in tempered G115 steel, JOM, 74(2022), No. 12, p. 4755. doi: 10.1007/s11837-022-05497-5
      [47]
      H. Wang, W. Yan, S. van Zwaag, et al., On the 650°C thermostability of 9–12Cr heat resistant steels containing different precipitates, Acta Mater., 134(2017), p. 143. doi: 10.1016/j.actamat.2017.05.069
      [48]
      J. Vivas, D. De-Castro, E. Altstadt, M. Houska, D. San-Martín, and C. Capdevila, Design and high temperature behavior of novel heat resistant steels strengthened by high density of stable nanoprecipitates, Mater. Sci. Eng. A, 793(2020), art. No. 139799. doi: 10.1016/j.msea.2020.139799
      [49]
      J. Vivas, C. Capdevila, E. Altstadt, et al., Effect of ausforming temperature on creep strength of G91 investigated by means of small punch creep tests, Mater. Sci. Eng. A, 728(2018), p. 259. doi: 10.1016/j.msea.2018.05.023
      [50]
      A. Benaarbia, X. Xu, W. Sun, A.A. Becker, and M.A.E. Jepson, Investigation of short-term creep deformation mechanisms in MarBN steel at elevated temperatures, Mater. Sci. Eng. A, 734(2018), p. 491. doi: 10.1016/j.msea.2018.06.063
      [51]
      A. Kipelova, A. Belyakov, and R. Kaibyshev, Laves phase evolution in a modified P911 heat resistant steel during creep at 923 K, Mater. Sci. Eng. A, 532(2012), p. 71. doi: 10.1016/j.msea.2011.10.064
      [52]
      O. Prat, J. Garcia, D. Rojas, C. Carrasco, and G. Inden, Investigations on the growth kinetics of Laves phase precipitates in 12% Cr creep-resistant steels: Experimental and DICTRA calculations, Acta Mater., 58(2010), No. 18, p. 6142. doi: 10.1016/j.actamat.2010.07.033

    Catalog


    • /

      返回文章
      返回