留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 2
Feb.  2024

图(9)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  984
  • HTML全文浏览量:  105
  • PDF下载量:  34
  • 被引次数: 0
Xin Yu, Congcong Li, Jian Zhang, Lili Zhao, Jinbo Pang, and Longhua Ding, Recent progress on Sn3O4 nanomaterials for photocatalytic applications, Int. J. Miner. Metall. Mater., 31(2024), No. 2, pp. 231-244. https://doi.org/10.1007/s12613-023-2761-z
Cite this article as:
Xin Yu, Congcong Li, Jian Zhang, Lili Zhao, Jinbo Pang, and Longhua Ding, Recent progress on Sn3O4 nanomaterials for photocatalytic applications, Int. J. Miner. Metall. Mater., 31(2024), No. 2, pp. 231-244. https://doi.org/10.1007/s12613-023-2761-z
引用本文 PDF XML SpringerLink
特约综述

Sn3O4纳米材料光催化应用的最新研究进展


  • 通讯作者:

    于欣    E-mail: ifc_yux@ujn.edu.cn

    丁龙华    E-mail: bio_dinglh@ujn.edu.cn

文章亮点

  • (1) 详细的介绍了Sn3O4的结构性能与光催化性能提升的策略。
  • (2) 详细讨论了Sn3O4光催化纳米材料在多个领域的应用。
  • (3) 对Sn3O4光催化纳米材料的未来发展进行了展望。
  • 四氧化三锡(Sn3O4)是一类层状锡材料,呈现混合价态,近年来备受关注,被认为是一种极具潜力的可见光光催化剂。本综述旨在全面概述Sn3O4光催化纳米材料在研究、应用、优势和挑战方面的最新进展。首先介绍了Sn3O4的基本概念和原理。其独特的晶体结构和光电性质使其能够高效吸收可见光,产生光激发的载流子,推动光催化反应。随后探讨了对Sn3O4光催化纳米材料进行控制和性能提升的策略,包括形态控制、离子掺杂和异质结构构建。这些策略的成功实施提高了Sn3O4纳米材料的光催化活性和稳定性。此外,综述还详细讨论了Sn3O4光催化纳米材料在多个领域的应用,如光催化降解、光催化产氢、二氧化碳光催化还原、太阳能电池、光催化灭菌和光电传感器。讨论重点关注Sn3O4基纳米材料在这些应用中的潜在价值,突出了其独特的属性和功能。最后,综述对该领域未来发展方向进行了展望,为探索和开发新型高效的Sn3O4基纳米材料提供了指导。通过确定新兴研究领域和改进的潜在途径,本综述旨在推动Sn3O4基光催化技术的进一步发展,并促进其成功转化为实际应用。
  • Invited Review

    Recent progress on Sn3O4 nanomaterials for photocatalytic applications

    + Author Affiliations
    • Tin(IV) oxide (Sn3O4) is layered tin and exhibits mixed valence states. It has emerged as a highly promising visible-light photocatalyst, attracting considerable attention. This comprehensive review is aimed at providing a detailed overview of the latest advancements in research, applications, advantages, and challenges associated with Sn3O4 photocatalytic nanomaterials. The fundamental concepts and principles of Sn3O4 are introduced. Sn3O4 possesses a unique crystal structure and optoelectronic properties that allow it to absorb visible light efficiently and generate photoexcited charge carriers that drive photocatalytic reactions. Subsequently, strategies for the control and improved performance of Sn3O4 photocatalytic nanomaterials are discussed. Morphology control, ion doping, and heterostructure construction are widely employed in the optimization of the photocatalytic performance of Sn3O4 materials. The effective implementation of these strategies improves the photocatalytic activity and stability of Sn3O4 nanomaterials. Furthermore, the review explores the diverse applications of Sn3O4 photocatalytic nanomaterials in various fields, such as photocatalytic degradation, photocatalytic hydrogen production, photocatalytic reduction of carbon dioxide, solar cells, photocatalytic sterilization, and optoelectronic sensors. The discussion focuses on the potential of Sn3O4-based nanomaterials in these applications, highlighting their unique attributes and functionalities. Finally, the review provides an outlook on the future development directions in the field and offers guidance for the exploration and development of novel and efficient Sn3O4-based nanomaterials. Through the identification of emerging research areas and potential avenues for improvement, this review aims to stimulate further advancements in Sn3O4-based photocatalysis and facilitate the translation of this promising technology into practical applications.
    • loading
    • [1]
      X. Yu, X. Jin, X.Y. Chen, et al., A microorganism bred TiO2/Au/TiO2 heterostructure for whispering gallery mode resonance assisted plasmonic photocatalysis, ACS Nano, 14(2020), No. 10, p. 13876. doi: 10.1021/acsnano.0c06278
      [2]
      Y.J. Fu, K.J. Zhang, Y. Zhang, Y.Q. Cong, and Q. Wang, Fabrication of visible-light-active MR/NH2–MIL–125(Ti) homojunction with boosted photocatalytic performance, Chem. Eng. J., 412(2021), art. No. 128722. doi: 10.1016/j.cej.2021.128722
      [3]
      Y.J. Fu, M. Tan, Z.L. Guo, et al., Fabrication of wide-spectra-responsive NA/NH2–MIL–125(Ti) with boosted activity for Cr(VI) reduction and antibacterial effects, Chem. Eng. J., 452(2023), art. No. 139417. doi: 10.1016/j.cej.2022.139417
      [4]
      Q. Yang, M.L. Luo, K.W. Liu, H.M. Cao, and H.J. Yan, Covalent organic frameworks for photocatalytic applications, Appl. Catal. B, 276(2020), art. No. 119174. doi: 10.1016/j.apcatb.2020.119174
      [5]
      A. Mohammad, M.E. Khan, M.H. Cho, and T. Yoon, Adsorption promoted visible-light-induced photocatalytic degradation of antibiotic tetracycline by tin oxide/cerium oxide nanocomposite, Appl. Surf. Sci., 565(2021), art. No. 150337. doi: 10.1016/j.apsusc.2021.150337
      [6]
      M. Honarmand, M. Golmohammadi, and A. Naeimi, Biosynthesis of tin oxide (SnO2) nanoparticles using jujube fruit for photocatalytic degradation of organic dyes, Adv. Powder Technol., 30(2019), No. 8, p. 1551. doi: 10.1016/j.apt.2019.04.033
      [7]
      I. Fatimah, D. Rubiyanto, I. Sahroni, R.S. Putra, R. Nurillahi, and J. Nugraha, Physicochemical characteristics and photocatalytic performance of Tin oxide/montmorillonite nanocomposites at various Sn/montmorillonite molar to mass ratios, Appl. Clay Sci., 193(2020), art. No. 105671. doi: 10.1016/j.clay.2020.105671
      [8]
      K. Balakrishnan, V. Veerapandy, H. Fjellvåg, and P. Vajeeston, First-principles exploration into the physical and chemical properties of certain newly identified SnO2 polymorphs, ACS Omega, 7(2022), No. 12, p. 10382. doi: 10.1021/acsomega.1c07063
      [9]
      Y.Q. Hu, J. Hwang, Y. Lee, et al., First principles calculations of intrinsic mobilities in tin-based oxide semiconductors SnO, SnO2, and Ta2SnO6, J. Appl. Phys., 126(2019), No. 18, art. No. 185701. doi: 10.1063/1.5109265
      [10]
      C. Wang, J.C. Zhao, X.M. Wang, et al., Preparation, characterization and photocatalytic activity of nano-sized ZnO/SnO2 coupled photocatalysts, Appl. Catal. B, 39(2002), No. 3, p. 269. doi: 10.1016/S0926-3373(02)00115-7
      [11]
      T. Lu, Y.P. Zhang, H.B. Li, L.K. Pan, Y.L. Li, and Z. Sun, Electrochemical behaviors of graphene–ZnO and graphene–SnO2 composite films for supercapacitors, Electrochim. Acta, 55(2010), No. 13, p. 4170. doi: 10.1016/j.electacta.2010.02.095
      [12]
      A. Seko, A. Togo, F. Oba, and I. Tanaka, Structure and stability of a homologous series of tin oxides, Phys. Rev. Lett., 100(2008), No. 4, art. No. 045702. doi: 10.1103/PhysRevLett.100.045702
      [13]
      S. Das and V. Jayaraman, SnO2: A comprehensive review on structures and gas sensors, Prog. Mater. Sci., 66(2014), p. 112. doi: 10.1016/j.pmatsci.2014.06.003
      [14]
      C.Y. Sun, J.K. Yang, M. Xu, et al., Recent intensification strategies of SnO2-based photocatalysts: A review, Chem. Eng. J., 427(2022), art. No. 131564. doi: 10.1016/j.cej.2021.131564
      [15]
      M.H. Chen, Z.C. Huang, G.T. Wu, G.M. Zhu, J.K. You, and Z.G. Lin, Synthesis and characterization of SnO–carbon nanotube composite as anode material for lithium-ion batteries, Mater. Res. Bull., 38(2003), No. 5, p. 831. doi: 10.1016/S0025-5408(03)00063-1
      [16]
      Y. Ogo, H. Hiramatsu, K. Nomura, et al., P-channel thin-film transistor using p-type oxide semiconductor, SnO, Appl. Phys. Lett., 93(2008), No. 3, art. No. 032113. doi: 10.1063/1.2964197
      [17]
      R.Q. Yang, X. Yu, and H. Liu, Scientific study of photocatalytic material based on Sn3O4, Chem. J. Chin. Univ., 42(2021), No. 5, p. 1340.
      [18]
      L.P. Zhu, H. Lu, D. Hao, et al., Three-dimensional lupinus-like TiO2 nanorod@Sn3O4 nanosheet hierarchical heterostructured arrays as photoanode for enhanced photoelectrochemical performance, ACS Appl. Mater. Interfaces, 9(2017), No. 44, p. 38537. doi: 10.1021/acsami.7b11872
      [19]
      Q. Bai, J.C. Zhang, Y.X. Yu, et al., Piezoelectric activatable nanozyme-based skin patch for rapid wound disinfection, ACS Appl. Mater. Interfaces, 14(2022), No. 23, p. 26455. doi: 10.1021/acsami.2c05114
      [20]
      Z.R. Dai, J.J. Lian, Y.S. Sun, et al., Fabrication of g-C3N4/Sn3O4/Ni electrode for highly efficient photoelectrocatalytic reduction of U(VI), Chem. Eng. J., 433(2022), art. No. 133766. doi: 10.1016/j.cej.2021.133766
      [21]
      T. Tanabe, K. Nakamori, T. Tanikawa, Y. Matsubara, and F. Matsumoto, Ultrathin nanosheet Sn3O4 for highly effective hydrogen evolution under visible light, J. Photochem. Photobiol. A, 420(2021), art. No. 113486. doi: 10.1016/j.jphotochem.2021.113486
      [22]
      H. Song, S.Y. Son, S.K. Kim, and G.Y. Jung, A facile synthesis of hierarchical Sn3O4 nanostructures in an acidic aqueous solution and their strong visible-light-driven photocatalytic activity, Nano Res., 8(2015), No. 11, p. 3553. doi: 10.1007/s12274-015-0855-2
      [23]
      J.J. Wang, N. Umezawa, and H. Hosono, Mixed valence tin oxides as novel van der Waals materials: Theoretical predictions and potential applications, Adv. Energy Mater., 6(2016), No. 1, art. No. 1501190. doi: 10.1002/aenm.201501190
      [24]
      M. Manikandan, T. Tanabe, P. Li, et al., Photocatalytic water splitting under visible light by mixed-valence Sn3O4, ACS Appl. Mater. Interfaces, 6(2014), No. 6, p. 3790. doi: 10.1021/am500157u
      [25]
      Y.S. Liu, A. Yamaguchi, Y. Yang, et al., Synthesis and characterization of the orthorhombic Sn3O4 polymorph, Angew. Chem. Int. Ed, 62(2023), No. 17, art. No. e202300640. doi: 10.1002/anie.202300640
      [26]
      C. Jose Damaschio, O.M. Berengue, D.G. Stroppa, et al., Sn3O4 single crystal nanobelts grown by carbothermal reduction process, J. Cryst. Growth, 312(2010), No. 20, p. 2881. doi: 10.1016/j.jcrysgro.2010.07.022
      [27]
      L.N. Zhang, X.Y. Liu, X. Zhang, et al., Sulfur-doped Sn3O4 nanosheets for improved photocatalytic performance, J. Alloys Compd., 961(2023), art. No. 170904. doi: 10.1016/j.jallcom.2023.170904
      [28]
      N. Yuan, X.L. Zhang, B.W. Li, T.X. Chen, and X. Yang, Energy-efficient MIL–53(Fe)/Sn3O4 nanosheet photocatalysts for visible-light degradation of toxic organics in wastewater, ACS Appl. Nano Mater., 6(2023), No. 11, p. 9159. doi: 10.1021/acsanm.3c00400
      [29]
      R.Q. Yang, G.X. Song, L.W. Wang, et al., Full solar-spectrum-driven antibacterial therapy over hierarchical Sn3O4/PDINH with enhanced photocatalytic activity, Small, 17(2021), No. 39, art. No. e2102744. doi: 10.1002/smll.202102744
      [30]
      X. Yu, Z.H. Zhao, D.H. Sun, et al., Microwave-assisted hydrothermal synthesis of Sn3O4 nanosheet/rGO planar heterostructure for efficient photocatalytic hydrogen generation, Appl. Catal. B, 227(2018), p. 470. doi: 10.1016/j.apcatb.2018.01.055
      [31]
      X. Yu, J. Zhang, Z.H. Zhao, et al., NiO–TiO2 p–n heterostructured nanocables bridged by zero-bandgap rGO for highly efficient photocatalytic water splitting, Nano Energy, 16(2015), p. 207. doi: 10.1016/j.nanoen.2015.06.028
      [32]
      X. Yu, X. Han, Z.H. Zhao, et al., Hierarchical TiO2 nanowire/graphite fiber photoelectrocatalysis setup powered by a wind-driven nanogenerator: A highly efficient photoelectrocatalytic device entirely based on renewable energy, Nano Energy, 11(2015), p. 19. doi: 10.1016/j.nanoen.2014.09.024
      [33]
      X. Yu, L.F. Wang, J. Zhang, et al., Hierarchical hybrid nanostructures of Sn3O4 on N doped TiO2 nanotubes with enhanced photocatalytic performance, J. Mater. Chem. A, 3(2015), No. 37, p. 19129. doi: 10.1039/C5TA05023E
      [34]
      X. Yu, N. Ren, J.C. Qiu, D.H. Sun, L.L. Li, and H. Liu, Killing two birds with one stone: To eliminate the toxicity and enhance the photocatalytic property of CdS nanobelts by assembling ultrafine TiO2 nanowires on them, Sol. Energy Mater. Sol. Cells, 183(2018), p. 41. doi: 10.1016/j.solmat.2018.04.003
      [35]
      X. Yu, Z.H. Zhao, D.H. Sun, et al., TiO2/TiN core/shell nanobelts for efficient solar hydrogen generation, Chem. Commun., 54(2018), No. 47, p. 6056. doi: 10.1039/C8CC02651C
      [36]
      Y.C. Ji, R.Q. Yang, L.W. Wang, et al., Visible light active and noble metal free Nb4N5/TiO2 nanobelt surface heterostructure for plasmonic enhanced solar water splitting, Chem. Eng. J., 402(2020), art. No. 126226. doi: 10.1016/j.cej.2020.126226
      [37]
      H.X. Liu, M.Y. Teng, X.G. Wei, et al., Mosaic structure ZnO formed by secondary crystallization with enhanced photocatalytic performance, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 495. doi: 10.1007/s12613-020-2033-0
      [38]
      .M. Berengue, R.A. Simon, A.J. Chiquito, et al., Semiconducting Sn3O4 nanobelts: Growth and electronic structure, J. Appl. Phys., 107(2010), No. 3, art. No. 033717.
      [39]
      P. Mone, S. Mardikar, and S. Balgude, Morphology-controlled synthesis of Sn3O4 nanowires for enhanced solar-light driven photocatalytic H2 production, Nano Struct. Nano Objects, 24(2020), art. No. 100615. doi: 10.1016/j.nanoso.2020.100615
      [40]
      Y.H. He, D.Z. Li, J. Chen, et al., Sn3O4: A novel heterovalent-tin photocatalyst with hierarchical 3D nanostructures under visible light, RSC Adv., 4(2014), No. 3, p. 1266. doi: 10.1039/C3RA45743E
      [41]
      S. Balgude, Y. Sethi, B. Kale, D. Amalnerkar, and P. Adhyapak, Sn3O4 microballs as highly efficient photocatalyst for hydrogen generation and degradation of phenol under solar light irradiation, Mater. Chem. Phys., 221(2019), p. 493. doi: 10.1016/j.matchemphys.2018.08.032
      [42]
      X.H. Ma, J.L. Shen, D.X. Hu, et al., Preparation of three-dimensional Ce-doped Sn3O4 hierarchical microsphere and its application on formaldehyde gas sensor, J. Alloys Compd., 726(2017), p. 1092. doi: 10.1016/j.jallcom.2017.08.079
      [43]
      S. Balgude, Y. Sethi, A. Gaikwad, B. Kale, D. Amalnerkar, and P. Adhyapak, Unique N doped Sn3O4 nanosheets as an efficient and stable photocatalyst for hydrogen generation under sunlight, Nanoscale, 12(2020), No. 15, p. 8502. doi: 10.1039/C9NR10439A
      [44]
      D.B. Zeng, C.L. Yu, Q.Z. Fan, et al., Theoretical and experimental research of novel fluorine doped hierarchical Sn3O4 microspheres with excellent photocatalytic performance for removal of Cr(VI) and organic pollutants, Chem. Eng. J., 391(2020), art. No. 123607. doi: 10.1016/j.cej.2019.123607
      [45]
      C.L. Yu, D.B. Zeng, Q.Z. Fan, et al., The distinct role of boron doping in Sn3O4 microspheres for synergistic removal of phenols and Cr(VI) in simulated wastewater, Environ. Sci. Nano, 7(2020), No. 1, p. 286. doi: 10.1039/C9EN00899C
      [46]
      L. Wang, Y. Li, W.J. Yue, S. Gao, C.W. Zhang, and Z.X. Chen, High-performance formaldehyde gas sensor based on Cu-doped Sn3O4 hierarchical nanoflowers, IEEE Sens. J., 20(2020), No. 13, p. 6945. doi: 10.1109/JSEN.2020.2977972
      [47]
      R.Q. Yang, Y.C. Ji, L.W. Wang, et al., Crystalline Ni-doped Sn3O4 nanosheets for photocatalytic H2 production, ACS Appl. Nano Mater., 3(2020), No. 9, p. 9268. doi: 10.1021/acsanm.0c01886
      [48]
      Z.R. Liu, L.W. Wang, X. Yu, et al., Piezoelectric-effect-enhanced full-spectrum photoelectrocatalysis in p–n heterojunction, Adv. Funct. Mater., 29(2019), No. 41, art. No. 1807279. doi: 10.1002/adfm.201807279
      [49]
      X. Yu, S. Wang, X.D. Zhang, et al., Heterostructured nanorod array with piezophototronic and plasmonic effect for photodynamic bacteria killing and wound healing, Nano Energy, 46(2018), p. 29. doi: 10.1016/j.nanoen.2018.01.033
      [50]
      J.S. Yuan, Y. Zhang, X.Y. Zhang, J.J. Zhang, and S.G. Zhang, N-doped graphene quantum dots-decorated N-TiO2/P-doped porous hollow g-C3N4 nanotube composite photocatalysts for antibiotics photodegradation and H2 production, Int. J. Miner. Metall. Mater., 31(2024), No. 1, p. 165.
      [51]
      Y. Wen, D.D. Wang, H.J. Li, et al., Enhanced photocatalytic hydrogen evolution of 2D/2D N-Sn3O4/g-C3N4 S-scheme heterojunction under visible light irradiation, Appl. Surf. Sci., 567(2021), art. No. 150903. doi: 10.1016/j.apsusc.2021.150903
      [52]
      X. Jiang, M.T. Wang, B.N. Luo, et al., Magnetically recoverable flower-like Sn3O4/SnFe2O4 as a type-II heterojunction photocatalyst for efficient degradation of ciprofloxacin, J. Alloys Compd., 926(2022), art. No. 166878. doi: 10.1016/j.jallcom.2022.166878
      [53]
      R.Q. Yang, N. Liang, X.Y. Chen, et al., Sn/Sn3O4− x heterostructure rich in oxygen vacancies with enhanced visible light photocatalytic oxidation performance, Int. J. Miner. Metall. Mater., 28(2021), No. 1, p. 150. doi: 10.1007/s12613-020-2131-z
      [54]
      H.H. Wang, W.X. Liu, J. Ma, et al., Design of (GO/TiO2)N one-dimensional photonic crystal photocatalysts with improved photocatalytic activity for tetracycline degradation, Int. J. Miner. Metall. Mater., 27(2020), No. 6, p. 830. doi: 10.1007/s12613-019-1923-5
      [55]
      F.C. Wen, S.R.G.G. Li, Y. Chen, et al., Corrugated rGO-supported Pd composite on carbon paper for efficient cathode of Mg–H2O2 semi-fuel cell, Rare Met., 41(2022), No. 8, p. 2655. doi: 10.1007/s12598-022-01964-9
      [56]
      X. Yu, Z.H. Zhao, N. Ren, et al., Top or bottom, assembling modules determine the photocatalytic property of the sheetlike nanostructured hybrid photocatalyst composed with Sn3O4 and rGO (GQD), ACS Sustainable Chem. Eng., 6(2018), No. 9, p. 11775. doi: 10.1021/acssuschemeng.8b02030
      [57]
      X.F. Zeng, J.S. Wang, Y.N. Zhao, W.L. Zhang, and M.H. Wang, Construction of TiO2-pillared multilayer graphene nanocomposites as efficient photocatalysts for ciprofloxacin degradation, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 503. doi: 10.1007/s12613-020-2193-y
      [58]
      H.M. Shao, X.Y. Shen, X.T. Li, et al., Growth mechanism and photocatalytic evaluation of flower-like ZnO micro-structures prepared with SDBS assistance, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 729. doi: 10.1007/s12613-020-2138-5
      [59]
      R.Q. Yang, Y.C. Ji, J. Zhang, et al., Efficiently degradation of polyacrylamide pollution using a full spectrum Sn3O4 nanosheet/Ni foam heterostructure photoelectrocatalyst, Catal. Today, 335(2019), p. 520. doi: 10.1016/j.cattod.2019.02.019
      [60]
      Y.Q. Han, M.M. Wei, S.Y Qu, et al., Ag@AgCl quantum dots embedded on Sn3O4 nanosheets towards synergistic 3D flower-like heterostructured microspheres for efficient visible-lkght photocatalysis, Ceram. Int., 46 (2020), No. 15, p. 24060. doi: 10.1016/j.ceramint.2020.06.184
      [61]
      L. Chen, S. Yue, J. Wang, et al., Overall water splitting on surface-polarized Sn3O4 through weakening the trap of Sn(II) to holes, Appl. Catal. B, 299(2021), art. No. 120689. doi: 10.1016/j.apcatb.2021.120689
      [62]
      L. Xu, W.Q. Chen, S.Q. Ke, et al., Construction of heterojunction Bi/Bi5O7I/Sn3O4 for efficient noble-metal-free Z-scheme photocatalytic H2 evolution, Chem. Eng. J., 382(2020), art. No. 122810. doi: 10.1016/j.cej.2019.122810
      [63]
      L.Q. Yang, M.F. Lv, Y. Song, et al., Porous Sn3O4 nanosheets on PPy hollow rod with photo-induced electrons oriented migration for enhanced visible-light hydrogen production, Appl. Catal. B, 279(2020), art. No. 119341. doi: 10.1016/j.apcatb.2020.119341
      [64]
      R.Q. Yang, Y.C. Ji, Q. Li, et al., Ultrafine Si nanowires/Sn3O4 nanosheets 3D hierarchical heterostructured array as a photoanode with high-efficient photoelectrocatalytic performance, Appl. Catal. B, 256(2019), art. No. 117798. doi: 10.1016/j.apcatb.2019.117798
      [65]
      Z. Chen, M.R. Gao, N.Q. Duan, et al., Tuning adsorption strength of CO2 and its intermediates on tin oxide-based electrocatalyst for efficient CO2 reduction towards carbonaceous products, Appl. Catal. B, 277(2020), art. No. 119252. doi: 10.1016/j.apcatb.2020.119252
      [66]
      Y.S. Liu, A. Yamaguchi, Y. Yang, et al., Visible-light-induced CO2 reduction by mixed-valence tin oxide, ACS Appl. Energy Mater., 4(2021), No. 12, p. 13415. doi: 10.1021/acsaem.1c02896
      [67]
      L.W. Wang, F.E. Gao, A.Z. Wang, et al., Defect-rich adhesive molybdenum disulfide/rGO vertical heterostructures with enhanced nanozyme activity for smart bacterial killing application, Adv. Mater., 32(2020), No. 48, art. No. e2005423. doi: 10.1002/adma.202005423
      [68]
      L.W. Wang, X.W. Tang, Z.W. Yang, et al., Regulation of functional groups enable the metal-free PDINH/GO advisable antibacterial photocatalytic therapy, Chem. Eng. J., 451(2023), art. No. 139007. doi: 10.1016/j.cej.2022.139007
      [69]
      L.W. Wang, Z.W. Yang, G.X. Song, et al., Construction of S–N–C bond for boosting bacteria-killing by synergistic effect of photocatalysis and nanozyme, Appl. Catal. B, 325(2023), art. No. 122345. doi: 10.1016/j.apcatb.2022.122345
      [70]
      L.W. Wang, X. Zhang, X. Yu, et al., An all-organic semiconductor C3N4/PDINH heterostructure with advanced antibacterial photocatalytic therapy activity, Adv. Mater., 31(2019), No. 33, art. No. 1901965. doi: 10.1002/adma.201901965
      [71]
      L.W. Wang, L. Liu, Z. You, et al., Surface amorphization oxygen vacancy-rich porous Sn3O x nanosheets for boosted photoelectrocatalytic bacterial inactivation, Rare Met., 42(2023), No. 5, p. 1508. doi: 10.1007/s12598-022-02208-6
      [72]
      S. Li, F. Qin, Q. Peng, et al., Van der waals mixed valence tin oxides for perovskite solar cells as UV-stable electron transport materials, Nano Lett., 20(2020), No. 11, p. 8178. doi: 10.1021/acs.nanolett.0c03286
      [73]
      S. Li, J.L. Liu, S. Liu, et al., Yttrium-doped Sn3O4 two-dimensional electron transport material for perovskite solar cells with efficiency over 23%, EcoMat, 4(2022), No. 4, art. No. e12202. doi: 10.1002/eom2.12202
      [74]
      J. Wang, Q. Xu, W.W. Xia, et al., High sensitive visible light photoelectrochemical sensor based on in situ prepared flexible Sn3O4 nanosheets and molecularly imprinted polymers, Sens. Actuators B, 271(2018), p. 215. doi: 10.1016/j.snb.2018.05.098
      [75]
      W.W. Xia, H.Y. Qian, X.H. Zeng, J. Dong, J. Wang, and Q. Xu, Visible-light self-powered photodetector and recoverable photocatalyst fabricated from vertically aligned Sn3O4 nanoflakes on carbon paper, J. Phys. Chem. C, 121(2017), No. 35, p. 19036. doi: 10.1021/acs.jpcc.7b05520
      [76]
      R. Xu, Y. Du, D.Q. Leng, et al., Antigen down format photoelectrochemical analysis supported by fullerene functionalized Sn3O4, Chem. Commun., 56(2020), No. 54, p. 7455. doi: 10.1039/D0CC02933E

    Catalog


    • /

      返回文章
      返回