留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 4
Apr.  2024

图(14)  / 表(4)

数据统计

分享

计量
  • 文章访问数:  123
  • HTML全文浏览量:  45
  • PDF下载量:  10
  • 被引次数: 0
Jia Liu, Shuanglu Duan, Xiaokang Yue, and Ningsong Qu, Comparison of electrochemical behaviors of Ti–5Al–2Sn–4Zr–4Mo–2Cr–1Fe and Ti–6Al–4V titanium alloys in NaNO3 solution, Int. J. Miner. Metall. Mater., 31(2024), No. 4, pp. 750-763. https://doi.org/10.1007/s12613-023-2762-y
Cite this article as:
Jia Liu, Shuanglu Duan, Xiaokang Yue, and Ningsong Qu, Comparison of electrochemical behaviors of Ti–5Al–2Sn–4Zr–4Mo–2Cr–1Fe and Ti–6Al–4V titanium alloys in NaNO3 solution, Int. J. Miner. Metall. Mater., 31(2024), No. 4, pp. 750-763. https://doi.org/10.1007/s12613-023-2762-y
引用本文 PDF XML SpringerLink
研究论文

Ti–5Al–2Sn–4Zr–4Mo–2Cr–1Fe和Ti–6Al–4V钛合金在NaNO3溶液中的电化学行为


  • 通讯作者:

    刘嘉    E-mail: meejliu@nuaa.edu.cn

文章亮点

  • (1) 系统地研究了Ti–5Al–2Sn–4Zr–4Mo–2Cr–1Fe和Ti–6Al–4V两种钛合金微观组织对电化学行为的影响机制。
  • (2) 揭示了Ti–5Al–2Sn–4Zr–4Mo–2Cr–1Fe和Ti–6Al–4V两种钛合金在NaNO3溶液中的材料溶解机理。
  • (3) 开发了电化学溶解模型来表征两种钛合金在不同电流密度下的电化学溶解行为。
  • Ti–5Al–2Sn–4Zr–4Mo–2Cr–1Fe(β-CEZ)合金因其优异的强度和耐腐蚀性而被认为是航空工业潜在的结构材料。电解加工(ECM)是一种高效、低成本的β-CEZ合金制造技术。在电解加工中,加工参数选择和刀具设计基于材料的电化学溶解行为。本研究讨论了β-CEZ和Ti–6Al–4V (TC4) 合金在NaNO3溶液中的电化学溶解行为。分析了β-CEZ和TC4合金的开路电位(OCP)、塔菲尔极化、动电位极化、电化学阻抗谱(EIS)和电流效率曲线。结果表明,与TC4合金相比,β-CEZ合金的钝化膜结构更致密,溶解过程中的电荷转移阻力更大。此外,还分析了两种钛合金在不同电流密度下的溶解表面形貌。在低电流密度下,β-CEZ合金表面包含点蚀坑和溶解产物,而TC4合金表面为多孔蜂窝状结构。 在高电流密度下,两种合金的表面波纹度均得到改善,TC4合金表面比β-CEZ合金表面更平坦、更光滑。最后,还提出了β-CEZ和TC4合金的电化学溶解模型。
  • Research Article

    Comparison of electrochemical behaviors of Ti–5Al–2Sn–4Zr–4Mo–2Cr–1Fe and Ti–6Al–4V titanium alloys in NaNO3 solution

    + Author Affiliations
    • The Ti–5Al–2Sn–4Zr–4Mo–2Cr–1Fe (β-CEZ) alloy is considered as a potential structural material in the aviation industry due to its outstanding strength and corrosion resistance. Electrochemical machining (ECM) is an efficient and low-cost technology for manufacturing the β-CEZ alloy. In ECM, the machining parameter selection and tool design are based on the electrochemical dissolution behavior of the materials. In this study, the electrochemical dissolution behaviors of the β-CEZ and Ti–6Al–4V (TC4) alloys in NaNO3 solution are discussed. The open circuit potential (OCP), Tafel polarization, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), and current efficiency curves of the β-CEZ and TC4 alloys are analyzed. The results show that, compared to the TC4 alloy, the passivation film structure is denser and the charge transfer resistance in the dissolution process is greater for the β-CEZ alloy. Moreover, the dissolved surface morphology of the two titanium-based alloys under different current densities are analyzed. Under low current densities, the β-CEZ alloy surface comprises dissolution pits and dissolved products, while the TC4 alloy surface comprises a porous honeycomb structure. Under high current densities, the surface waviness of both the alloys improves and the TC4 alloy surface is flatter and smoother than the β-CEZ alloy surface. Finally, the electrochemical dissolution models of β-CEZ and TC4 alloys are proposed.
    • loading
    • [1]
      Z.Y. Xu, J. Liu, D. Zhu, N.S. Qu, X.L. Wu, and X.Z. Chen, Electrochemical machining of burn-resistant Ti40 alloy, Chin. J. Aeronaut., 28(2015), No. 4, p. 1263. doi: 10.1016/j.cja.2015.05.007
      [2]
      F. Klocke, D. Welling, and J. Dieckmann, Comparison of grinding and wire EDM concerning fatigue strength and surface integrity of machined Ti6Al4V components, Procedia Eng. 19(2011), p. 184.
      [3]
      D.J. Zhai, T. Qiu, J. Shen, and K.Q. Feng, Growth kinetics and mechanism of microarc oxidation coating on Ti–6Al–4V alloy in phosphate/silicate electrolyte, Int. J. Miner. Metall. Mater., 29(2022), No. 11, p. 1991. doi: 10.1007/s12613-022-2413-8
      [4]
      L. Lan, R.Y. Xin, X.Y. Jin, S. Gao, and B. He, Influence of multiple laser shock peening treatments on the microstructure and mechanical properties of Ti–6Al–4V alloy fabricated by electron beam melting, Int. J. Miner. Metall. Mater., 29(2022), No. 9, p. 1780. doi: 10.1007/s12613-021-2322-2
      [5]
      J. Luo, B. Wu, and M.Q. Li, 3D finite element simulation of microstructure evolution in blade forging of Ti–6Al–4V alloy based on the internal state variable models, Int. J. Miner. Metall. Mater., 19(2012), No. 2, p. 122. doi: 10.1007/s12613-012-0526-1
      [6]
      T. Grosdidier, C. Roubaud, M.J. Philippe, and Y. Combres, The deformation mechanisms in the β-metastable β-Cez titanium alloy, Scripta Mater., 36(1997), No. 1, p. 21. doi: 10.1016/S1359-6462(96)00341-7
      [7]
      C. Sauer and G. Luetjering, Thermo-mechanical processing of high strength β-titanium alloys and effects on microstructure and properties, J. Mater. Process. Technol., 117(2001), No. 3, p. 311. doi: 10.1016/S0924-0136(01)00788-9
      [8]
      J.O. Peters and G. Lütjering, Microstructure and fatigue properties of the β-titanium alloy β-Cez, Int. J. Mater. Res., 89(2021), No. 7, p. 464.
      [9]
      F.Z. Benlahreche, E. Nouicer, L. Yahia, and A. Nouicer, Corrosion behavior of nitrided titanium alloy β-CEZ and 9S20K carbon steel, Phys. Met. Metallogr., 123(2022), No. 6, p. 609. doi: 10.1134/S0031918X22060059
      [10]
      E.O. Ezugwu and Z.M. Wang, Titanium alloys and their machinability—A review, J. Mater. Process. Technol., 68(1997), No. 3, p. 262. doi: 10.1016/S0924-0136(96)00030-1
      [11]
      J. Sun and Y.B. Guo, A comprehensive experimental study on surface integrity by end milling Ti–6Al–4V, J. Mater. Process. Technol., 209(2009), No. 8, p. 4036. doi: 10.1016/j.jmatprotec.2008.09.022
      [12]
      K.P. Rajurkar, D. Zhu, J.A. McGeough, J. Kozak, and A. De Silva, New developments in electro-chemical machining, CIRP Ann., 48(1999), No. 2, p. 567. doi: 10.1016/S0007-8506(07)63235-1
      [13]
      Z.Y. Xu and Y.D. Wang, Electrochemical machining of complex components of aero-engines: Developments, trends, and technological advances, Chin. J. Aeronaut., 34(2021), No. 2, p. 28. doi: 10.1016/j.cja.2019.09.016
      [14]
      A.D. Davydov, T.B. Kabanova, and V.M. Volgin, Electrochemical machining of titanium. review, Russ. J. Electrochem., 53(2017), No. 9, p. 941. doi: 10.1134/S102319351709004X
      [15]
      F. Klocke, M. Zeis, A. Klink, and D. Veselovac, Experimental research on the electrochemical machining of modern titanium- and nickel-based alloys for aero engine components, Procedia CIRP, 6(2013), p. 368. doi: 10.1016/j.procir.2013.03.040
      [16]
      D.Y. Wang, Z.W. Zhu, N.F. Wang, D. Zhu, and H.R. Wang, Investigation of the electrochemical dissolution behavior of Inconel 718 and 304 stainless steel at low current density in NaNO3 solution, Electrochim. Acta, 156(2015), p. 301. doi: 10.1016/j.electacta.2014.12.155
      [17]
      D. Zhu, L.G. Yu, and R.H. Zhang, Dissolution effects with different microstructures of inconel 718 on surface integrity in electrochemical machining, J. Electrochem. Soc., 165(2018), No. 16, p. E872. doi: 10.1149/2.0761816jes
      [18]
      X.K. Yue, N.S. Qu, X. Ma, and H.S. Li, Anodic electrochemical behaviors of in situ synthesized (TiB+TiC)/Ti6Al4V composites in NaNO3 and NaCl electrolyte, Corros. Sci., 204(2022), art. No. 110379. doi: 10.1016/j.corsci.2022.110379
      [19]
      W.J. Cao, D.Y. Wang, G.W. Cui, and D. Zhu, Anodic dissolution mechanism of TA15 titanium alloy during counter-rotating electrochemical machining, Sci. China Technol. Sci., 65(2022), No. 6, p. 1253. doi: 10.1007/s11431-021-1999-7
      [20]
      W.D. Liu, S.S. Ao, Y. Li, et al., Effect of anodic behavior on electrochemical machining of TB6 titanium alloy, Electrochim. Acta, 233(2017), p. 190. doi: 10.1016/j.electacta.2017.03.025
      [21]
      Y.D. Wang, Z.Y. Xu, D.M. Meng, and Z. Wang, Obtaining high surface quality in electrochemical machining of TC17 titanium alloy and inconel 718 with high current densities in NaNO3 solution, J. Electrochem. Soc., 168(2021), No. 7, art. No. 073502. doi: 10.1149/1945-7111/ac131a
      [22]
      Y.D. Wang, Z.Y. Xu, and A. Zhang, Comparison of the electrochemical dissolution behavior of extruded and casted Ti–48Al–2Cr–2Nb alloys in NaNO3 solution, J. Electrochem. Soc., 166(2019), No. 12, art. No. E347. doi: 10.1149/2.0501912jes
      [23]
      Y.D. Wang, Z.Y. Xu, and A. Zhang, Anodic characteristics and electrochemical machining of two typical γ-TiAl alloys and its quantitative dissolution model in NaNO3 solution, Electrochim. Acta, 331(2020), art. No. 135429. doi: 10.1016/j.electacta.2019.135429
      [24]
      M. Weinmann, M. Stolpe, O. Weber, R. Busch, and H. Natter, Electrochemical dissolution behaviour of Ti90Al6V4 and Ti60Al40 used for ECM applications, J. Solid State Electrochem., 19(2015), No. 2, p. 485. doi: 10.1007/s10008-014-2621-x
      [25]
      D. Baehre, A. Ernst, K. Weißhaar, H. Natter, M. Stolpe, and R. Busch, Electrochemical dissolution behavior of titanium and titanium-based alloys in different electrolytes, Procedia CIRP, 42(2016), p. 137. doi: 10.1016/j.procir.2016.02.208
      [26]
      J.Q. Li, X. Lin, P.F. Guo, M.H. Song, and W.D. Huang, Electrochemical behaviour of laser solid formed Ti–6Al–4V alloy in a highly concentrated NaCl solution, Corros. Sci., 142(2018), p. 161. doi: 10.1016/j.corsci.2018.07.023
      [27]
      M. Tak, S. Singh, and R.G. Mote, Effect of microstructure on electrochemical dissolution characteristics of titanium alloys in electrochemical micromachining, Procedia Manuf., 34(2019), p. 362. doi: 10.1016/j.promfg.2019.06.178
      [28]
      Y.W. Cui, L.Y. Chen, Y.H. Chu, et al., Metastable pitting corrosion behavior and characteristics of passive film of laser powder bed fusion produced Ti–6Al–4V in NaCl solutions with different concentrations, Corros. Sci., 215(2023), art. No. 111017. doi: 10.1016/j.corsci.2023.111017
      [29]
      Y.C. Ge, Z.W. Zhu, and D.Y. Wang, Electrochemical dissolution behavior of the nickel-based cast superalloy K423A in NaNO3 solution, Electrochim. Acta, 253(2017), p. 379. doi: 10.1016/j.electacta.2017.09.046
      [30]
      C. Xu, L.Y. Chen, C.B. Zheng, et al., Improved wear and corrosion resistance of microarc oxidation coatings on Ti–6Al–4V alloy with ultrasonic assistance for potential biomedical applications, Adv. Eng. Mater., 23(2021), No. 4, art. No. 2001433. doi: 10.1002/adem.202001433
      [31]
      J.W. Lu, P. Ge, Q. Li, et al., Effect of microstructure characteristic on mechanical properties and corrosion behavior of new high strength Ti-1300 beta titanium alloy, J. Alloys Compd., 727(2017), p. 1126. doi: 10.1016/j.jallcom.2017.08.239
      [32]
      D.P. Wang, G. Chen, A.D. Wang, et al., Corrosion behavior of single- and poly-crystalline dual-phase TiAl–Ti3Al alloy in NaCl solution, Int. J. Miner. Metall. Mater., 30(2023), No. 4, p. 689. doi: 10.1007/s12613-022-2513-5
      [33]
      L.Y. Chen, H.Y. Zhang, C.B. Zheng, et al., Corrosion behavior and characteristics of passive films of laser powder bed fusion produced Ti–6Al–4V in dynamic Hank’s solution, Mater. Des., 208(2021), art. No. 109907. doi: 10.1016/j.matdes.2021.109907
      [34]
      C.H. Hsu and F. Mansfeld, Technical note: Concerning the conversion of the constant phase element parameter Y0 into a capacitance, Corrosion, 57(2001), No. 9, p. 747. doi: 10.5006/1.3280607
      [35]
      J.R. Chen and W.T. Tsai, In situ corrosion monitoring of Ti–6Al–4V alloy in H2SO4/HCl mixed solution using electrochemical AFM, Electrochim. Acta, 56(2011), No. 4, p. 1746. doi: 10.1016/j.electacta.2010.10.024
      [36]
      Y. Li, T. Zhou, P. Luo, and S.G. Xu, Surface modification of Ti–49.8at%Ni alloy by Ti ion implantation: Phase transformation, corrosion, and cell behavior, Int. J. Miner. Metall. Mater., 22(2015), No. 8, p. 868. doi: 10.1007/s12613-015-1144-5
      [37]
      Q.Z. Wang, F. Zhou, Z.F. Zhou, et al., Effect of titanium or chromium content on the electrochemical properties of amorphous carbon coatings in simulated body fluid, Electrochim. Acta, 112(2013), p. 603. doi: 10.1016/j.electacta.2013.09.022
      [38]
      D. Mahadule, R.K. Khatirkar, S.K. Gupta, A. Gupta, and T.R. Dandekar, Microstructure evolution and corrosion behaviour of a high Mo containing α + β titanium alloy for biomedical applications, J. Alloys Compd., 912(2022), art. No. 165240. doi: 10.1016/j.jallcom.2022.165240
      [39]
      M. Atapour, A.L. Pilchak, G.S. Frankel, and J.C. Williams, Corrosion behavior of β titanium alloys for biomedical applications, Mater. Sci. Eng. C, 31(2011), No. 5, p. 885. doi: 10.1016/j.msec.2011.02.005
      [40]
      J.Q. Li, Y.B. Zou, Y. Yang, Q. Wang, and S.H. Shi, Electrochemical properties and dissolved behavior of laser solid formed Ti6Al4V alloy in NaCl solution with different current densities, Mater. Today Commun., 33(2022), art. No. 104746. doi: 10.1016/j.mtcomm.2022.104746

    Catalog


    • /

      返回文章
      返回