留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 2
Feb.  2024

图(16)  / 表(4)

数据统计

分享

计量
  • 文章访问数:  281
  • HTML全文浏览量:  114
  • PDF下载量:  17
  • 被引次数: 0
F. Akbari, M. Golkaram, S. Beyrami, G. Shirazi, K. Mantashloo, R. Taghiabadi, M. Saghafi Yazdi, and I. Ansarian, Effect of solidification cooling rate on microstructure and tribology characteristics of Zn–4Si alloy, Int. J. Miner. Metall. Mater., 31(2024), No. 2, pp. 362-373. https://doi.org/10.1007/s12613-023-2764-9
Cite this article as:
F. Akbari, M. Golkaram, S. Beyrami, G. Shirazi, K. Mantashloo, R. Taghiabadi, M. Saghafi Yazdi, and I. Ansarian, Effect of solidification cooling rate on microstructure and tribology characteristics of Zn–4Si alloy, Int. J. Miner. Metall. Mater., 31(2024), No. 2, pp. 362-373. https://doi.org/10.1007/s12613-023-2764-9
引用本文 PDF XML SpringerLink
研究论文

凝固冷却速率对Zn–4Si合金组织和摩擦特性的影响


  • 通讯作者:

    R. Taghiabadi    E-mail: taghiabadi@ikiu.ac.ir

  • 本文主要是通过高凝固冷却速率(SCR)来改变一种新型Zn–4Si合金的组织性能并提高其摩擦性能。结果表明,当SCR从2增加到59.5°C/s时,初生Si颗粒的平均尺寸和晶粒的平均尺寸分别从76.1和3780 μm减小到14.6和460 μm以下。此外,增加SCR可以增强组织均匀性,降低孔隙率(50%),提高基体硬度(36%)。这些微观结构的变化增强了摩擦性能。当施加压力为0.5 MPa时,SCR从2.0增加到59.5°C/s,合金的磨损率和平均摩擦系数分别降低了57%和23%。磨损机制也从缓慢冷却合金的严重脱层、粘着和磨损转变为高冷却速率凝固试样的轻度摩擦层脱层/磨损。
  • Research Article

    Effect of solidification cooling rate on microstructure and tribology characteristics of Zn–4Si alloy

    + Author Affiliations
    • The main objective of this work was to modify the microstructure and enhance the tribological properties of a new Zn–4Si alloy through a high solidification cooling rate (SCR). According to the results, by increasing the SCR from 2.0 to 59.5°C/s the average size of primary Si particles and that of the grains reduced from 76.1 and 3780 μm to less than about 14.6 and 460 μm, respectively. Augmenting the SCR also enhanced the microstructural homogeneity, decreased the porosity content (by 50%), and increased the matrix hardness (by 36%). These microstructural changes enhanced the tribological behavior. For instance, under the applied pressure of 0.5 MPa, an increase in the SCR from 2.0 to 59.5°C/s decreased the wear rate and the average friction coefficient of the alloy by 57% and 23%, respectively. The wear mechanism was also changed from the severe delamination, adhesion, and abrasion in the slowly-cooled alloy to the mild tribolayer delamination/abrasion in the high-cooling-rate-solidified sample.
    • loading
    • [1]
      E. Mostaed, M. Sikora-Jasinska, A. Mostaed, et al., Novel Zn-based alloys for biodegradable stent applications: Design, development and in vitro degradation, J. Mech. Behav. Biomed. Mater., 60(2016), p. 581. doi: 10.1016/j.jmbbm.2016.03.018
      [2]
      G. Katarivas Levy, J. Goldman, and E. Aghion, The prospects of zinc as a structural material for biodegradable implants—A review paper, Metals, 7(2017), No. 10, art. No. 402. doi: 10.3390/met7100402
      [3]
      Y. Liu, B.H. Lu, and Z.X. Cai, Recent progress on Mg- and Zn-based alloys for biodegradable vascular stent applications, J. Nanomater., 2019(2019), art. No. 1310792.
      [4]
      H. Kabir, K. Munir, C.E. Wen, and Y.C. Li, Recent research and progress of biodegradable zinc alloys and composites for biomedical applications: Biomechanical and biocorrosion perspectives, Bioact. Mater., 6(2021), No. 3, p. 836.
      [5]
      M. Wątroba, W. Bednarczyk, J. Kawałko, et al., A novel high-strength Zn–3Ag–0.5Mg alloy processed by hot extrusion, cold rolling, or high-pressure torsion, Metall. Mater. Trans. A, 51(2020), No. 7, p. 3335. doi: 10.1007/s11661-020-05797-y
      [6]
      A. Günay Bulutsuz, Tribological behavior of high-pressure torsion processed biodegradable pure Zn under dry and wet conditions, Ind. Lubr. Tribol., 74(2022), No. 5, p. 542. doi: 10.1108/ILT-09-2021-0366
      [7]
      H.F. Li, J.Y. Huang, P. Zhang, and Q. Zhang, Investigation on tribological behaviors of biodegradable pure Zn and Zn–X (Li, Cu, Ge) binary alloys, J. Mater. Sci. Mater. Med., 32(2021), No. 12, art. No. 149. doi: 10.1007/s10856-021-06625-4
      [8]
      A.M. Roman, I. Voiculescu, R. Cimpoeșu, et al., Microstructure, shape memory effect, chemical composition and corrosion resistance performance of biodegradable FeMnSi–Al alloy, Crystals, 13(2023), No. 1, p. 109. doi: 10.3390/cryst13010109
      [9]
      W.Y. Jiang and W.Z. Yu, Corrosion behavior and osteogenic activity of a biodegradable orthopedic implant Mg–Si alloy with a gradient structure, Metals, 11(2021), No. 5, art. No. 781. doi: 10.3390/met11050781
      [10]
      F. Rajabi, R. Taghiabadi, and M.H. Shaeri, Tribology of Si-rich TIG-deposited coatings on Zn–40Al–2Cu alloy, Surf. Eng., 36(2020), No. 7, p. 735. doi: 10.1080/02670844.2020.1728909
      [11]
      D.S. Fischer, Development of In-situ Toughened Silicon-Rich Alloys: A New Class of Castable Engineering Ceramics [Dissertation], Massachusetts Institute of Technology, USA, 2010.
      [12]
      K.E. Knipling, D.C. Dunand, and D.N. Seidman, Criteria for developing castable, creep-resistant aluminum-based alloys–A review, Int. J. Mater. Res., 97(2006), No. 3, p. 246. doi: 10.1515/ijmr-2006-0042
      [13]
      K.E. Knipling, D.C. Dunand, and D.N. Seidman, Nucleation and precipitation strengthening in dilute Al–Ti and Al–Zr alloys, Metall. Mater. Trans. A, 38(2007), No. 10, p. 2552. doi: 10.1007/s11661-007-9283-6
      [14]
      D. Yousefi, R. Taghiabadi, M.H. Shaeri, and I. Ansarian, Microstructural evolution and mechanical properties of multi-directionally forged SiP/ZA22 composite, Arch. Civ. Mech. Eng., 20(2020), No. 4, art. No. 118. doi: 10.1007/s43452-020-00124-z
      [15]
      M.R. Moazami, A. Razaghian, H. Mirzadeh, and M. Emamy, Tailoring the mechanical properties of hypereutectic in situ Al–Mg2Si composites via hybrid TiB2 reinforcement and hot extrusion, Arch. Civ. Mech. Eng., 22(2022), No. 2, art. No. 87. doi: 10.1007/s43452-022-00416-6
      [16]
      B. Gao, J.D. He, Y.W. Zhou, G.L. Zhu, and P.F. Xing, Effect of extrusion and heat treatment on microstructure and mechanical properties of hypereutectic A390-0.3wt%Nd alloy, Mat. Res., 22(2019), No. suppl, art. No. e20180899.
      [17]
      W.M. Mao, P.Y. Yan, and Z.K. Zheng, Refinement of primary silicon grains in semi-solid Al–25%Si hypereutectic aluminum alloy slurry, Solid State Phenom., 285(2019), p. 153. doi: 10.4028/www.scientific.net/SSP.285.153
      [18]
      M. Ebrahimi, A. Zarei-Hanzaki, H.R. Abedi, M. Azimi, and S.S. Mirjavadi, Correlating the microstructure to mechanical properties and wear behavior of an accumulative back extruded Al–Mg2Si in situ composite, Tribol. Int., 115(2017), p. 199. doi: 10.1016/j.triboint.2017.05.034
      [19]
      M. Sharifzadeh, M.H. Shaeri, R. Taghiabadi, F. Mozaffari, and M. Ebrahimi, Investigating the combination effect of warm extrusion and multi-directional forging on microstructure and mechanical properties of Al–Mg2Si composites, Arch. Civ. Mech. Eng., 20(2020), No. 2, art. No. 33. doi: 10.1007/s43452-020-00020-6
      [20]
      A.B. Ma, K. Suzuki, N. Saito, et al., Impact toughness of an ingot hypereutectic Al–23 mass% Si alloy improved by rotary-die equal-channel angular pressing, Mater. Sci. Eng. A, 399(2005), No. 1-2, p. 181. doi: 10.1016/j.msea.2005.03.009
      [21]
      Y.L. Jin, H.Z. Fang, S. Wang, R.R. Chen, Y.Q. Su, and J.J. Guo, Effects of Eu modification and heat treatment on microstructure and mechanical properties of hypereutectic Al–Mg2Si composites, Mater. Sci. Eng. A, 831(2022), art. No. 142227. doi: 10.1016/j.msea.2021.142227
      [22]
      L.L. Mo, M.H. Jiang, X. Zhou, Y.J. Zhao, and J. Du, Modification mechanisms of hypereutectic Al–Fe alloys treated by Sm/Yb addition: Experiments and first-principles calculations, J. Alloys Compd., 948(2023), art. No. 169786. doi: 10.1016/j.jallcom.2023.169786
      [23]
      L. Zhang, S.Y. Chen, Q.C. Li, and G.W. Chang, Formation mechanism and conditions of fine primary silicon being uniformly distributed on single αAl matrix in Al–Si alloys, Mater. Des., 193(2020), art. No. 108853. doi: 10.1016/j.matdes.2020.108853
      [24]
      J.H. Abboud and M. Kayitmazbatir, Microstructural evolution and hardness of rapidly solidified hypereutectic Al–Si surface layers by laser remelting, Adv. Mater. Process. Technol., 8(2022), No. 4, p. 4136.
      [25]
      Y.J. Xu, Y. Deng, D. Casari, R.H. Mathiesen, X.F. Liu, and Y.J. Li, Revealing the nucleation kinetics of primary Si particles in hypereutectic Al–Si alloys under the influence of P inoculation, J. Mater. Sci., 55(2020), No. 32, p. 15621. doi: 10.1007/s10853-020-05095-3
      [26]
      M. Okayasu, S. Takeuchi, and T. Shiraishi, Crystallisation characteristics of primary silicon particles in cast hypereutectic Al–Si alloy, Int. J. Cast Met. Res., 26(2013), No. 2, p. 105. doi: 10.1179/1743133612Y.0000000040
      [27]
      E. Safary, R. Taghiabadi, and M.H. Ghoncheh, Mechanical properties of Al–15Mg2Si composites prepared under different solidification cooling rates, Int. J. Miner. Metall. Mater., 29(2022), No. 6, p. 1249. doi: 10.1007/s12613-020-2244-4
      [28]
      J. Zhang, Z. Fan, Y.Q. Wang, and B.L. Zhou, Effect of cooling rate on the microstructure of hypereutectic Al–Mg2Si alloys, J. Mater. Sci. Lett., 19(2000), No. 20, p. 1825. doi: 10.1023/A:1006702709371
      [29]
      D.T. Wang, H.T. Zhang, C. Guo, H.L. Wu, and J.Z. Cui, Effect of cooling rate on growth and transformation of primary Mg2Si in Al–Mg2Si in situ composites, J. Mater. Res., 33(2018), No. 20, p. 3458. doi: 10.1557/jmr.2018.118
      [30]
      R.P. Taylor, S.T. McClain, and J.T. Berry, Uncertainty analysis of metal-casting porosity measurements using Archimedes' principle, Int. J. Cast Met. Res., 11(1999), No. 4, p. 247. doi: 10.1080/13640461.1999.11819281
      [31]
      Y.J. Xu, Y. Deng, D. Casari, R.H. Mathiesen, and Y.J. Li, In-situ X-radiographic study of nucleation and growth behaviour of primary silicon particles during solidification of a hypereutectic Al–Si alloy, J. Alloys Compd., 832(2020), art. No. 154948. doi: 10.1016/j.jallcom.2020.154948
      [32]
      C.L. Xu and Q.C. Jiang, Morphologies of primary silicon in hypereutectic Al–Si alloys with melt overheating temperature and cooling rate, Mater. Sci. Eng. A, 437(2006), No. 2, p. 451. doi: 10.1016/j.msea.2006.07.088
      [33]
      H. Yamagata, W. Kasprzak, M. Aniolek, H. Kurita, and J.H. Sokolowski, The effect of average cooling rates on the microstructure of the Al–20% Si high pressure die casting alloy used for monolithic cylinder blocks, J. Mater. Process. Technol., 203(2008), No. 1-3, p. 333. doi: 10.1016/j.jmatprotec.2007.10.023
      [34]
      W. Kasprzak, M. Sahoo, J. Sokolowski, H. Yamagata, and H. Kurita, The effect of the melt temperature and the cooling rate on the microstructure of the Al–20% Si alloy used for monolithic engine blocks, Int. J. Met., 3(2009), No. 3, p. 55.
      [35]
      L.Z. Zhao, M.J. Zhao, L.J. Song, and J. Mazumder, Ultra-fine Al–Si hypereutectic alloy fabricated by direct metal deposition, Mater. Des., 56(2014), p. 542. doi: 10.1016/j.matdes.2013.11.059
      [36]
      H.H. Lien, J. Mazumder, J. Wang, and A. Misra, Microstructure evolution and high density of nanotwinned ultrafine Si in hypereutectic Al–Si alloy by laser surface remelting, Mater. Charact., 161(2020), art. No. 110147. doi: 10.1016/j.matchar.2020.110147
      [37]
      L. Yao, Experimental Investigation and Numerical Modeling of Microporosity Formation in Aluminum Alloy A356 [Dissertation], The University of British Columbia, Vancouver, Canada, 2011.
      [38]
      K.D. Carlson, Z.P. Lin, and C. Beckermann, Modeling the effect of finite-rate hydrogen diffusion on porosity formation in aluminum alloys, Metall. Mater. Trans. B, 38(2007), No. 4, p. 541. doi: 10.1007/s11663-006-9013-2
      [39]
      H.S. Kim, On the rule of mixtures for the hardness of particle reinforced composites, Mater. Sci. Eng. A, 289(2000), No. 1-2, p. 30. doi: 10.1016/S0921-5093(00)00909-6
      [40]
      I. Hutchings, S. Wilson, and A.T. Alpas, Wear of aluminum-based composites, [in] Anthony Kelly and Carl Zweben, eds., Comprehensive Composite Maaterials, Pergamon, 2000, p. 501.
      [41]
      S. Chankitmunkong, D.G. Eskin, and C. Limmaneevichitr, Constitutive behavior of an AA4032 piston alloy with Cu and Er additions upon high-temperature compressive deformation, Metall. Mater. Trans. A, 51(2020), No. 1, p. 467. doi: 10.1007/s11661-019-05482-9
      [42]
      M. Warmuzek, Aluminium–Silicon Casting Alloys: Atlas of Microfractographs, ASM International, Materials Park, OH, USA. 2004.
      [43]
      M.H. Shaeri, M. Shaeri, M. Ebrahimi, M.T. Salehi, and S.H. Seyyedein, Effect of ECAP temperature on microstructure and mechanical properties of Al–Zn–Mg–Cu alloy, Prog. Nat. Sci. Mater. Int., 26(2016), No. 2, p. 182. doi: 10.1016/j.pnsc.2016.03.003
      [44]
      N. Kazantseva, P. Krakhmalev, M. Åsberg, et al., Micromechanisms of deformation and fracture in porous L-PBF 316L stainless steel at different strain rates, Metals, 11(2021), No. 11, art. No. 1870. doi: 10.3390/met11111870
      [45]
      W.H. Kan, L.N.S. Chiu, C.V.S. Lim, et al., A critical review on the effects of process-induced porosity on the mechanical properties of alloys fabricated by laser powder bed fusion, J. Mater. Sci., 57(2022), No. 21, p. 9818. doi: 10.1007/s10853-022-06990-7
      [46]
      M.A. Chowdhury, N. Hossain, A. Al Masum, et al., Surface coatings analysis and their effects on reduction of tribological properties of coated aluminum under motion with ML approach, Mater. Res. Express, 8(2021), No. 8, art. No. 086508. doi: 10.1088/2053-1591/ac1c33
      [47]
      N. Idusuyi and J.I. Olayinka, Dry sliding wear characteristics of aluminium metal matrix composites: A brief overview, J. Mater. Res. Technol., 8(2019), No. 3, p. 3338. doi: 10.1016/j.jmrt.2019.04.017
      [48]
      Z.C. Lu, M.Q. Zeng, Y. Gao, and M. Zhu, Minimizing tribolayer damage by strength-ductility matching in dual-scale structured Al–Sn alloys: A mechanism for improving wear performance, Wear, 304(2013), No. 1-2, p. 162. doi: 10.1016/j.wear.2013.05.001
      [49]
      Y.S. Mao, L. Wang, K.M. Chen, S.Q. Wang, and X.H. Cui, Tribo-layer and its role in dry sliding wear of Ti–6Al–4V alloy, Wear, 297(2013), No. 1-2, p. 1032. doi: 10.1016/j.wear.2012.11.063
      [50]
      Z. Nouri and R. Taghiabadi, Tribological properties improvement of conventionally-cast Al–8.5Fe–1.3V–1.7Si alloy by multi-pass friction stir processing, Trans. Nonferrous Met. Soc. China, 31(2021), No. 5, p. 1262. doi: 10.1016/S1003-6326(21)65576-0
      [51]
      A.K. Baby, M. Priyaranjan, K. Deepak Lawrence, and P.K. Rajendrakumar, Tribological behaviour of hypereutectic Al–Si automotive cylinder liner material under dry sliding wear condition in severe wear regime, Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol., 235(2021), No. 7, p. 1450. doi: 10.1177/1350650120964616
      [52]
      Y. Zhang, B.X. Wang, F. Qiu, H.Y. Yang, and G.C. Barber, Superior wear resistance of dual-phased TiC–TiB2 ceramic nanoparticles reinforced carbon steels, J. Mater. Res. Technol., 24(2023), p. 653. doi: 10.1016/j.jmrt.2023.03.061
      [53]
      A. Moharrami, A. Razaghian, M. Paidar, M. Šlapáková, O.O. Ojo, and R. Taghiabadi, Enhancing the mechanical and tribological properties of Mg2Si-rich aluminum alloys by multi-pass friction stir processing, Mater. Chem. Phys., 250(2020), art. No. 123066. doi: 10.1016/j.matchemphys.2020.123066
      [54]
      A. Nadim, R. Taghiabadi, and A. Razaghian, Effect of Mn modification on the tribological properties of in situ Al–15Mg2Si composites containing Fe as an impurity, J. Tribol., 140(2018), No. 6, art. No. 061610. doi: 10.1115/1.4040384
      [55]
      H. Sarmadi, A.H. Kokabi, and S.M. Seyed Reihani, Friction and wear performance of copper–graphite surface composites fabricated by friction stir processing (FSP), Wear, 304(2013), No. 1-2, p. 1. doi: 10.1016/j.wear.2013.04.023
      [56]
      D.A. Rigney and J.E. Hammerberg, Unlubricated sliding behavior of metals, MRS Bull., 23(1998), No. 6, p. 32. doi: 10.1557/S0883769400030608

    Catalog


    • /

      返回文章
      返回