留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 4
Apr.  2024

图(8)  / 表(5)

数据统计

分享

计量
  • 文章访问数:  1467
  • HTML全文浏览量:  192
  • PDF下载量:  36
  • 被引次数: 0
Mengwei Wu, Wei Yong, Cunqin Fu, Chunmei Ma,  and Ruiping Liu, Machine learning-assisted efficient design of Cu-based shape memory alloy with specific phase transition temperature, Int. J. Miner. Metall. Mater., 31(2024), No. 4, pp. 773-785. https://doi.org/10.1007/s12613-023-2767-6
Cite this article as:
Mengwei Wu, Wei Yong, Cunqin Fu, Chunmei Ma,  and Ruiping Liu, Machine learning-assisted efficient design of Cu-based shape memory alloy with specific phase transition temperature, Int. J. Miner. Metall. Mater., 31(2024), No. 4, pp. 773-785. https://doi.org/10.1007/s12613-023-2767-6
引用本文 PDF XML SpringerLink
研究论文

机器学习辅助具有特定相变温度的Cu基SMA高效设计


    * 共同第一作者
  • 通讯作者:

    马春梅    E-mail: haomerry@ustb.edu.cn

    刘瑞平    E-mail: lrp@cumtb.edu.cn

文章亮点

  • (1) 成功地预测了Cu基形状记忆合金的相变温度
  • (2) 系统对比了成分建模和元素特征建模方法的优缺点
  • (3) 分析了元素关键特征对Cu基形状记忆合金相变温度的影响机理
  • (4) 实现了具有特定相变温度的Cu基形状记忆合金的高效设计
  • 马氏体相变温度是形状记忆合金的应用基础,快速准确预测形状记忆合金转变温度具有非常重要的实际意义。本文利用机器学习方法以加速搜索具有特定目标特性(相变温度)的形状记忆合金。采用直接建模和特征建模方法对形状记忆合金相变温度进行预测。从大量未探索的数据中选择一组数据,采用反向设计方法设计了形状记忆合金。获取了该形状记忆合金的实验结果,验证了支持向量回归模型的有效性。结果显示机器学习模型可以更高效、更有针对性地获得目标材料,实现了特定目标相变温度形状记忆合金的准确快速设计。在此基础上,分析了相变温度与材料描述符之间的关系,证明了影响形状记忆合金相变温度的关键因素是基于原子间结合能的强度。本工作为Cu基形状记忆合金的可控设计和性能优化提供新的思路。
  • Research Article

    Machine learning-assisted efficient design of Cu-based shape memory alloy with specific phase transition temperature

    + Author Affiliations
    • The martensitic transformation temperature is the basis for the application of shape memory alloys (SMAs), and the ability to quickly and accurately predict the transformation temperature of SMAs has very important practical significance. In this work, machine learning (ML) methods were utilized to accelerate the search for shape memory alloys with targeted properties (phase transition temperature). A group of component data was selected to design shape memory alloys using reverse design method from numerous unexplored data. Component modeling and feature modeling were used to predict the phase transition temperature of the shape memory alloys. The experimental results of the shape memory alloys were obtained to verify the effectiveness of the support vector regression (SVR) model. The results show that the machine learning model can obtain target materials more efficiently and pertinently, and realize the accurate and rapid design of shape memory alloys with specific target phase transition temperature. On this basis, the relationship between phase transition temperature and material descriptors is analyzed, and it is proved that the key factors affecting the phase transition temperature of shape memory alloys are based on the strength of the bond energy between atoms. This work provides new ideas for the controllable design and performance optimization of Cu-based shape memory alloys.
    • loading
    • [1]
      H.Y. Wang, D. Xu, J.C. Feng, S. Chao, and H. Sun, Shape memory properties of additive manufacturing Cu–Al–Mn–Ni alloys with different Ni contents, MRS Commun., 13(2023), No. 3, p. 526. doi: 10.1557/s43579-023-00361-2
      [2]
      Y.K. Zhang, L.Y. Xu, L. Zhao, et al., Process-microstructure-properties of CuAlNi shape memory alloys fabricated by laser powder bed fusion, J. Mater. Sci. Technol., 152(2023), p. 1. doi: 10.1016/j.jmst.2022.12.037
      [3]
      C.Y. Xiong, Y. Li, J. Zhang, et al., Superelasticity over a wide temperature range in metastable β-Ti shape memory alloys, J. Alloys Compd., 853(2021), art. No. 157090. doi: 10.1016/j.jallcom.2020.157090
      [4]
      Q.K. Meng, J.D. Xu, H. Li, et al., Phase transformations and mechanical properties of a Ti36Nb5Zr alloy subjected to thermomechanical treatments, Rare Met., 41(2022), No. 1, p. 209. doi: 10.1007/s12598-021-01744-x
      [5]
      Y.H. Sun, Y. Zhao, Y.Y. Zhao, et al., Improving exposure of anodically ordered Ni–Ti–O and corrosion resistance and biological properties of NiTi alloys by substrate electropolishing, Rare Met., 40(2021), No. 12, p. 3575. doi: 10.1007/s12598-021-01721-4
      [6]
      R. Yang, S. Li, N. Zhang, C. Wang, T.M. Wang, and Q.H. Wang, Tribology behaviors of Ti–Ni51.5at% shape memory alloy with different microstructures and textures, Rare Met., 40(2021), No. 12, p. 3616. doi: 10.1007/s12598-021-01706-3
      [7]
      X. Feng, L.M. Zhao, X.J. Mi, et al., Improving interface adhesion in TiNi wire/shape memory epoxy composites using carbon nanotubes, Rare Met., 40(2021), No. 4, p. 934. doi: 10.1007/s12598-018-1029-7
      [8]
      M.W. Wu, Y. Xiao, Z.F. Hu, R.P. Liu, and C.M. Ma, Enhanced superelasticity of Cu–Al–Ni shape memory alloys with strong orientation prepared by horizontal continuous casting, Front. Mater. Sci., 16(2022), No. 4, art. No. 220616. doi: 10.1007/s11706-022-0616-6
      [9]
      P. Motzki and S. Seelecke, Encyclopedia Smart Materials. Elsevier, Amsterdam, 2022, p. 254.
      [10]
      Y. Wang, J. Venezuela, and M. Dargusch, Biodegradable shape memory alloys: Progress and prospects, Biomaterials, 279(2021), art. No. 121215. doi: 10.1016/j.biomaterials.2021.121215
      [11]
      N. Gangil, A.N. Siddiquee, and S. Maheshwari, Towards applications, processing and advancements in shape memory alloy and its composites, J. Manuf. Process., 59(2020), p. 205. doi: 10.1016/j.jmapro.2020.09.048
      [12]
      N.A. Hamid, A. Ibrahim, and A. Adnan, Smart structures with Pseudoelastic and Pseudoplastic shape memory alloy: A critical review of their prospective, feasibility and current trends, IOP Conf. Ser., 469(2019), art. No. 012123.
      [13]
      S. Santosh, J. Kevin Thomas, K. Rajkumar, and A. Sabareesh, Effect of Ni and Mn additions on the damping characteristics of Cu–Al–Fe based high temperature shape memory alloys, J. Alloys Compd., 924(2022), art. No. 166258. doi: 10.1016/j.jallcom.2022.166258
      [14]
      T.N. Raju and V. Sampath, Influence of aluminium and iron contents on the transformation temperatures of Cu–Al–Fe shape memory alloys, Trans. Indian Inst. Met., 64(2011), No. 1, art. No. 165.
      [15]
      Y. Sutou, R. Kainuma, and K. Ishida, Effect of alloying elements on the shape memory properties of ductile Cu–Al–Mn alloys, Mater. Sci. Eng. A, 273-275(1999), p. 375. doi: 10.1016/S0921-5093(99)00301-9
      [16]
      R. Dasgupta, A.K. Jain, P. Kumar, S. Hussain, and A. Pandey, Role of alloying additions on the properties of Cu–Al–Mn shape memory alloys, J. Alloys Compd., 620(2015), p. 60. doi: 10.1016/j.jallcom.2014.09.047
      [17]
      S.U. Rehman, M. Khan, A.N. Khan, et al., Influence of Cu addition on transformation temperatures and thermal stability of TiNiPd high temperature shape memory alloys, Proc. Inst. Mech. Eng., 233(2019), No. 5, p. 800.
      [18]
      I.N. Qader, E. Öner, M. Kok, et al., Mechanical and thermal behavior of Cu84− x Al13Ni3Hf x shape memory alloys, Iran. J. Sci. Technol. Trans. A, 45(2021), No. 1, p. 343. doi: 10.1007/s40995-020-01008-w
      [19]
      K.K. Alaneme, E.A. Okotete, and J.U. Anaele, Structural vibration mitigation–A concise review of the capabilities and applications of Cu and Fe based shape memory alloys in civil structures, J. Build. Eng., 22(2019), p. 22. doi: 10.1016/j.jobe.2018.11.014
      [20]
      M.H.S. Segler, M. Preuss, and M.P. Waller, Planning chemical syntheses with deep neural networks and symbolic AI, Nature, 555(2018), No. 7698, p. 604. doi: 10.1038/nature25978
      [21]
      X.J. Wang, S. Ye, W. Hu, et al., Electric dipole descriptor for machine learning prediction of catalyst surface–molecular adsorbate interactions, J. Am. Chem. Soc., 142(2020), No. 17, p. 7737. doi: 10.1021/jacs.0c01825
      [22]
      Z.H. Lian, M.J. Li, and W.C. Lu, Fatigue life prediction of aluminum alloy via knowledge-based machine learning, Int. J. Fatigue, 157(2022), art. No. 106716. doi: 10.1016/j.ijfatigue.2021.106716
      [23]
      R. Jaafreh, U.M. Chaudry, K. Hamad, and T. Abuhmed, Age-hardening behavior guided by the multi-objective evolutionary algorithm and machine learning, J. Alloys Compd., 893(2022), art. No. 162104. doi: 10.1016/j.jallcom.2021.162104
      [24]
      J. Wei, X. Chu, X.Y. Sun, et al., Machine learning in materials science, InfoMat, 1(2019), No. 3, p. 338. doi: 10.1002/inf2.12028
      [25]
      L. Qiao, Y. Liu, and J.C. Zhu, A focused review on machine learning aided high-throughput methods in high entropy alloy, J. Alloys Compd., 877(2021), art. No. 160295. doi: 10.1016/j.jallcom.2021.160295
      [26]
      N. Qu, Y. Liu, Y. Zhang, et al., Machine learning guided phase formation prediction of high entropy alloys, Mater. Today Commun., 32(2022), art. No. 104146. doi: 10.1016/j.mtcomm.2022.104146
      [27]
      Y. Zhang, C. Wen, C.X. Wang, et al., Phase prediction in high entropy alloys with a rational selection of materials descriptors and machine learning models, Acta Mater., 185(2020), p. 528. doi: 10.1016/j.actamat.2019.11.067
      [28]
      D.Z. Xue, P.V. Balachandran, J. Hogden, J. Theiler, D.Q. Xue, and T. Lookman, Accelerated search for materials with targeted properties by adaptive design, Nat. Commun., 7(2016), art. No. 11241. doi: 10.1038/ncomms11241
      [29]
      D.Z. Xue, D.Q. Xue, R.H. Yuan, et al., An informatics approach to transformation temperatures of NiTi-based shape memory alloys, Acta Mater., 125(2017), p. 532. doi: 10.1016/j.actamat.2016.12.009
      [30]
      C. Wen, Y. Zhang, C.X. Wang, et al., Machine learning assisted design of high entropy alloys with desired property, Acta Mater., 170(2019), p. 109. doi: 10.1016/j.actamat.2019.03.010
      [31]
      C. Wen, C.X. Wang, Y. Zhang, et al., Modeling solid solution strengthening in high entropy alloys using machine learning, Acta Mater., 212(2021), art. No. 116917. doi: 10.1016/j.actamat.2021.116917
      [32]
      K. Kaufmann and K.S. Vecchio, Searching for high entropy alloys: A machine learning approach, Acta Mater., 198(2020), p. 178. doi: 10.1016/j.actamat.2020.07.065
      [33]
      Z.Q. Zhou, Y.J. Zhou, Q.F. He, Z.Y. Ding, F.C. Li, and Y. Yang, Machine learning guided appraisal and exploration of phase design for high entropy alloys, NPJ Comput. Mater., 5(2019), art. No. 128. doi: 10.1038/s41524-019-0265-1
      [34]
      K. Lee, M.V. Ayyasamy, P. Delsa, T.Q. Hartnett, and P.V. Balachandran, Phase classification of multi-principal element alloys via interpretable machine learning, NPJ Comput. Mater., 8(2022), art. No. 25. doi: 10.1038/s41524-022-00704-y
      [35]
      Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, and Y. Yang, High-entropy alloy: Challenges and prospects, Mater. Today, 19(2016), No. 6, p. 349. doi: 10.1016/j.mattod.2015.11.026
      [36]
      F. Yang, Z. Li, Q. Wang, et al., Cluster-formula-embedded machine learning for design of multicomponent β-Ti alloys with low Young’s modulus, NPJ Comput. Mater., 6(2020), art. No. 101. doi: 10.1038/s41524-020-00372-w
      [37]
      X.J. Liu, P.C. Xu, J.J. Zhao, W.C. Lu, M.J. Li, and G. Wang, Material machine learning for alloys: Applications, challenges and perspectives, J. Alloys Compd., 921(2022), art. No. 165984. doi: 10.1016/j.jallcom.2022.165984
      [38]
      C.T. Wu, H.T. Chang, C.Y. Wu, et al., Machine learning recommends affordable new Ti alloy with bone-like modulus, Mater. Today, 34(2020), p. 41. doi: 10.1016/j.mattod.2019.08.008
      [39]
      H.T. Zhang, H.D. Fu, X.Q. He, et al., Dramatically enhanced combination of ultimate tensile strength and electric conductivity of alloys via machine learning screening, Acta Mater., 200(2020), p. 803. doi: 10.1016/j.actamat.2020.09.068
      [40]
      H.T. Zhang, H.D. Fu, S.C. Zhu, W. Yong, and J.X. Xie, Machine learning assisted composition effective design for precipitation strengthened copper alloys, Acta Mater., 215(2021), art. No. 117118. doi: 10.1016/j.actamat.2021.117118
      [41]
      C.S. Wang, H.D. Fu, L. Jiang, D.Z. Xue, and J.X. Xie, A property-oriented design strategy for high performance copper alloys via machine learning, NPJ Comput. Mater., 5(2019), art. No. 87. doi: 10.1038/s41524-019-0227-7
      [42]
      D.F. Tu, J.Q. Yan, Y.B. Xie, et al., Accelerated design for magnetocaloric performance in Mn–Fe–P–Si compounds using machine learning, J. Mater. Sci. Technol., 96(2022), p. 241. doi: 10.1016/j.jmst.2021.03.082
      [43]
      M. Rahaman, W.Z. Mu, J. Odqvist, and P. Hedström, Machine learning to predict the martensite start temperature in steels, Metall. Mater. Trans. A, 50(2019), No. 5, p. 2081. doi: 10.1007/s11661-019-05170-8
      [44]
      I. Guyon, J. Weston, S. Barnhill, and V. Vapnik, Gene selection for cancer classification using support vector machines, Mach. Learn., 46(2002), No. 1-3, p. 389.
      [45]
      L.P. Wang, Y.L. Wang, and Q. Chang, Feature selection methods for big data bioinformatics: A survey from the search perspective, Methods, 111(2016), p. 21. doi: 10.1016/j.ymeth.2016.08.014
      [46]
      R.H. Yuan, Z. Liu, P.V. Balachandran, et al., Accelerated discovery of large electrostrains in BaTiO3-based piezoelectrics using active learning, Adv. Mater., 30(2018), No. 7, art. No. 1702884. doi: 10.1002/adma.201702884
      [47]
      S.J. An, W.Q. Liu, and S. Venkatesh, Fast cross-validation algorithms for least squares support vector machine and kernel ridge regression, Pattern Recognit., 40(2007), No. 8, p. 2154. doi: 10.1016/j.patcog.2006.12.015
      [48]
      Y. Liu, T.L. Zhao, W.W. Ju, and S.Q. Shi, Materials discovery and design using machine learning, J. Materiomics, 3(2017), No. 3, p. 159. doi: 10.1016/j.jmat.2017.08.002
      [49]
      K.T. Butler, D.W. Davies, H. Cartwright, O. Isayev, and A. Walsh, Machine learning for molecular and materials science, Nature, 559(2018), No. 7715, p. 547. doi: 10.1038/s41586-018-0337-2
      [50]
      H.D. Fu, H.T. Zhang, C.S. Wang, W. Yong, and J.X. Xie, Recent progress in the machine learning-assisted rational design of alloys, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 635. doi: 10.1007/s12613-022-2458-8
      [51]
      V. Sampath, S.V. Gayathri, and R. Srinithi, Experimental and theoretical analyses of transformation temperatures of Cu-based shape memory alloys, Bull. Mater. Sci., 42(2019), No. 5, art. No. 229. doi: 10.1007/s12034-019-1911-4
      [52]
      X.H. Li and Z.W. Zhu, Nonlinear dynamic characteristics and stability analysis of energy storage flywheel rotor with shape memory alloy damper, J. Energy Storage, 45(2022), art. No. 103392. doi: 10.1016/j.est.2021.103392
      [53]
      P. Villars, K. Brandenburg, M. Berndt, et al., Binary, ternary and quaternary compound former/nonformer prediction via Mendeleev number, J. Alloys Compd., 317-318(2001), p. 26. doi: 10.1016/S0925-8388(00)01410-9
      [54]
      K. Ciesielski, L.C. Gomes, G.A. Rome, et al., Structural defects in compounds ZnXSb (X = Cr, Mn, Fe): Origin of disorder and its relationship with electronic properties, Phys. Rev. Mater., 6(2022), No. 6, art. No. 063602. doi: 10.1103/PhysRevMaterials.6.063602
      [55]
      R.G. Pearson, Absolute electronegativity and absolute hardness of Lewis acids and bases, J. Am. Chem. Soc., 107(1985), No. 24, p. 6801. doi: 10.1021/ja00310a009
      [56]
      N.J. Sai, P. Rathore, and A. Chauhan, Machine learning-based predictions of fatigue life for multi-principal element alloys, Scr. Mater., 226(2023), art. No. 115214. doi: 10.1016/j.scriptamat.2022.115214

    Catalog


    • /

      返回文章
      返回