留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 4
Apr.  2024

图(8)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  525
  • HTML全文浏览量:  251
  • PDF下载量:  27
  • 被引次数: 0
Xuanqi Yang, Honghan Wang, Jing Chen, Qingda An, Zuoyi Xiao, Jingai Hao, Shangru Zhai,  and Junye Sheng, Customization of FeNi alloy nanosheet arrays inserted with biomass-derived carbon templates for boosted electromagnetic wave absorption, Int. J. Miner. Metall. Mater., 31(2024), No. 4, pp. 812-824. https://doi.org/10.1007/s12613-023-2768-5
Cite this article as:
Xuanqi Yang, Honghan Wang, Jing Chen, Qingda An, Zuoyi Xiao, Jingai Hao, Shangru Zhai,  and Junye Sheng, Customization of FeNi alloy nanosheet arrays inserted with biomass-derived carbon templates for boosted electromagnetic wave absorption, Int. J. Miner. Metall. Mater., 31(2024), No. 4, pp. 812-824. https://doi.org/10.1007/s12613-023-2768-5
引用本文 PDF XML SpringerLink
研究论文

铁镍合金纳米片阵列插入生物质衍生碳模板以增强电磁波吸收能力



    * 共同第一作者
  • 通讯作者:

    安庆大    E-mail: anqingda@163.com

    翟尚儒    E-mail: zhaisrchem@163.com

文章亮点

  • (1) 系统地研究了碳化温度对FeNi/LSC复合材料微观结构的影响规律。
  • (2) 开发了吸波性能优异的FeNi/LSC复合材料并探究了复合材料的吸波机理。
  • (3) 总结了复合材料吸波机理并展望了未来的研究工作。
  • 电磁波(EMW)吸收材料在军事领域和防止电磁波辐射危害人体健康方面具有相当大的作用。然而,获得轻质、高性能和高带宽的电磁波吸收材料仍然是一项巨大的挑战。创造具有定制结构的介电/磁复合材料是开发高性能电磁波吸收材料的一项很有前景的研究方向。使用层状双氢氧化物作为双金属合金的前体,并将其与多孔生物质衍生碳材料相结合,是构建多界面异质结构作为高效电磁波吸收材料的一种潜在方法,因为它们具有协同损耗、成本低、资源丰富和重量轻等特点。在此,通过简单的水热和碳化方法制备了铁镍合金纳米片阵列/菌孢衍生碳(FeNi/LSC)。由于镍铁合金纳米片阵列、海绵状结构、阻抗匹配能力以及介电/磁损的改善,FeNi/LS具有理想的电磁波吸收性能。FeNi/LSC在填料含量为 20wt% 的情况下,在 1.5 mm 时的最小反射损耗为 −58.3 dB,有效吸收带宽为 4.92 GHz。具有有效电磁波吸收性能的FeNi/LSC复合材料为将生物质衍生复合材料定制为高性能、轻质的宽带电磁波吸收材料提供了新的思路。
  • Research Article

    Customization of FeNi alloy nanosheet arrays inserted with biomass-derived carbon templates for boosted electromagnetic wave absorption

    + Author Affiliations
    • Electromagnetic wave (EMW)-absorbing materials have considerable capacity in the military field and the prevention of EMW radiation from harming human health. However, obtaining lightweight, high-performance, and broadband EMW-absorbing material remains an overwhelming challenge. Creating dielectric/magnetic composites with customized structures is a strategy with great promise for the development of high-performance EMW-absorbing materials. Using layered double hydroxides as the precursors of bimetallic alloys and combining them with porous biomass-derived carbon materials is a potential way for constructing multi-interface heterostructures as efficient EMW-absorbing materials because they have synergistic losses, low costs, abundant resources, and light weights. Here, FeNi alloy nanosheet array/Lycopodium spore-derived carbon (FeNi/LSC) was prepared through a simple hydrothermal and carbonization method. FeNi/LSC presents ideal EMW-absorbing performance by benefiting from the FeNi alloy nanosheet array, sponge-like structure, capability for impedance matching, and improved dielectric/magnetic losses. As expected, FeNi/LSC exhibited the minimum reflection loss of −58.3 dB at 1.5 mm with 20wt% filler content and a widely effective absorption bandwidth of 4.92 GHz. FeNi/LSC composites with effective EMW-absorbing performance provide new insights into the customization of biomass-derived composites as high-performance and lightweight broadband EMW-absorbing materials.
    • loading
    • Supplementary Information-s12613-023-2768-5.docx
    • [1]
      H.L. Lv, Z.H. Yang, H.G. Pan, and R.B. Wu, Electromagnetic absorption materials: Current progress and new frontiers, Prog. Mater. Sci., 127(2022), art. No. 100946. doi: 10.1016/j.pmatsci.2022.100946
      [2]
      Z.D. Zhang, Y.M. Zhao, G.H. Fan, et al., Paper-based flexible metamaterial for microwave applications, EPJ Appl. Metamater., 8(2021), art. No. 6. doi: 10.1051/epjam/2020016
      [3]
      S.K. Srivastava and K. Manna, Recent advancements in the electromagnetic interference shielding performance of nanostructured materials and their nanocomposites: A review, J. Mater. Chem. A, 10(2022), No. 14, p. 7431. doi: 10.1039/D1TA09522F
      [4]
      F. Wu, K. Yang, Q. Li, et al., Biomass-derived 3D magnetic porous carbon fibers with a helical/chiral structure toward superior microwave absorption, Carbon, 173(2021), p. 918. doi: 10.1016/j.carbon.2020.11.088
      [5]
      H.H. Zhu, J. Liang, J.F. Chen, et al., Rational construction of yolk-shell structured Co3Fe7/FeO@carbon composite and optimization of its microwave absorption, J. Colloid Interface Sci., 626(2022), p. 775. doi: 10.1016/j.jcis.2022.06.156
      [6]
      B.L. Wang, Y.G. Fu, J. Li, Q. Wu, X.Y. Wang, and T. Liu, Construction of Co@C nanocapsules by one-step carbon reduction of single-crystal Co3O4 nanoparticles: Ultra-wideband microwave absorber verified via coaxial and arch methods, Chem. Eng. J., 445(2022), art. No. 136863. doi: 10.1016/j.cej.2022.136863
      [7]
      W. Tian, J.Y. Li, Y.F. Liu, et al., Atomic-scale layer-by-layer deposition of FeSiAl@ZnO@Al2O3 hybrid with threshold anti-corrosion and ultra-high microwave absorption properties in low-frequency bands, Nano Micro Lett., 13(2021), No. 1, art. No. 161. doi: 10.1007/s40820-021-00678-4
      [8]
      H.H. Niu, X.Y. Tu, S. Zhang, et al., Engineered core–shell SiO2@Ti3C2T x composites: Towards ultra-thin electromagnetic wave absorption materials, Chem. Eng. J., 446(2022), art. No. 137260. doi: 10.1016/j.cej.2022.137260
      [9]
      T.H. Liu, K.X. Shang, C. Miao, and J. Ouyang, Multiple interface coupling in halloysite/reduced graphene oxide/cobalt nickel composites for high-performance electromagnetic wave absorption, J. Colloid Interface Sci., 628(2022), p. 858. doi: 10.1016/j.jcis.2022.07.172
      [10]
      X.X. Wang, F.F. You, X.Y. Wen, K.R. Wang, G.X. Tong, and W.H. Wu, Doping Ce(OH)CO3 laminated dendrites with Fe, Co and Ni for defect steered wide-frequency microwave absorption, Chem. Eng. J., 445(2022), art. No. 136431. doi: 10.1016/j.cej.2022.136431
      [11]
      Q. Zhou, T.T. Shi, B. Xue, et al., Gradient carbonyl-iron/carbon-fiber reinforced composite metamaterial for ultra-broadband electromagnetic wave absorption by multi-scale integrated design, Int. J. Miner. Metall. Mater., 30(2023), No. 6, p.1198. doi: 10.1007/s12613-022-2583-4
      [12]
      R. Zhang, C.P. Mu, B.C. Wang, et al., Composites of In/C hexagonal nanorods and graphene nanosheets for high-performance electromagnetic wave absorption, Int. J. Miner. Metall. Mater., 30(2023), No. 3, p. 485. doi: 10.1007/s12613-022-2520-6
      [13]
      B. Wen, G.R. Yang, X.Y. Zhou, and S.J. Ding, Intelligent diffusion regulation induced in situ growth of cobalt nanoclusters on carbon nanotubes for excellent electromagnetic wave absorption, J. Colloid Interface Sci., 634(2023), p. 74. doi: 10.1016/j.jcis.2022.12.060
      [14]
      Y.C. Wang, L.H. Yao, Q. Zheng, and M.S. Cao, Graphene-wrapped multiloculated nickel ferrite: A highly efficient electromagnetic attenuation material for microwave absorbing and green shielding, Nano Res., 15(2022), No. 7, p. 6751. doi: 10.1007/s12274-022-4428-x
      [15]
      S.K. Hou, Y. Wang, F. Gao, et al. , In situ growing fusiform SnO2 nanocrystals film on carbon fiber cloth as an efficient and flexible microwave absorber, Mater. Des., 225(2023), art. No. 111576. doi: 10.1016/j.matdes.2022.111576
      [16]
      X. Jin, A. Al-Qatatsheh, K. Subhani, and N.V. Salim, An ultralight, elastic carbon nanofiber aerogel with efficient energy storage and sorption properties, Nanoscale, 14(2022), No. 18, p. 6854. doi: 10.1039/D2NR00083K
      [17]
      D.D. Wang, M.Y. Zhang, Y. Guo, et al., Facile preparation of a cellulose derived carbon/BN composite aerogel for superior electromagnetic wave absorption, J. Mater. Chem. C, 10(2022), No. 13, p. 5311. doi: 10.1039/D2TC00205A
      [18]
      H. Lv, Z.Y. Xiao, S.R. Zhai, X.T. Wang, J.A. Hao, and Q.D. An, Designed formation of C/Fe3O4@Ni(OH)2 cathode with enhanced pseudocapacitance for asymmetric supercapacitors, J. Colloid Interface Sci., 635(2023), p. 176. doi: 10.1016/j.jcis.2022.12.137
      [19]
      H. Lv, Z.Y. Xiao, S.R. Zhai, et al., Ni3S2 nanoparticles encapsulated in S-doped biomass-derived hierarchically porous carbon as an advanced electrode for excellent hybrid supercapacitors performance, Ind. Crops Prod., 194(2023), art. No. 116320. doi: 10.1016/j.indcrop.2023.116320
      [20]
      H. Lv, Z.Y. Xiao, S.R. Zhai, X.T. Wang, J.G. Hao, and Q.D. An, Cu x S particles loaded on S-doped 3D hierarchical porous carbon as an efficient electrode for superior asymmetric supercapacitors, J. Alloys Compd., 945(2023), art. No. 169332. doi: 10.1016/j.jallcom.2023.169332
      [21]
      H.D. Sun, L.L. Zheng, Y.R. Xi, S.R. Zhai, Q.D. An, and Z.Y. Xiao, Nickel-iron sulfide nanoparticles supported on biomass-derived N-doped hierarchical porous carbon as a robust electrode for supercapacitors, Electrochim. Acta, 466(2023), art. No. 143053. doi: 10.1016/j.electacta.2023.143053
      [22]
      Z.X. Lu, F. Ren, Z.Z. Guo, et al., Facile construction of core–shell Carbon@CoNiO2 derived from yeast for broadband and high-efficiency microwave absorption, J. Colloid Interface Sci., 625(2022), p. 415. doi: 10.1016/j.jcis.2022.06.012
      [23]
      J.Y. Yusuf, H. Soleimani, N. Yahya, et al., Electromagnetic wave absorption of coconut fiber-derived porous activated carbon, Bol. Soc. Esp. Ceram. Vidrio, 61(2022), No. 5, p. 417. doi: 10.1016/j.bsecv.2021.02.003
      [24]
      N.X. Zhai, J.H. Luo, M.W. Xiao, Y.C. Zhang, W.X. Yan, and Y. Xu, In situ construction of Co@nitrogen-doped carbon/Ni nanocomposite for broadband electromagnetic wave absorption, Carbon, 203(2023), p. 416. doi: 10.1016/j.carbon.2022.12.004
      [25]
      J. Li, L. Wang, D. Zhang, et al., Reduced graphene oxide modified mesoporous FeNi alloy/carbon microspheres for enhanced broadband electromagnetic wave absorbers, Mater. Chem. Front., 1(2017), No. 9, p. 1786. doi: 10.1039/C7QM00067G
      [26]
      J.J. Pan, W.J. Tu, S.H. Ma, et al., Improvement of multiple attenuation characteristics of two-dimensional lamellar ferrocobalt@carbon nanocomposites as excellent electromagnetic wave absorbers, Dalton Trans., 51(2022), No. 25, p. 9793. doi: 10.1039/D2DT01503J
      [27]
      Y. Li, Y.S. Qin, G.L. Wu, Y.C. Zheng, and Q.F. Ban, Metal-coordination-driven self-assembly synthesis of porous iron/carbon composite for high-efficiency electromagnetic wave absorption, J. Colloid Interface Sci., 623(2022), p. 1002. doi: 10.1016/j.jcis.2022.05.109
      [28]
      P. Wu, Z.Y. Wang, N.S. Bolan, H.L. Wang, Y.J. Wang, and W.F. Chen, Visualizing the development trend and research frontiers of biochar in 2020: A scientometric perspective, Biochar, 3(2021), No. 4, p. 419. doi: 10.1007/s42773-021-00120-3
      [29]
      D.M. Zhang, W. He, G.Q. Quan, et al., Sterculia lychnophora seed-derived porous carbon@CoFe2O4 composites with efficient microwave absorption performance, Appl. Surf. Sci., 607(2023), art. No. 155027. doi: 10.1016/j.apsusc.2022.155027
      [30]
      J.J. Lv, L.M. Wang, R.S. Li, et al., Constructing a hetero-interface composed of oxygen vacancy-enriched Co3O4 and crystalline–amorphous NiFe-LDH for oxygen evolution reaction, ACS Catal., 11(2021), No. 23, p. 14338. doi: 10.1021/acscatal.1c03960
      [31]
      Y.Y. Jin, K. Tian, L. Wei, X.Y. Zhang, and X. Guo, Hierarchical porous microspheres of activated carbon with a high surface area from spores for electrochemical double-layer capacitors, J. Mater. Chem. A, 4(2016), No. 41, p. 15968. doi: 10.1039/C6TA05872H
      [32]
      C. Cui, W.H. Bai, S. Jiang, et al., FeNi LDH/loofah sponge-derived magnetic FeNi alloy nanosheet array/porous carbon hybrids with efficient electromagnetic wave absorption, Ind. Eng. Chem. Res. 61(2022), No. 28, p. 10078.
      [33]
      T. Wang, Y.B. Xu, Y.F. Li, et al., Sodium-mediated bimetallic Fe–Ni catalyst boosts stable and selective production of light aromatics over HZSM-5 zeolite, ACS Catal., 11(2021), No. 6, p. 3553. doi: 10.1021/acscatal.1c00169
      [34]
      S.Q. Shi, S.J. Hao, C. Yang, Y.B. Chen, H.R. Chu, and S.L. Dai, Enhanced microwave absorption properties of reduced graphene oxide/TiO2 nanowire composites synthesized via simultaneous carbonation and hydrogenation, J. Mater. Chem. C, 10(2022), No. 25, p. 9586. doi: 10.1039/D2TC01473D
      [35]
      Y.N. Shi, X.Y. Ding, K.C. Pan, Z.H. Gao, J. Du, and J. Qiu, A novel multi-dimensional structure of graphene-decorated composite foam for excellent stealth performance in microwave and infrared frequency bands, J. Mater. Chem. A, 10(2022), No. 14, p. 7705. doi: 10.1039/D2TA00030J
      [36]
      Y.L. Huang, W.J. Wang, X.W. Hou, et al., Salt-templated synthesis of CuO/Carbon nanosheets for efficient microwave absorption, Appl. Surf. Sci., 598(2022), art. No. 153779. doi: 10.1016/j.apsusc.2022.153779
      [37]
      T.C. Wei, X.Z. Zhu, J.N. Xu, C.X. Kan, and D.N. Shi, Porous molybdenum compound design for strong microwave absorption, Langmuir, 39(2023), No. 2, p. 890. doi: 10.1021/acs.langmuir.2c03095
      [38]
      H. Wang, X.H. Zhang, Y.H. Tang, et al., Using silk-derived magnetic carbon nanocomposites as highly efficient Nanozymes and electromagnetic absorbing agents, Chin. Chem. Lett., 34(2023), No. 9, art. No. 108084. doi: 10.1016/j.cclet.2022.108084
      [39]
      X.G. Su, M.J. Han, Y.N. Liu, J. Wang, C.B. Liang, and Y.Q. Liu, In-situ construction of nitrogen-doped reduced graphene oxide@carbon nanofibers towards the synergetic enhancement of their microwave absorption properties via integrating point defects and structure engineering, J. Colloid Interface Sci., 628(2022), Part B, p. 984. doi: 10.1016/j.jcis.2022.08.094
      [40]
      W.B. Deng, T.H. Li, H. Li, et al., Controllable graphitization degree of carbon foam bulk toward electromagnetic wave attenuation loss behavior, J. Colloid Interface Sci., 618(2022), p. 129. doi: 10.1016/j.jcis.2022.03.071
      [41]
      J.K. Liu, Z.R. Jia, W.H. Zhou, et al., Self-assembled MoS2/magnetic ferrite CuFe2O4 nanocomposite for high-efficiency microwave absorption, Chem. Eng. J., 429(2022), art. No. 132253. doi: 10.1016/j.cej.2021.132253
      [42]
      J. Dong, W.H. Xu, S.B. Liu, et al., Lignin-derived biochar to support CoFe2O4: Effective activation of peracetic acid for sulfamethoxazole degradation, Chem. Eng. J., 430(2022), art. No. 132868. doi: 10.1016/j.cej.2021.132868
      [43]
      T.T. Zheng, Y. Zhang, Z.R. Jia, J.H. Zhu, G.L. Wu, and P.F. Yin, Customized dielectric-magnetic balance enhanced electromagnetic wave absorption performance in Cu x S/CoFe2O4 composites, Chem. Eng. J., 457(2023), art. No. 140876. doi: 10.1016/j.cej.2022.140876
      [44]
      Q.J. Wang, J.N. Wang, Y.Z. Zhao, et al., NiO/NiFe2O4@N-doped reduced graphene oxide aerogel towards the wideband electromagnetic wave absorption: Experimental and theoretical study, Chem. Eng. J., 430(2022), art. No. 132814. doi: 10.1016/j.cej.2021.132814
      [45]
      X.H. Liang, Z.M. Man, B. Quan, et al., Environment-stable Co x Ni y encapsulation in stacked porous carbon nanosheets for enhanced microwave absorption, Nano Micro Lett., 12(2020), No. 1, art. No. 102. doi: 10.1007/s40820-020-00432-2
      [46]
      S. Zhang, C.J. Wang, T.H. Gao, et al., Optimizing electromagnetic interference shielding of ultrathin nanoheterostructure textiles through interfacial engineering, ACS Appl. Mater. Interfaces, 15(2023), No. 12, p. 15965. doi: 10.1021/acsami.2c22143
      [47]
      Z. Su, S. Yi, W.Y. Zhang, et al., Magnetic-dielectric complementary Fe–Co–Ni alloy/carbon composites for high-attenuation C-band microwave absorption via carbothermal reduction of solid-solution precursor, Adv. Electron. Mater., 9(2023), No. 2, art. No. 2201159. doi: 10.1002/aelm.202201159
      [48]
      Y.C. Sun, T.T. Wang, C.H. Han, et al., Facile synthesis of Fe-modified lignin-based biochar for ultra-fast adsorption of methylene blue: Selective adsorption and mechanism studies, Bioresour. Technol., 344(2022), art. No. 126186. doi: 10.1016/j.biortech.2021.126186
      [49]
      Y.P. Zhao, X.Q. Zuo, Y. Guo, et al., Structural engineering of hierarchical aerogels comprised of multi-dimensional gradient carbon nanoarchitectures for highly efficient microwave absorption, Nano Micro Lett., 13(2021), No. 1, art. No. 144. doi: 10.1007/s40820-021-00667-7
      [50]
      Y.J. Wang, Z.B. Pang, H. Xu, et al., High-performance electromagnetic wave absorption of NiCoFe/N-doped carbon composites with a Prussian blue analog (PBA) core at 2–18 GHz, J. Colloid Interface Sci., 620(2022), p. 107. doi: 10.1016/j.jcis.2022.04.011
      [51]
      X.Y. Zhang, Z.R. Jia, F. Zhang, et al., MOF-derived NiFe2S4/Porous carbon composites as electromagnetic wave absorber, J. Colloid Interface Sci., 610(2022), p. 610. doi: 10.1016/j.jcis.2021.11.110
      [52]
      Y. Fei, X.Y. Wang, M.S. Yuan, M. Liang, Y. Chen, and H.W. Zou, Co nanoparticles encapsulated in carbon nanotubes decorated carbon aerogels toward excellent microwave absorption, Ind. Eng. Chem. Res., 61(2022), No. 4, p. 1684. doi: 10.1021/acs.iecr.1c03585
      [53]
      M. Zhang, S.N. Song, Y.M. Liu, Z.X. Hou, W.Y. Tang, and S.N. Li, Microstructural design of necklace-like Fe3O4/multiwall carbon nanotube (MWCNT) composites with enhanced microwave absorption performance, Materials (Basel), 14(2021), No. 17, art. No. 4783. doi: 10.3390/ma14174783
      [54]
      J.R. Yao, L. Zhang, F. Yang, et al., Superhydrophobic Ti3C2T x MXene/aramid nanofiber films for high-performance electromagnetic interference shielding in thermal environment, Chem. Eng. J., 446(2022), art. No. 136945. doi: 10.1016/j.cej.2022.136945
      [55]
      Y.J. Zou, X.Z. Huang, B.H. Fan, J.L. Yue, and Y. Liu, Enhanced low-frequency microwave absorption performance of FeNi alloy coated carbon foam assisted by SiO2 layer, Appl. Surf. Sci., 600(2022), art. No. 154046. doi: 10.1016/j.apsusc.2022.154046
      [56]
      X.Y. Deng, S. Gao, Y. Liu, Y.L. Bao, Y.F. Zhu, and Y.Q. Fu, Cellular-like sericin-derived carbon decorated reduced graphene oxide for tunable microwave absorption, Appl. Surf. Sci., 599(2022), art. No. 154063. doi: 10.1016/j.apsusc.2022.154063
      [57]
      Y.L. Hou, Z.Z. Sheng, C. Fu, J. Kong, and X.T. Zhang, Hygroscopic holey graphene aerogel fibers enable highly efficient moisture capture, heat allocation and microwave absorption, Nat. Commun., 13(2022), No. 1, art. No. 1227. doi: 10.1038/s41467-022-28906-4
      [58]
      J.F. Fang, H.L. Lv, B. Zhao, et al., Selective assembly of magnetic nano-antenna for electromagnetic dissipation, J. Mater. Chem. A, 10(2022), No. 20, p. 10909. doi: 10.1039/D2TA02186B
      [59]
      Y. Liu, Z.R. Jia, Q.Q. Zhan, Y.H. Dong, Q.M. Xu, and G.L. Wu, Magnetic manganese-based composites with multiple loss mechanisms towards broadband absorption, Nano Res., 15(2022), No. 6, p. 5590. doi: 10.1007/s12274-022-4287-5
      [60]
      W.J. Mao, X.T. Wang, X.L. Hu, Z.H. Lin, and Z.M. Su, Activation of peroxymonosulfate by co-metal–organic frameworks as catalysts for degradation of organic pollutants, Ind. Eng. Chem. Res., 60(2021), No. 36, p. 13223. doi: 10.1021/acs.iecr.1c02259
      [61]
      Y. Wang, Y.N. Gao, T.N. Yue, X.D. Chen, R.C. Che, and M. Wang, Liquid metal coated copper micro-particles to construct core-shell structure and multiple heterojunctions for high-efficiency microwave absorption, J. Colloid Interface Sci., 607(2022), p. 210. doi: 10.1016/j.jcis.2021.08.206
      [62]
      J.N. Hu, C.Y. Liang, J.D. Li, et al., Flexible reduced graphene oxide@Fe3O4/silicone rubber composites for enhanced microwave absorption, Appl. Surf. Sci., 570(2021), art. No. 151270. doi: 10.1016/j.apsusc.2021.151270
      [63]
      L. Chai, Y.Q. Wang, Z.R. Jia, et al., Tunable defects and interfaces of hierarchical dandelion-like NiCo2O4 via Ostwald ripening process for high-efficiency electromagnetic wave absorption, Chem. Eng. J., 429(2022), art. No. 132547. doi: 10.1016/j.cej.2021.132547
      [64]
      X. Luo, H.F. Li, J.H. Sun, et al., EM waves absorption properties of nitrogenous porous carbon derived from PANI fiber clusters carbonization, Microporous Mesoporous Mater., 339(2022), art. No. 112000. doi: 10.1016/j.micromeso.2022.112000
      [65]
      Y.Y. Wang, J.L. Zhu, N. Li, et al., Carbon aerogel microspheres with in situ mineralized TiO2 for efficient microwave absorption, Nano Res., 15(2022), No. 8, p. 7723. doi: 10.1007/s12274-022-4494-0
      [66]
      J. Liang, C.W. Li, X. Cao, et al., Hollow hydrangea-like nitrogen-doped NiO/Ni/carbon composites as lightweight and highly efficient electromagnetic wave absorbers, Nano Res., 15(2022), No. 8, p. 6831. doi: 10.1007/s12274-022-4511-3
      [67]
      J. Liu, Y.S. Gu, L.L. Gao, et al., Hollow multi-shell SiC@C@PANI nanoparticles with broadband microwave absorption performance, Appl. Surf. Sci., 613(2023), art. No. 156098. doi: 10.1016/j.apsusc.2022.156098
      [68]
      Z.X. Li, W. Yang, B. Jiang, et al., Engineering of the core-shell boron Nitride@Nitrogen-doped carbon heterogeneous interface for efficient heat dissipation and electromagnetic wave absorption, ACS Appl. Mater. Interfaces, 15(2023), No. 5, p. 7578. doi: 10.1021/acsami.2c20766
      [69]
      N.X. Zhai, J.H. Luo, P.C. Shu, J. Mei, X.P. Li, and W.X. Yan, 1D/2D CoTe2@MoS2 composites constructed by CoTe2 nanorods and MoS2 nanosheets for efficient electromagnetic wave absorption, Nano Res., 16(2023), No. 7, p. 10698. doi: 10.1007/s12274-023-5777-9

    Catalog


    • /

      返回文章
      返回