Cite this article as: |
Xiaoyan Wang, Safeer Jan, Zhiyong Wang, and Xianbo Jin, Solid Bi2O3-derived nanostructured metallic bismuth with high formate selectivity for the electrocatalytic reduction of CO2, Int. J. Miner. Metall. Mater., 31(2024), No. 4, pp. 803-811. https://doi.org/10.1007/s12613-023-2770-y |
金先波 E-mail: xbjin@whu.edu.cn
Supplementary Information-s12613-023-2770-y.docx |
[1] |
Z.Y. Sun, T. Ma, H.C. Tao, Q. Fan, and B.X. Han, Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials, Chem, 3(2017), No. 4, p. 560. doi: 10.1016/j.chempr.2017.09.009
|
[2] |
N. Han, P. Ding, L. He, Y.Y. Li, and Y.G. Li, Promises of main group metal-based nanostructured materials for electrochemical CO2 reduction to formate, Adv. Energy Mater., 10(2020), No. 11, art. No. 1902338. doi: 10.1002/aenm.201902338
|
[3] |
R. Kortlever, J. Shen, K.J.P. Schouten, F. Calle-Vallejo, and M.T.M. Koper, Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide, J. Phys. Chem. Lett., 6(2015), No. 20, p. 4073. doi: 10.1021/acs.jpclett.5b01559
|
[4] |
X. Chen, Y. Liu, and J.W. Wu, Sustainable production of formic acid from biomass and carbon dioxide, Mol. Catal., 483(2020), art. No. 110716. doi: 10.1016/j.mcat.2019.110716
|
[5] |
Z.N. Yang, F.E. Oropeza, and K.H.L. Zhang, P-block metal-based (Sn, In, Bi, Pb) electrocatalysts for selective reduction of CO2 to formate, APL Mater., 8(2020), No. 6, art. No. 060901. doi: 10.1063/5.0004194
|
[6] |
S.Y. Yang, M.H. Jiang, W.J. Zhang, et al. , In situ structure refactoring of bismuth nanoflowers for highly selective electrochemical reduction of CO2 to formate, Adv. Funct. Mater., 33(2023), No. 37, art. No. 2301984. doi: 10.1002/adfm.202301984
|
[7] |
W.J. Zhang, S.Y. Yang, M.H. Jiang, et al., Nanocapillarity and nanoconfinement effects of pipet-like bismuth@carbon nanotubes for highly efficient electrocatalytic CO2 reduction, Nano Lett., 21(2021), No. 6, p. 2650. doi: 10.1021/acs.nanolett.1c00390
|
[8] |
R. Zhou, N. Han, and Y.G. Li, Recent advances in bismuth-based CO2 reduction electrocatalysts, J. Electrochem., 25(2019), No. 4, p. 445.
|
[9] |
H. Yang, N. Han, J. Deng, et al., Selective CO2 reduction on 2D mesoporous Bi nanosheets, Adv. Energy Mater., 8(2018), No. 35, art. No. 1801536. doi: 10.1002/aenm.201801536
|
[10] |
P.L. Lu, D.L. Gao, H.Y. He, et al., Facile synthesis of a bismuth nanostructure with enhanced selectivity for electrochemical conversion of CO2 to formate, Nanoscale, 11(2019), No. 16, p. 7805. doi: 10.1039/C9NR01094G
|
[11] |
Y.N. Zhang, D.F. Niu, S.Z. Hu, and X.S. Zhang, Recent progress on enhancing effect of nanosized metals for electrochemical CO2 reduction, J. Electrochem., 26(2020), No. 4, p. 495.
|
[12] |
D. Wu, G. Huo, W.Y. Chen, X.Z. Fu, and J.L. Luo, Boosting formate production at high current density from CO2 electroreduction on defect-rich hierarchical mesoporous Bi/Bi2O3 junction nanosheets, Appl. Catal. B: Environ., 271(2020), art. No. 118957. doi: 10.1016/j.apcatb.2020.118957
|
[13] |
P.P. Su, W.B. Xu, Y.L. Qiu, T.T. Zhang, X.F. Li, and H.M. Zhang, Ultrathin bismuth nanosheets as a highly efficient CO2 reduction electrocatalyst, ChemSusChem, 11(2018), No. 5, p. 848. doi: 10.1002/cssc.201702229
|
[14] |
L. Zhang, Z.Y. Wang, N. Mehio, X.B. Jin, and S. Dai, Thickness- and particle-size-dependent electrochemical reduction of carbon dioxide on thin-layer porous silver electrodes, ChemSusChem, 9(2016), No. 5, p. 428. doi: 10.1002/cssc.201501637
|
[15] |
G.R. Jia, Y. Wang, M.Z. Sun, et al., Size effects of highly dispersed bismuth nanoparticles on electrocatalytic reduction of carbon dioxide to formic acid, J. Am. Chem. Soc., 145(2023), No. 25, p. 14133. doi: 10.1021/jacs.3c04727
|
[16] |
M. Azuma, K. Hashimoto, M. Hiramoto, M. Watanabe, and T. Sakata, Electrochemical reduction of carbon dioxide on various metal electrodes in low-temperature aqueous KHCO3 media, J. Electrochem. Soc., 137(1990), No. 6, p. 1772. doi: 10.1149/1.2086796
|
[17] |
Q. Lu, J. Rosen, Y. Zhou, et al., A selective and efficient electrocatalyst for carbon dioxide reduction, Nat. Commun., 5(2014), art. No. 3242. doi: 10.1038/ncomms4242
|
[18] |
G.O. Barasa, T.S. Yu, X.L. Lu, et al., Electrochemical training of nanoporous Cu-In catalysts for efficient CO2-to-CO conversion and high durability, Electrochim. Acta, 295(2019), p. 584. doi: 10.1016/j.electacta.2018.10.175
|
[19] |
L. Li, F.F. Cai, F.X.Y. Qi, and D.K. Ma, Cu nanowire bridged Bi nanosheet arrays for efficient electrochemical CO2 reduction toward formate, J. Alloys Compd., 841(2020), art. No. 155789. doi: 10.1016/j.jallcom.2020.155789
|
[20] |
F.P. García de Arquer, O.S. Bushuyev, P. de Luna, et al., 2D metal oxyhalide-derived catalysts for efficient CO2 electroreduction, Adv. Mater., 30(2018), No. 38, art. No. 1802858. doi: 10.1002/adma.201802858
|
[21] |
T. Burdyny, P.J. Graham, Y.J. Pang, et al., Nanomorphology-enhanced gas-evolution intensifies CO2 reduction electrochemistry, ACS Sustainable Chem. Eng., 5(2017), No. 5, p. 4031. doi: 10.1021/acssuschemeng.7b00023
|
[22] |
K. Fan, Y.F. Jia, Y.F. Ji, et al., Curved surface boosts electrochemical CO2 reduction to formate via bismuth nanotubes in a wide potential window, ACS Catal., 10(2020), No. 1, p. 358. doi: 10.1021/acscatal.9b04516
|
[23] |
C.W. Li and M.W. Kanan, CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films, J. Am. Chem. Soc., 134(2012), No. 17, p. 7231. doi: 10.1021/ja3010978
|
[24] |
W.J. Yan, J.T. Zhang, A.J. Lü, S.L. Lu, Y.W. Zhong, and M.Y. Wang, Self-supporting and hierarchically porous Ni x Fe–S/NiFe2O4 heterostructure as a bifunctional electrocatalyst for fluctuating overall water splitting, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 1120. doi: 10.1007/s12613-022-2443-2
|
[25] |
W.Q. Lai, Y.T. Liu, M.M. Zeng, et al., One-step electrochemical dealloying of 3D Bi-continuous micro-nanoporous bismuth electrodes and CO2RR performance, Nanomaterials, 13(2023), No. 11, art. No. 1767. doi: 10.3390/nano13111767
|
[26] |
S. Kim, W.J. Dong, S. Gim, et al., Shape-controlled bismuth nanoflakes as highly selective catalysts for electrochemical carbon dioxide reduction to formate, Nano Energy, 39(2017), p. 44. doi: 10.1016/j.nanoen.2017.05.065
|
[27] |
M.R. Singh, E.L. Clark, and A.T. Bell, Effects of electrolyte, catalyst, and membrane composition and operating conditions on the performance of solar-driven electrochemical reduction of carbon dioxide, Phys. Chem. Chem. Phys., 17(2015), No. 29, p. 18924. doi: 10.1039/C5CP03283K
|
[28] |
S. Liu, X.F. Lu, J. Xiao, X. Wang, and X.W.D. Lou, Bi2O3 nanosheets grown on multi-channel carbon matrix to catalyze efficient CO2 electroreduction to HCOOH, Angew. Chem. Int. Ed., 58(2019), No. 39, p. 13828. doi: 10.1002/anie.201907674
|
[29] |
Q.F. Gong, P. Ding, M.Q. Xu, et al., Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction, Nat. Commun., 10(2019), No. 1, art. No. 2807. doi: 10.1038/s41467-019-10819-4
|
[30] |
X. Zhang, J. Fu, Y.Y. Liu, X.D. Zhou, and J.L. Qiao, Bismuth anchored on MWCNTs with controlled ultrafine nanosize enables high-efficient electrochemical reduction of carbon dioxide to formate fuel, ACS Sustainable Chem. Eng., 8(2020), No. 12, p. 4871. doi: 10.1021/acssuschemeng.0c00099
|
[31] |
Y.L. Xing, H.H. Chen, Y. Liu, et al., A phosphate-derived bismuth catalyst with abundant grain boundaries for efficient reduction of CO2 to HCOOH, Chem. Commun., 57(2021), No. 12, p. 1502. doi: 10.1039/D0CC06756C
|
[32] |
P.L. Deng, H.M. Wang, R.J. Qi, et al., Bismuth oxides with enhanced bismuth–oxygen structure for efficient electrochemical reduction of carbon dioxide to formate, ACS Catal., 10(2020), No. 1, p. 743. doi: 10.1021/acscatal.9b04043
|
[33] |
S. Zhang, P. Kang, and T.J. Meyer, Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to formate, J. Am. Chem. Soc., 136(2014), No. 5, p. 1734. doi: 10.1021/ja4113885
|
[34] |
X.Y. Wang, Z.Y. Wang, and X.B. Jin, Nanoporous bismuth for the electrocatalytic reduction of CO2 to formate, Phys. Chem. Chem. Phys., 23(2021), No. 35, p. 19195. doi: 10.1039/D1CP02661E
|
[35] |
W.J. Dong, C.J. Yoo, and J.L. Lee, Monolithic nanoporous In–Sn alloy for electrochemical reduction of carbon dioxide, ACS Appl. Mater. Interfaces, 9(2017), No. 50, p. 43575. doi: 10.1021/acsami.7b10308
|
[36] |
F.H. Zhang, C.Z. Chen, S.L. Yan, J.H. Zhong, B. Zhang, and Z.M. Cheng, Cu@Bi nanocone induced efficient reduction of CO2 to formate with high current density, Appl. Catal. A, 598(2020), art. No. 117545. doi: 10.1016/j.apcata.2020.117545
|
[37] |
X.W. An, S.S. Li, A. Yoshida, et al., Bi-doped SnO nanosheets supported on Cu foam for electrochemical reduction of CO2 to HCOOH, ACS Appl. Mater. Interfaces, 11(2019), No. 45, p. 42114. doi: 10.1021/acsami.9b13270
|
[38] |
Q. Yang, Q.L. Wu, Y. Liu, et al., Novel Bi-doped amorphous SnO x nanoshells for efficient electrochemical CO2 reduction into formate at low overpotentials, Adv. Mater., 32(2020), No. 36, art. No. 2002822. doi: 10.1002/adma.202002822
|
[39] |
M.Y. Fan, S. Prabhudev, S. Garbarino, et al., Uncovering the nature of electroactive sites in nano architectured dendritic Bi for highly efficient CO2 electroreduction to formate, Appl. Catal. B, 274(2020), art. No. 119031. doi: 10.1016/j.apcatb.2020.119031
|
[40] |
Y.T. Wang, L. Cheng, J.Z. Liu, et al., Rich bismuth–oxygen bonds in bismuth derivatives from Bi2S3 pre-catalysts promote the electrochemical reduction of CO2, ChemElectroChem, 7(2020), No. 13, p. 2864. doi: 10.1002/celc.202000656
|