留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 4
Apr.  2024

图(8)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  493
  • HTML全文浏览量:  185
  • PDF下载量:  20
  • 被引次数: 0
Xiaoyan Wang, Safeer Jan, Zhiyong Wang,  and Xianbo Jin, Solid Bi2O3-derived nanostructured metallic bismuth with high formate selectivity for the electrocatalytic reduction of CO2, Int. J. Miner. Metall. Mater., 31(2024), No. 4, pp. 803-811. https://doi.org/10.1007/s12613-023-2770-y
Cite this article as:
Xiaoyan Wang, Safeer Jan, Zhiyong Wang,  and Xianbo Jin, Solid Bi2O3-derived nanostructured metallic bismuth with high formate selectivity for the electrocatalytic reduction of CO2, Int. J. Miner. Metall. Mater., 31(2024), No. 4, pp. 803-811. https://doi.org/10.1007/s12613-023-2770-y
引用本文 PDF XML SpringerLink
研究论文

电解固态Bi2O3制备具有高CO2电还原活性及高甲酸选择性的纳米金属铋催化剂



  • 通讯作者:

    金先波    E-mail: xbjin@whu.edu.cn

文章亮点

  • (1) 通过直接固态电化学还原氧化铋电极制备出纳米结构铋催化剂。
  • (2) 通过降低氧化铋的粒径,可以获得粒径尺寸更小的纳米铋金属催化剂。
  • (3) 所制备纳米铋对还原二氧化碳表现出高活性(电流密度40 mA cm-2)和高甲酸选择性(几乎100%)。
  • 二氧化碳(CO2)电化学还原是碳中和研究的一个重要方向。然而,目前的CO2电还原催化剂在稳定性、产物选择性以及活性等方面均有待提升。铋金属因其低成本、低毒性以及高CO2电还原活性及高甲酸选择性而备受青睐。本文中,我们采用固态电解,直接电化学还原商业氧化铋的固态电极制备了纳米多孔铋电极(粒径约80 nm)。应用于CO2电催化还原研究时,该纳米多孔铋电极在−0.78 V(相对于可逆氢电极RHE)表现出高达97.6%的甲酸选择性。当电极电势为−1.10 V vs. RHE时,该电极上CO2还原电流高达40.0 mA⋅cm−2,甲酸选择性仍保持86.0%。采用纳米尺寸的氧化铋前驱体可进一步将金属铋催化剂的原生粒径降低至30~50 nm,此时可提升低过电位下CO2还原时甲酸的选择性。例如,在−0.63 V vs. RHE时,甲酸选择性由原来的68.0%增加到81.7%。本工作中铋催化剂表现出优异的CO2电催化活性与其由互相连通的铋纳米网构成纳米多孔结构密切相关,该独特结构提供了CO2分子的扩散路径以及丰富的反应活性位点。
  • Research Article

    Solid Bi2O3-derived nanostructured metallic bismuth with high formate selectivity for the electrocatalytic reduction of CO2

    + Author Affiliations
    • CO2 electrochemical reduction (CO2ER) is an important research area for carbon neutralization. However, available catalysts for CO2 reduction are still characterized by limited stability and activity. Recently, metallic bismuth (Bi) has emerged as a promising catalyst for CO2ER. Herein, we report the solid cathode electroreduction of commercial micronized Bi2O3 as a straightforward approach for the preparation of nanostructured Bi. At −1.1 V versus reversible hydrogen electrode in a KHCO3 aqueous electrolyte, the resulting nanostructure Bi delivers a formate current density of ~40 mA·cm−2 with a current efficiency of ~86%, and the formate selectivity reaches 97.6% at −0.78 V. Using nanosized Bi2O3 as the precursor can further reduce the primary particle sizes of the resulting Bi, leading to a significantly increased formate selectivity at relatively low overpotentials. The high catalytic activity of nanostructured Bi is attributable to the ultrafine and interconnected Bi nanoparticles in the nanoporous structure, which exposes abundant active sites for CO2 electrocatalytic reduction.
    • loading
    • Supplementary Information-s12613-023-2770-y.docx
    • [1]
      Z.Y. Sun, T. Ma, H.C. Tao, Q. Fan, and B.X. Han, Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials, Chem, 3(2017), No. 4, p. 560. doi: 10.1016/j.chempr.2017.09.009
      [2]
      N. Han, P. Ding, L. He, Y.Y. Li, and Y.G. Li, Promises of main group metal-based nanostructured materials for electrochemical CO2 reduction to formate, Adv. Energy Mater., 10(2020), No. 11, art. No. 1902338. doi: 10.1002/aenm.201902338
      [3]
      R. Kortlever, J. Shen, K.J.P. Schouten, F. Calle-Vallejo, and M.T.M. Koper, Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide, J. Phys. Chem. Lett., 6(2015), No. 20, p. 4073. doi: 10.1021/acs.jpclett.5b01559
      [4]
      X. Chen, Y. Liu, and J.W. Wu, Sustainable production of formic acid from biomass and carbon dioxide, Mol. Catal., 483(2020), art. No. 110716. doi: 10.1016/j.mcat.2019.110716
      [5]
      Z.N. Yang, F.E. Oropeza, and K.H.L. Zhang, P-block metal-based (Sn, In, Bi, Pb) electrocatalysts for selective reduction of CO2 to formate, APL Mater., 8(2020), No. 6, art. No. 060901. doi: 10.1063/5.0004194
      [6]
      S.Y. Yang, M.H. Jiang, W.J. Zhang, et al. , In situ structure refactoring of bismuth nanoflowers for highly selective electrochemical reduction of CO2 to formate, Adv. Funct. Mater., 33(2023), No. 37, art. No. 2301984. doi: 10.1002/adfm.202301984
      [7]
      W.J. Zhang, S.Y. Yang, M.H. Jiang, et al., Nanocapillarity and nanoconfinement effects of pipet-like bismuth@carbon nanotubes for highly efficient electrocatalytic CO2 reduction, Nano Lett., 21(2021), No. 6, p. 2650. doi: 10.1021/acs.nanolett.1c00390
      [8]
      R. Zhou, N. Han, and Y.G. Li, Recent advances in bismuth-based CO2 reduction electrocatalysts, J. Electrochem., 25(2019), No. 4, p. 445.
      [9]
      H. Yang, N. Han, J. Deng, et al., Selective CO2 reduction on 2D mesoporous Bi nanosheets, Adv. Energy Mater., 8(2018), No. 35, art. No. 1801536. doi: 10.1002/aenm.201801536
      [10]
      P.L. Lu, D.L. Gao, H.Y. He, et al., Facile synthesis of a bismuth nanostructure with enhanced selectivity for electrochemical conversion of CO2 to formate, Nanoscale, 11(2019), No. 16, p. 7805. doi: 10.1039/C9NR01094G
      [11]
      Y.N. Zhang, D.F. Niu, S.Z. Hu, and X.S. Zhang, Recent progress on enhancing effect of nanosized metals for electrochemical CO2 reduction, J. Electrochem., 26(2020), No. 4, p. 495.
      [12]
      D. Wu, G. Huo, W.Y. Chen, X.Z. Fu, and J.L. Luo, Boosting formate production at high current density from CO2 electroreduction on defect-rich hierarchical mesoporous Bi/Bi2O3 junction nanosheets, Appl. Catal. B: Environ., 271(2020), art. No. 118957. doi: 10.1016/j.apcatb.2020.118957
      [13]
      P.P. Su, W.B. Xu, Y.L. Qiu, T.T. Zhang, X.F. Li, and H.M. Zhang, Ultrathin bismuth nanosheets as a highly efficient CO2 reduction electrocatalyst, ChemSusChem, 11(2018), No. 5, p. 848. doi: 10.1002/cssc.201702229
      [14]
      L. Zhang, Z.Y. Wang, N. Mehio, X.B. Jin, and S. Dai, Thickness- and particle-size-dependent electrochemical reduction of carbon dioxide on thin-layer porous silver electrodes, ChemSusChem, 9(2016), No. 5, p. 428. doi: 10.1002/cssc.201501637
      [15]
      G.R. Jia, Y. Wang, M.Z. Sun, et al., Size effects of highly dispersed bismuth nanoparticles on electrocatalytic reduction of carbon dioxide to formic acid, J. Am. Chem. Soc., 145(2023), No. 25, p. 14133. doi: 10.1021/jacs.3c04727
      [16]
      M. Azuma, K. Hashimoto, M. Hiramoto, M. Watanabe, and T. Sakata, Electrochemical reduction of carbon dioxide on various metal electrodes in low-temperature aqueous KHCO3 media, J. Electrochem. Soc., 137(1990), No. 6, p. 1772. doi: 10.1149/1.2086796
      [17]
      Q. Lu, J. Rosen, Y. Zhou, et al., A selective and efficient electrocatalyst for carbon dioxide reduction, Nat. Commun., 5(2014), art. No. 3242. doi: 10.1038/ncomms4242
      [18]
      G.O. Barasa, T.S. Yu, X.L. Lu, et al., Electrochemical training of nanoporous Cu-In catalysts for efficient CO2-to-CO conversion and high durability, Electrochim. Acta, 295(2019), p. 584. doi: 10.1016/j.electacta.2018.10.175
      [19]
      L. Li, F.F. Cai, F.X.Y. Qi, and D.K. Ma, Cu nanowire bridged Bi nanosheet arrays for efficient electrochemical CO2 reduction toward formate, J. Alloys Compd., 841(2020), art. No. 155789. doi: 10.1016/j.jallcom.2020.155789
      [20]
      F.P. García de Arquer, O.S. Bushuyev, P. de Luna, et al., 2D metal oxyhalide-derived catalysts for efficient CO2 electroreduction, Adv. Mater., 30(2018), No. 38, art. No. 1802858. doi: 10.1002/adma.201802858
      [21]
      T. Burdyny, P.J. Graham, Y.J. Pang, et al., Nanomorphology-enhanced gas-evolution intensifies CO2 reduction electrochemistry, ACS Sustainable Chem. Eng., 5(2017), No. 5, p. 4031. doi: 10.1021/acssuschemeng.7b00023
      [22]
      K. Fan, Y.F. Jia, Y.F. Ji, et al., Curved surface boosts electrochemical CO2 reduction to formate via bismuth nanotubes in a wide potential window, ACS Catal., 10(2020), No. 1, p. 358. doi: 10.1021/acscatal.9b04516
      [23]
      C.W. Li and M.W. Kanan, CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films, J. Am. Chem. Soc., 134(2012), No. 17, p. 7231. doi: 10.1021/ja3010978
      [24]
      W.J. Yan, J.T. Zhang, A.J. Lü, S.L. Lu, Y.W. Zhong, and M.Y. Wang, Self-supporting and hierarchically porous Ni x Fe–S/NiFe2O4 heterostructure as a bifunctional electrocatalyst for fluctuating overall water splitting, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 1120. doi: 10.1007/s12613-022-2443-2
      [25]
      W.Q. Lai, Y.T. Liu, M.M. Zeng, et al., One-step electrochemical dealloying of 3D Bi-continuous micro-nanoporous bismuth electrodes and CO2RR performance, Nanomaterials, 13(2023), No. 11, art. No. 1767. doi: 10.3390/nano13111767
      [26]
      S. Kim, W.J. Dong, S. Gim, et al., Shape-controlled bismuth nanoflakes as highly selective catalysts for electrochemical carbon dioxide reduction to formate, Nano Energy, 39(2017), p. 44. doi: 10.1016/j.nanoen.2017.05.065
      [27]
      M.R. Singh, E.L. Clark, and A.T. Bell, Effects of electrolyte, catalyst, and membrane composition and operating conditions on the performance of solar-driven electrochemical reduction of carbon dioxide, Phys. Chem. Chem. Phys., 17(2015), No. 29, p. 18924. doi: 10.1039/C5CP03283K
      [28]
      S. Liu, X.F. Lu, J. Xiao, X. Wang, and X.W.D. Lou, Bi2O3 nanosheets grown on multi-channel carbon matrix to catalyze efficient CO2 electroreduction to HCOOH, Angew. Chem. Int. Ed., 58(2019), No. 39, p. 13828. doi: 10.1002/anie.201907674
      [29]
      Q.F. Gong, P. Ding, M.Q. Xu, et al., Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction, Nat. Commun., 10(2019), No. 1, art. No. 2807. doi: 10.1038/s41467-019-10819-4
      [30]
      X. Zhang, J. Fu, Y.Y. Liu, X.D. Zhou, and J.L. Qiao, Bismuth anchored on MWCNTs with controlled ultrafine nanosize enables high-efficient electrochemical reduction of carbon dioxide to formate fuel, ACS Sustainable Chem. Eng., 8(2020), No. 12, p. 4871. doi: 10.1021/acssuschemeng.0c00099
      [31]
      Y.L. Xing, H.H. Chen, Y. Liu, et al., A phosphate-derived bismuth catalyst with abundant grain boundaries for efficient reduction of CO2 to HCOOH, Chem. Commun., 57(2021), No. 12, p. 1502. doi: 10.1039/D0CC06756C
      [32]
      P.L. Deng, H.M. Wang, R.J. Qi, et al., Bismuth oxides with enhanced bismuth–oxygen structure for efficient electrochemical reduction of carbon dioxide to formate, ACS Catal., 10(2020), No. 1, p. 743. doi: 10.1021/acscatal.9b04043
      [33]
      S. Zhang, P. Kang, and T.J. Meyer, Nanostructured tin catalysts for selective electrochemical reduction of carbon dioxide to formate, J. Am. Chem. Soc., 136(2014), No. 5, p. 1734. doi: 10.1021/ja4113885
      [34]
      X.Y. Wang, Z.Y. Wang, and X.B. Jin, Nanoporous bismuth for the electrocatalytic reduction of CO2 to formate, Phys. Chem. Chem. Phys., 23(2021), No. 35, p. 19195. doi: 10.1039/D1CP02661E
      [35]
      W.J. Dong, C.J. Yoo, and J.L. Lee, Monolithic nanoporous In–Sn alloy for electrochemical reduction of carbon dioxide, ACS Appl. Mater. Interfaces, 9(2017), No. 50, p. 43575. doi: 10.1021/acsami.7b10308
      [36]
      F.H. Zhang, C.Z. Chen, S.L. Yan, J.H. Zhong, B. Zhang, and Z.M. Cheng, Cu@Bi nanocone induced efficient reduction of CO2 to formate with high current density, Appl. Catal. A, 598(2020), art. No. 117545. doi: 10.1016/j.apcata.2020.117545
      [37]
      X.W. An, S.S. Li, A. Yoshida, et al., Bi-doped SnO nanosheets supported on Cu foam for electrochemical reduction of CO2 to HCOOH, ACS Appl. Mater. Interfaces, 11(2019), No. 45, p. 42114. doi: 10.1021/acsami.9b13270
      [38]
      Q. Yang, Q.L. Wu, Y. Liu, et al., Novel Bi-doped amorphous SnO x nanoshells for efficient electrochemical CO2 reduction into formate at low overpotentials, Adv. Mater., 32(2020), No. 36, art. No. 2002822. doi: 10.1002/adma.202002822
      [39]
      M.Y. Fan, S. Prabhudev, S. Garbarino, et al., Uncovering the nature of electroactive sites in nano architectured dendritic Bi for highly efficient CO2 electroreduction to formate, Appl. Catal. B, 274(2020), art. No. 119031. doi: 10.1016/j.apcatb.2020.119031
      [40]
      Y.T. Wang, L. Cheng, J.Z. Liu, et al., Rich bismuth–oxygen bonds in bismuth derivatives from Bi2S3 pre-catalysts promote the electrochemical reduction of CO2, ChemElectroChem, 7(2020), No. 13, p. 2864. doi: 10.1002/celc.202000656

    Catalog


    • /

      返回文章
      返回