留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 3
Mar.  2024

图(14)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  630
  • HTML全文浏览量:  277
  • PDF下载量:  37
  • 被引次数: 0
Shuo Han, Tao Wei, Sijia Wang, Yanlong Zhu, Xingtong Guo, Liang He, Xiongzhuang Li, Qing Huang, and Daifen Chen, Recent progresses in the development of tubular segmented-in-series solid oxide fuel cells: Experimental and numerical study, Int. J. Miner. Metall. Mater., 31(2024), No. 3, pp. 427-442. https://doi.org/10.1007/s12613-023-2771-x
Cite this article as:
Shuo Han, Tao Wei, Sijia Wang, Yanlong Zhu, Xingtong Guo, Liang He, Xiongzhuang Li, Qing Huang, and Daifen Chen, Recent progresses in the development of tubular segmented-in-series solid oxide fuel cells: Experimental and numerical study, Int. J. Miner. Metall. Mater., 31(2024), No. 3, pp. 427-442. https://doi.org/10.1007/s12613-023-2771-x
引用本文 PDF XML SpringerLink
特约综述

管式分段串联固体氧化物燃料电池发展的最新进展:实验与数值研究


  • 通讯作者:

    魏涛    E-mail: wt863@just.edu.cn

    陈代芬    E-mail: dfchen01@163.com

文章亮点

  • (1) 系统地回顾了管式分段串联固体氧化物燃料电池(SIS-SOFC)在制备方法、结构优化、性能改进和长期运行稳定性方面的进展。
  • (2) 从实验和数值研究两个方面分析了近年来管式SIS-SOFC的研究热点。
  • (3) 总结并提出了管式SIS-SOFC面临的挑战和未来发展。
  • 固体氧化物燃料电池(SOFC)因其无需使用任何贵金属作为催化剂、具有较高的效率、对环境无污染等优点,成为了近年来的研究热点。然而,传统SOFC存在体积较大、电流泄漏、连接复杂和气体密封困难等问题。为了解决这些问题,罗尔斯-罗伊斯公司通过在绝缘多孔支撑体上串联堆叠电池的简单设计,制造出管式分段串联固体氧化物燃料电池(SIS-SOFC),获得了更高的输出电压,降低了输出电流,从而降低了电池的欧姆损失,同时也解决了传统设计中密封困难的问题。本文系统回顾了管式SIS-SOFC在结构优化、制备方法、性能改进和长期运行稳定性方面的最新实验和数值研究进展。最后,还讨论了管式SIS-SOFC面临的挑战和未来发展。这些研究成果有助于为该领域的未来发展指明方向并激发创新。
  • Invited Review

    Recent progresses in the development of tubular segmented-in-series solid oxide fuel cells: Experimental and numerical study

    + Author Affiliations
    • Solid oxide fuel cells (SOFCs) have attracted a great deal of interest because they have the highest efficiency without using any noble metal as catalysts among all the fuel cell technologies. However, traditional SOFCs suffer from having a higher volume, current leakage, complex connections, and difficulty in gas sealing. To solve these problems, Rolls-Royce has fabricated a simple design by stacking cells in series on an insulating porous support, resulting in the tubular segmented-in-series solid oxide fuel cells (SIS-SOFCs), which achieved higher output voltage. This work systematically reviews recent advances in the structures, preparation methods, performances, and stability of tubular SIS-SOFCs in experimental and numerical studies. Finally, the challenges and future development of tubular SIS-SOFCs are also discussed. The findings of this work can help guide the direction and inspire innovation of future development in this field.
    • loading
    • [1]
      Y. Zhang, B. Chen, D.Q. Guan, et al., Thermal-expansion offset for high-performance fuel cell cathodes, Nature, 591(2021), No. 7849, p. 246. doi: 10.1038/s41586-021-03264-1
      [2]
      A. Hauch, R. Küngas, P. Blennow, et al., Recent advances in solid oxide cell technology for electrolysis, Science, 370(2020), art. No. eaba6118. doi: 10.1126/science.aba6118
      [3]
      T. Wei, Y.Y. Zhou, C. Sun, et al., Prestoring lithium into SnO2 coated 3D carbon fiber cloth framework as dendrite-free lithium metal anode, Particuology, 84(2024), p. 89. doi: 10.1016/j.partic.2023.03.008
      [4]
      T. Wei, Y.Y. Zhou, C. Sun, et al., An intermittent lithium deposition model based on CuMn-bimetallic MOF derivatives for composite lithium anode with ultrahigh areal capacity and current densities, Nano Res., (2023). Doi: 10.1007/s12274-023-6187-8.
      [5]
      T. Wei, J.H. Lu, M.T. Wang, et al., MOF-derived materials enabled lithiophilic 3D hosts for lithium metal anode—A review, Chin. J. Chem., 41(2023), No. 15, p. 1861. doi: 10.1002/cjoc.202200816
      [6]
      T. Wei, J.H. Lu, P. Zhang, et al., Metal–organic framework-derived Co3O4 modified nickel foam-based dendrite-free anode for robust lithium metal batteries, Chin. Chem. Lett., 34(2023), No. 8, art. No. 107947. doi: 10.1016/j.cclet.2022.107947
      [7]
      T. Wei, J.H. Lu, P. Zhang, et al., An intermittent lithium deposition model based on bimetallic MOFs derivatives for dendrite-free lithium anode with ultrahigh areal capacity, Chin. Chem. Lett., (2023), art. No. 109122.
      [8]
      X.C. Ge, H.X. Li, J. Li, et al., High-entropy doping boosts ion/electronic transport of Na4Fe3(PO4)2(P2O7)/C cathode for superior performance sodium-ion batteries, Small, 19(2023), No. 37, art. No. e2302609. doi: 10.1002/smll.202302609
      [9]
      W.J. Meng, Z.Z. Dang, D.S. Li, and L. Jiang, Long-cycle-life sodium-ion battery fabrication via a unique chemical bonding interface mechanism, Adv. Mater., 35(2023), No. 30, art. No. e2301376. doi: 10.1002/adma.202301376
      [10]
      T. Wei, Q. Zhang, S.J. Wang, et al., A gel polymer electrolyte with IL@UiO-66-NH2 as fillers for high-performance all-solid-state lithium metal batteries, Int. J. Miner. Metall. Mater., 30(2023), No. 10, p. 1897. doi: 10.1007/s12613-023-2639-0
      [11]
      Q. Zhang, S.J. Wang, Y. Liu, M.T. Wang, R.T. Chen, Z.Y. Zhu, X.Y. Qiu, S.D. Xu, and T. Wei, UiO-66-NH2@67 core–shell metal–organic framework as fillers in solid composite electrolytes for high-performance all-solid-state lithium metal batteries, Energy Technol., 11(2023), No. 4, art. No. 2201438. doi: 10.1002/ente.202201438
      [12]
      Z.H. Zhang, T. Wei, J.H. Lu, et al., Practical development and challenges of garnet-structured Li7La3Zr2O12 electrolytes for all-solid-state lithium-ion batteries: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1565. doi: 10.1007/s12613-020-2239-1
      [13]
      J.H. Lu, Z.M. Wang, Q. Zhang, et al., The effects of amino groups and open metal sites of MOFs on polymer-based electrolytes for all-solid-state lithium metal batteries, Chin. J. Chem. Eng., 60(2023), p. 80. doi: 10.1016/j.cjche.2023.01.011
      [14]
      Q. Zhang, T. Wei, J.H. Lu, et al., The effects of PVB additives in MOFs-based solid composite electrolytes for all-solid-state lithium metal batteries, J. Electroanal. Chem., 926(2022), No. 9, art. No. 116935. doi: 10.1016/j.jelechem.2022.116935
      [15]
      T. Wei, Z.H. Zhang, Q. Zhang, et al., Anion-immobilized solid composite electrolytes based on metal-organic frameworks and superacid ZrO2 fillers for high-performance all solid-state lithium metal batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1636. doi: 10.1007/s12613-021-2289-z
      [16]
      T. Wei, Z.H. Zhang, Z.M. Wang, et al., Ultrathin solid composite electrolyte based on Li6.4La3Zr1.4Ta0.6O12/PVDF-HFP/LiTFSI/succinonitrile for high-performance solid-state lithium metal batteries, ACS Appl. Energy Mater., 3(2020), No. 9, p. 9428. doi: 10.1021/acsaem.0c01872
      [17]
      A.G. Olabi, T. Wilberforce, and M. Ali Abdelkareem, Fuel cell application in the automotive industry and future perspective, Energy, 214(2021), art. No. 118955. doi: 10.1016/j.energy.2020.118955
      [18]
      M. Dhimish, R.G. Vieira, and G. Badran, Investigating the stability and degradation of hydrogen PEM fuel cell, Int. J. Hydrogen Energy, 46(2021), No. 74, p. 37017. doi: 10.1016/j.ijhydene.2021.08.183
      [19]
      X. Yang, Z.H. Du, Q. Zhang, et al., Effects of operating conditions on the performance degradation and anode microstructure evolution of anode-supported solid oxide fuel cells, Int. J. Miner. Metall. Mater., 30(2023), No. 6, p. 1181. doi: 10.1007/s12613-023-2616-7
      [20]
      W. N. A.W. Yusoff, N. A. Baharuddin, M. R. Somalu, A. Muchtar, N. P. Brandon, and H.Q. Fan, Recent advances and influencing parameters in developing electrode materials for symmetrical solid oxide fuel cells, Int. J. Miner. Metall. Mater., 30(2023), No. 10, p. 1933. doi: 10.1007/s12613-023-2694-6
      [21]
      F.Y. Liang, J.R. Yang, H.Q. Wang, and J.W. Wu, Fabrication of Gd2O3-doped CeO2 thin films through DC reactive sputtering and their application in solid oxide fuel cells, Int. J. Miner. Metall. Mater., 30(2023), No. 6, p. 1190. doi: 10.1007/s12613-023-2620-y
      [22]
      G.Y. Liu, F.G. Hou, S.L. Peng, X.D. Wang, and B.Z. Fang, Process and challenges of stainless steel based bipolar plates for proton exchange membrane fuel cells, Int. J. Miner. Metall. Mater., 29(2022), No. 5, p. 1099. doi: 10.1007/s12613-022-2485-5
      [23]
      J. Song, Y.Y. Birdja, D. Pant, Z.Y. Chen, and J. Vaes, Recent progress in the structure optimization and development of proton-conducting electrolyte materials for low-temperature solid oxide cells, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 848. doi: 10.1007/s12613-022-2447-y
      [24]
      J.X. Peng, J. Huang, X.L. Wu, Y.W. Xu, H.C. Chen, and X. Li, Solid oxide fuel cell (SOFC) performance evaluation, fault diagnosis and health control: A review, J. Power Sources, 505(2021), art. No. 230058. doi: 10.1016/j.jpowsour.2021.230058
      [25]
      V. Malik, S. Srivastava, M.K. Bhatnagar, and M. Vishnoi, Comparative study and analysis between solid oxide fuel cells (SOFC) and proton exchange membrane (PEM) fuel cell–A review, Mater. Today Proc., 47(2021), p. 2270. doi: 10.1016/j.matpr.2021.04.203
      [26]
      S. Dwivedi, Solid oxide fuel cell: Materials for anode, cathode and electrolyte, Int. J. Hydrogen Energy, 45(2020), No. 44, p. 23988. doi: 10.1016/j.ijhydene.2019.11.234
      [27]
      M. Singh, D. Zappa, and E. Comini, Solid oxide fuel cell: Decade of progress, future perspectives and challenges, Int. J. Hydrogen Energy, 46(2021), No. 54, p. 27643. doi: 10.1016/j.ijhydene.2021.06.020
      [28]
      D.F. Chen, Y.L. Zhu, S. Han, L. Anatoly, M. Andrey, and L. Lu, Investigate the effect of a parallel-cylindrical flow field on the solid oxide fuel cell stack performance by 3D multiphysics simulating, J. Energy Storage, 60(2023), art. No. 106587. doi: 10.1016/j.est.2022.106587
      [29]
      S.C. Singhal, Progress in tubular solid oxide fuel cell technology, Proc. Vol., 1999-19(1999), No. 1, p. 39. doi: 10.1149/199919.0039PV
      [30]
      D.F. Chen, Y. Xu, B. Hu, C. Yan, and L. Lu, Investigation of proper external air flow path for tubular fuel cell stacks with an anode support feature, Energy Convers. Manag., 171(2018), p. 807. doi: 10.1016/j.enconman.2018.06.036
      [31]
      L.X. Dong, Q. Zheng, Y. Huang, Z.P. Tian, J.P. Liu, C.Wang., B.Liang, and L.B. Lei, Research progress on cutting-edge technology of tubular solid oxide fuel cells, Energy Stor. Mater., 12(2022), No. 1, p. 131. doi: 10.19799/j.cnki.2095-4239.2022.0528
      [32]
      B.K. Park, J.W. Lee, S.B. Lee, et al., A flat-tubular solid oxide fuel cell with a dense interconnect film coated on the porous anode support, J. Power Sources, 213(2012), p. 218. doi: 10.1016/j.jpowsour.2012.04.025
      [33]
      M.H.D. Othman, N. Droushiotis, Z.T. Wu, G. Kelsall, and K. Li, High-performance, anode-supported, microtubular SOFC prepared from single-step-fabricated, dual-layer hollow fibers, Adv. Mater., 23(2011), No. 21, p. 2480. doi: 10.1002/adma.201100194
      [34]
      C.J. Li, X. Chen, S.L. Zhang, C.X. Li, and G.J. Yang, The characteristics of cermet-supported tubular solid oxide fuel cells manufactured by thermal spraying, ECS Trans., 91(2019), No. 1, p. 285. doi: 10.1149/09101.0285ecst
      [35]
      C. Li, C. Li, Y. Xing, M. Gao, and G. Yang, Influence of YSZ electrolyte thickness on the characteristics of plasma-sprayed cermet supported tubular SOFC, Solid State Ionics, 177(2006), No. 19-25, p. 2065. doi: 10.1016/j.ssi.2006.03.004
      [36]
      C.X. Li, C.J. Li, and L.J. Guo, Effect of composition of NiO/YSZ anode on the polarization characteristics of SOFC fabricated by atmospheric plasma spraying, Int. J. Hydrogen Energy, 35(2010), No. 7, p. 2964. doi: 10.1016/j.ijhydene.2009.05.041
      [37]
      C.J. Li, C.X. Li, H.G. Long, Y.Z. Xing, and G.J. Yang, Performance of tubular solid oxide fuel cell assembled with plasma-sprayed Sc2O3–ZrO2 electrolyte, Solid State Ionics, 179(2008), No. 27-32, p. 1575. doi: 10.1016/j.ssi.2008.03.037
      [38]
      O. Hodjati-Pugh, A. Dhir, and R. Steinberger-Wilckens, The development of current collection in micro-tubular solid oxide fuel cells—A review, Appl. Sci., 11(2021), No. 3, art. No. 1077. doi: 10.3390/app11031077
      [39]
      M.Z. Khan, A. Iltaf, H. Ishfaq, et al., Flat-tubular solid oxide fuel cells and stacks: A review, J. Asian Ceram. Soc., 9(2021), No. 3, p. 745.
      [40]
      S.M. Jamil, M.H.D. Othman, M.A. Rahman, J. Jaafar, A.F. Ismail, and K. Li, Recent fabrication techniques for micro-tubular solid oxide fuel cell support: A review, J. Eur. Ceram. Soc., 35(2015), No. 1, p. 1. doi: 10.1016/j.jeurceramsoc.2014.08.034
      [41]
      F.J. Gardner, M.J. Day, N.P. Brandon, M.N. Pashley, and M. Cassidy, SOFC technology development at Rolls-Royce, J. Power Sources, 86(2000), No. 1-2, p. 122. doi: 10.1016/S0378-7753(99)00428-0
      [42]
      Y.T. An, M.J. Ji, K.H. Seol, H.J. Hwang, E. Park, and B.H. Choi, Characteristics of flat-tubular ceramic supported segmented-in-series solid oxide fuel cell on all sides laminating using decalcomania method, J. Power Sources, 262(2014), p. 323. doi: 10.1016/j.jpowsour.2014.03.136
      [43]
      Y.T. An, M.J. Ji, H.J. Hwang, S. Eugene Park, and B.H. Choi, Effect of cell-to-cell distance in segmented-in-series solid oxide fuel cells, Int. J. Hydrogen Energy, 40(2015), No. 5, p. 2320. doi: 10.1016/j.ijhydene.2014.11.133
      [44]
      Y.T. An, M.J. Ji, H.J. Hwang, S.E. Park, and B.H. Choi, Effect of cell length on the performance of segmented-in-series solid oxide fuel cells fabricated using decalcomania method, J. Ceram. Soc. Jpn, 123(2015), No. 1436, p. 178. doi: 10.2109/jcersj2.123.178
      [45]
      S. Mukerjee, R. Leah, M. Selby, G. Stevenson, and N.P. Brandon, Solid Oxide Fuel Cell Lifetime and Reliability, Academic Press, London, 2017, p. 173.
      [46]
      K. Miyamoto, M. Mihara, H. Oozawa, et al., Recent progress of SOFC combined cycle system with segmented-in-series tubular type cell stack at MHPS, ECS Trans., 68(2015), No. 1, p. 51. doi: 10.1149/06801.0051ecst
      [47]
      H. Yoshida, T. Seyama, T. Sobue, and S. Yamashita, Development of residential SOFC CHP system with flatten tubular segmented-in-series cells stack, ECS Trans., 35(2011), No. 1, art. No. 97. doi: 10.1149/1.3569983
      [48]
      U. Mushtaq, D.W. Kim, U.J. Yun, et al., Effect of cathode geometry on the electrochemical performance of flat tubular segmented-in-series (SIS) solid oxide fuel cell, Int. J. Hydrogen Energy, 40(2015), No. 18, p. 6207. doi: 10.1016/j.ijhydene.2015.03.040
      [49]
      J. Ding and J. Liu, A novel design and performance of cone-shaped tubular anode-supported segmented-in-series solid oxide fuel cell stack, J. Power Sources, 193(2009), No. 2, p. 769. doi: 10.1016/j.jpowsour.2009.04.049
      [50]
      Y. Matsuzaki, K. Nakamura, T. Somekawa, et al., Multimodal assessment of durability and reliabilityof flattened tubular SIS stacks, ECS Trans., 57(2013), No. 1, p. 325. doi: 10.1149/05701.0325ecst
      [51]
      Y.H. Tang, Y.K. Lin, D.M. Ford, et al., A review on models and simulations of membrane formation via phase inversion processes, J. Membr. Sci., 640(2021), art. No. 119810. doi: 10.1016/j.memsci.2021.119810
      [52]
      C. Ren, T. Liu, Y.T. Mao, et al., Effect of casting slurry composition on anode support microstructure and cell performance of MT-SOFCs by phase inversion method, Electrochim. Acta, 149(2014), p. 159. doi: 10.1016/j.electacta.2014.10.060
      [53]
      C.H. Yang, C. Jin, and F.L. Chen, Micro-tubular solid oxide fuel cells fabricated by phase-inversion method, Electrochem. Commun., 12(2010), No. 5, p. 657. doi: 10.1016/j.elecom.2010.02.024
      [54]
      Z.Y. Han, Y.H. Wang, Z.B. Yang, and M.F. Han, Electrochemical properties of tubular SOFC based on a porous ceramic support fabricated by phase-inversion method, J. Mater. Sci. Technol., 32(2016), No. 7, p. 681. doi: 10.1016/j.jmst.2016.03.002
      [55]
      A. Mat, M. Canavar, B. Timurkutluk, and Y. Kaplan, Investigation of micro-tube solid oxide fuel cell fabrication using extrusion method, Int. J. Hydrogen Energy, 41(2016), No. 23, p. 10037. doi: 10.1016/j.ijhydene.2015.12.203
      [56]
      S.L. Zhang, C.X. Li, S. Liu, et al., Thermally sprayed large tubular solid oxide fuel cells and its stack: Geometry optimization, preparation, and performance, J. Therm. Spray Technol., 26(2017), No. 3, p. 441. doi: 10.1007/s11666-016-0506-5
      [57]
      M. Somalu, A. Muchtar, W. Wan Daud, and N. Brandon, Screen-printing inks for the fabrication of solid oxide fuel cell films: A review, Renewable Sustainable Energy Rev., 75(2017), p. 426. doi: 10.1016/j.rser.2016.11.008
      [58]
      Z.B. Yang, T.L. Zhu, and M.F. Han, Tubular SOFC with hollow fiber ceramic support and inner coating, ECS Trans., 68(2015), No. 1, p. 2267. doi: 10.1149/06801.2267ecst
      [59]
      M. Ghatee and F. Salari, Electrical and mechanical properties of 5YSZ tubular thin film prepared by screen printing method, Int. J. Appl. Ceram. Technol., 13(2016), No. 2, p. 373. doi: 10.1111/ijac.12485
      [60]
      D.W. Kim, U.J. Yun, J.W. Lee, et al., Fabrication and operating characteristics of a flat tubular segmented-in-series solid oxide fuel cell unit bundle, Energy, 72(2014), p. 215. doi: 10.1016/j.energy.2014.05.026
      [61]
      Y.J. Xu, S.R. Wang, R.Z. Liu, T.L. Wen, and Z.Y. Wen, A novel bilayered Sr0.6La0.4TiO3/La0.8Sr0.2MnO3 interconnector for anode-supported tubular solid oxide fuel cell via slurry-brushing and co-sintering process, J. Power Sources, 196(2011), No. 3, p. 1338. doi: 10.1016/j.jpowsour.2010.07.088
      [62]
      U.J. Yun, J.W. Lee, S.B. Lee, et al., Fabrication and operation of tubular segmented-In-series (SIS) solid oxide fuel cells (SOFC), Fuel Cells, 12(2012), No. 6, p. 1099. doi: 10.1002/fuce.201200076
      [63]
      Y.H. Bai, J. Liu, and C.L. Wang, Performance of cone-shaped tubular anode-supported segmented-in-series solid oxide fuel cell stack fabricated by dip coating technique, Int. J. Hydrogen Energy, 34(2009), No. 17, p. 7311. doi: 10.1016/j.ijhydene.2009.07.004
      [64]
      J. Ding, X.Y. Zhou, Q.H. Liu, and G.Q. Yin, Development of tubular anode-supported solid oxide fuel cell cell and 4-cell-stack based on lanthanum gallate electrolyte membrane for mobile application, J. Power Sources, 401(2018), p. 336. doi: 10.1016/j.jpowsour.2018.08.089
      [65]
      T. Wei, X.J. Liu, C. Yuan, Q.Y. Gao, X.S. Xin, and S.R. Wang, A modified liquid-phase-assisted sintering mechanism for La0.8Sr0.2Cr1– x Fe x O3– δ —A high density, redox-stable perovskite interconnect for solid oxide fuel cells, J. Power Sources, 250(2014), p. 152. doi: 10.1016/j.jpowsour.2013.11.012
      [66]
      Y.J. Xu, S.R. Wang, L. Shao, T.L. Wen, and Z.Y. Wen, Performance of an anode-supported tubular solid oxide fuel cells stack with two single cells connected by a co-sintered ceramic interconnector, Int. J. Hydrogen Energy, 36(2011), No. 10, p. 6194. doi: 10.1016/j.ijhydene.2011.01.084
      [67]
      B.K. Park, D.W. Kim, R.H. Song, et al., Design of a dual-layer ceramic interconnect based on perovskite oxides for segmented-in-series solid oxide fuel cells, J. Power Sources, 300(2015), p. 318. doi: 10.1016/j.jpowsour.2015.09.082
      [68]
      Y.Z. Hu, J.T. Gao, C.X. Li, and C.J. Li, Thermally sprayed MCO/FeCr24 interconnector with improved stability for tubular segmented-in-series SOFCs, Appl. Surf. Sci., 587(2022), art. No. 152861. doi: 10.1016/j.apsusc.2022.152861
      [69]
      P. Pianko-Oprych and M. Palus, Numerical analysis of a serial connection of two staged SOFC stacks in a CHP system fed by methane using Aspen TECH, Pol. J. Chem. Technol., 21(2019), No. 1, p. 33. doi: 10.2478/pjct-2019-0007
      [70]
      T.S. Lai, J. Liu, and S.A. Barnett, Effect of cell width on segmented-in-series SOFCs, Electrochem. Solid-State Lett., 7(2004), No. 4, art. No. A78. doi: 10.1149/1.1649398
      [71]
      T.S. Lai and S.A. Barnett, Design considerations for segmented-in-series fuel cells, J. Power Sources, 147(2005), No. 1-2, p. 85. doi: 10.1016/j.jpowsour.2005.01.002
      [72]
      T.S. Lai and S.A. Barnett, Effect of cathode sheet resistance on segmented-in-series SOFC power density, J. Power Sources, 164(2007), No. 2, p. 742. doi: 10.1016/j.jpowsour.2006.10.075
      [73]
      D.A. Cui, Y.L. Ji, C. Chang, Z. Wang, X. Xiao, and Y.T. Li, Influence of structure size on voltage uniformity of flat tubular segmented-in-series solid oxide fuel cell, J. Power Sources, 460(2020), art. No. 228092. doi: 10.1016/j.jpowsour.2020.228092
      [74]
      J.H. Fan, J.X. Shi, R.Y. Zhang, Y.Q. Wang, and Y.X. Shi, Numerical study of a 20-cell tubular segmented-in-series solid oxide fuel cell, J. Power Sources, 556(2023), art. No. 232449. doi: 10.1016/j.jpowsour.2022.232449
      [75]
      A.D. Shi, Y.P. Kong, Z. Li, Y.H. Wang, S.L. Fan, and Z.L. Jin, Performance analysis of series connected cathode supported tubular SOFCs, Int. J. Electrochem. Sci., 18(2023), No. 5, art. No. 100126. doi: 10.1016/j.ijoes.2023.100126
      [76]
      O. Hodjati-Pugh, J. Andrews, A. Dhir, and R. Steinberger-Wilckens, Analysis of current collection in micro-tubular solid oxide fuel cells: An empirical and mathematical modelling approach for minimised ohmic polarisation, J. Power Sources, 494(2021), art. No. 229780. doi: 10.1016/j.jpowsour.2021.229780
      [77]
      B. Liu, T. Matsui, H. Muroyama, K. Tomida, T. Kabata, and K. Eguchi, Impedance analysis of practical segmented-in-series tubular solid oxide fuel cells, ECS Trans., 35(2011), No. 1, p. 637. doi: 10.1149/1.3570042
      [78]
      B. Liu, H. Muroyama, T. Matsui, K. Tomida, T. Kabata, and K. Eguchi, Analysis of impedance spectra for segmented-in-series tubular solid oxide fuel cells, J. Electrochem. Soc., 157(2010), No. 12, art. No. B1858. doi: 10.1149/1.3494214
      [79]
      B. Liu, H. Muroyama, T. Matsui, K. Tomida, T. Kabata, and K. Eguchi, Gas transport impedance in segmented-in-series tubular solid oxide fuel cell, J. Electrochem. Soc., 158(2011), No. 2, art. No. B215. doi: 10.1149/1.3519492
      [80]
      B. Liu, H. Muroyama, T. Matsui, K. Tomida, T. Kabata, and K. Eguchi, Dynamic behavior of segmented-in-series tubular solid oxide fuel cell upon discharge, J. Electrochem. Soc., 159(2012), No. 3, p. B324. doi: 10.1149/2.099203jes
      [81]
      K. Fujita, T. Somekawa, T. Hatae, and Y. Matsuzaki, Residual stress and redox cycling of segmented-in-series solid oxide fuel cells, J. Power Sources, 196(2011), No. 21, p. 9022. doi: 10.1016/j.jpowsour.2011.01.022
      [82]
      T. Somekawa, K. Horiuchi, and Y. Matsuzaki, A study of electrically insulated oxide substrates for flat-tube segmented-in-series solid oxide fuel cells, J. Power Sources, 202(2012), p. 114. doi: 10.1016/j.jpowsour.2011.11.056
      [83]
      A. Choudhury, H. Chandra, and A. Arora, Application of solid oxide fuel cell technology for power generation—A review, Renewable Sustainable Energy Rev., 20(2013), p. 430. doi: 10.1016/j.rser.2012.11.031
      [84]
      K. Huang and S.C. Singhal, Cathode-supported tubular solid oxide fuel cell technology: A critical review, J. Power Sources, 237(2013), p. 84. doi: 10.1016/j.jpowsour.2013.03.001
      [85]
      K. Horiuchi, K. Nakamura, Y. Matsuzaki, et al., Durability tests of flatten tubular segmented-in-series type SOFC stacks for intermediate temperature operation, ECS Trans., 35(2011), No. 1, art. No. 217. doi: 10.1149/1.3569996
      [86]
      Y. Kobayashi, K. Tomida, H. Tsukuda, Y. Shiratori, S. Taniguchi, and K. Sasaki, Durability of a segmented-in-series tubular SOFC with a (Ce,Sm)O2 cathode interlayer: Influence of operating conditions, J. Electrochem. Soc., 161(2014), No. 3, p. F214. doi: 10.1149/2.027403jes

    Catalog


    • /

      返回文章
      返回