留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 8
Aug.  2024

图(15)  / 表(4)

数据统计

分享

计量
  • 文章访问数:  574
  • HTML全文浏览量:  160
  • PDF下载量:  26
  • 被引次数: 0
Lei Jia, Heng Cui, Shufeng Yang, Shaomin Lü, Xingfei Xie, and Jinglong Qu, Evolution of microstructure and properties of a novel Ni-based superalloy during stress relief annealing, Int. J. Miner. Metall. Mater., 31(2024), No. 8, pp. 1876-1889. https://doi.org/10.1007/s12613-023-2779-2
Cite this article as:
Lei Jia, Heng Cui, Shufeng Yang, Shaomin Lü, Xingfei Xie, and Jinglong Qu, Evolution of microstructure and properties of a novel Ni-based superalloy during stress relief annealing, Int. J. Miner. Metall. Mater., 31(2024), No. 8, pp. 1876-1889. https://doi.org/10.1007/s12613-023-2779-2
引用本文 PDF XML SpringerLink
研究论文

新型镍基高温合金在应力退火过程中的微观结构和性能演变


  • 通讯作者:

    崔衡    E-mail: cuiheng@ustb.edu.cn

    杨树峰    E-mail: yangshufeng@ustb.edu.cn

文章亮点

  • (1) 应力松弛机制从位错滑移主导转变为位错滑移和晶界迁移共同作用。
  • (2) 退火处理促进了Laves相(Mo, Cr, Co, Nb)的分解,并伴随著在950°C开始析出μ-(Mo6Co7),合金的强度的提升得益于细小的μ相(0.5–1 μm)的形成。
  • (3) 在1150°C退火后合金获得了最大的抗拉强度和塑性(1394 MPa,56.1%),这比铸态的合金(1060 MPa,26.6%)分别提高了131%和200%。
  • (4) 在1150°C退火后GH4151合金强度的主要贡献来自于γ基体的固溶强化作用(Δσss = 431.88 MPa)。
  • 本文通过扫描电子显微镜(SEM)、高分辨透射电子显微镜(HRTEM)和电子背散射衍射(EBSD)研究了GH4151合金在不同退火温度下的残余应力降低、析出演变和力学性能。结果表明,退火处理可以有效地减小残余应力。随着退火温度从950°C增加到1150°C,大部分残余应力从60.1 MPa降至10.9 MPa,并且相应的应力松弛机制由位错滑移主导转变为位错滑移和晶界迁移共同作用。同时,退火处理促进了Laves相的分解,伴随着μ-(Mo6Co7)的析出,起始温度为950°C,在1050°C达到最大值。退火后,合金在1150°C具有最大的抗拉强度和塑性(1394 MPa,56.1%),比铸态合金(1060 MPa,26.6%)提高了131%和200%,但合金中的氧化过程在1150°C时加速。强度和塑性的增加主要归因于脆性相的溶解以及γ′相的形态和规则分布。
  • Research Article

    Evolution of microstructure and properties of a novel Ni-based superalloy during stress relief annealing

    + Author Affiliations
    • We discussed the decrease in residual stress, precipitation evolution, and mechanical properties of GH4151 alloy in different annealing temperatures, which were studied by the scanning electron microscope (SEM), high-resolution transmission electron microscopy (HRTEM), and electron backscatter diffraction (EBSD). The findings reveal that annealing processing has a significant impact on diminishing residual stresses. As the annealing temperature rose from 950 to 1150°C, the majority of the residual stresses were relieved from 60.1 MPa down to 10.9 MPa. Moreover, the stress relaxation mechanism transitioned from being mainly controlled by dislocation slip to a combination of dislocation slip and grain boundary migration. Meanwhile, the annealing treatment promotes the decomposition of the Laves, accompanied by the precipitation of μ-(Mo6Co7) starting at 950°C and reaching a maximum value at 1050°C. The tensile strength and plasticity of the annealing alloy at 1150°C reached the maximum (1394 MPa, 56.1%) which was 131%, 200% fold than those of the as-cast alloy (1060 MPa, 26.6%), but the oxidation process in the alloy was accelerated at 1150°C. The enhancement in durability and flexibility is primarily due to the dissolution of the brittle phase, along with the shape and dispersal of the γ′ phase.
    • loading
    • [1]
      E. Chlebus, K. Gruber, B. Kuźnicka, J. Kurzac, and T. Kurzynowski, Effect of heat treatment on the microstructure and mechanical properties of Inconel 718 processed by selective laser melting, Mater. Sci. Eng. A, 639(2015), p. 647. doi: 10.1016/j.msea.2015.05.035
      [2]
      G.D. Zhao, X.M. Zang, Y. Jing, N. Lü, and J.J. Wu, Role of carbides on hot deformation behavior and dynamic recrystallization of hard-deformed superalloy U720Li, Mater. Sci. Eng. A, 815(2021), art. No. 141293. doi: 10.1016/j.msea.2021.141293
      [3]
      M.C. Hardy, M. Detrois, E.T. McDevitt, et al., Solving recent challenges for wrought Ni-base superalloys, Metall. Mater. Trans. A, 51(2020), No. 6, p. 2626. doi: 10.1007/s11661-020-05773-6
      [4]
      Y.X. Zhu, C. Li, Y.C. Liu, Z.Q. Ma, and H.Y. Yu, Effect of Ti addition on high-temperature oxidation behavior of Co–Ni-based superalloy, J. Iron Steel Res. Int., 27(2020), No. 10, p. 1179. doi: 10.1007/s42243-020-00379-z
      [5]
      S.L. Yang, S.F. Yang, W. Liu, J.S. Li, J.G. Gao, and Y. Wang, Microstructure, segregation and precipitate evolution in directionally solidified GH4742 superalloy, Int. J. Miner. Metall. Mater., 30(2023), No. 5, p. 939. doi: 10.1007/s12613-022-2549-6
      [6]
      S.M. Lv, J.B. Chen, X.B. He, C.L. Jia, K. Wei, and X.H. Qu, Investigation on sub-solvus recrystallization mechanisms in an advanced γ–γ′ nickel-based superalloy GH4151, Materials, 13(2020), No. 20, art. No. 4553. doi: 10.3390/ma13204553
      [7]
      L. Jia, H. Cui, S.F. Yang, S.M. Lv, X.F. Xie, and J.L. Qu, Effect of carbon addition on microstructure and mechanical properties of a typical hard-to-deform Ni-base superalloy, Prog. Nat. Sci. Mater. Int., 33(2023), No. 2, p. 232. doi: 10.1016/j.pnsc.2023.05.008
      [8]
      X.X. Li, C.L. Jia, Y. Zhang, S.M. Lv, and Z.H. Jiang, Segregation and homogenization for a new nickel-based superalloy, Vacuum, 177(2020), art. No. 109379. doi: 10.1016/j.vacuum.2020.109379
      [9]
      Y.G. Tan, F. Liu, A.W. Zhang, et al., Element segregation and solidification behavior of a Nb, Ti, Al co-strengthened superalloy ЭК151, Acta Metall. Sin. Engl. Lett., 32(2019), No. 10, p. 1298. doi: 10.1007/s40195-019-00894-3
      [10]
      M.M. Bakradze, S.V. Ovsepyan, A.A. Buiakina, and B.S. Lomberg, Development of Ni-base superalloy with operating temperature up to 800°C for gas turbine disks, Inorg. Mater. Appl. Res., 9(2018), No. 6, p. 1044. doi: 10.1134/S2075113318060035
      [11]
      X.X. Li, C.L. Jia, Y. Zhang, S.M. Lü, and Z.H. Jiang, Cracking mechanism in as-cast GH4151 superalloy ingot with high γ′; phase content, Trans. Nonferrous Met. Soc. China, 30(2020), No. 10, p. 2697. doi: 10.1016/S1003-6326(20)65413-9
      [12]
      M.H. Zhang, B.C. Zhang, Y.J. Wen, and X.H. Qu, Research progress on selective laser melting processing for nickel-based superalloy, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 369. doi: 10.1007/s12613-021-2331-1
      [13]
      L. Zhang, L. Wang, Y. Liu, X. Song, T. Yu, and R. Duan, Hot cracking behavior of large size GH4742 superalloy vacuum induction melting ingot, J. Iron Steel Res. Int., 29(2022), No. 9, p. 1505. doi: 10.1007/s42243-022-00767-7
      [14]
      F. D’Elia, C. Ravindran, and D. Sediako, Interplay among solidification, microstructure, residual strain and hot tearing in B206 aluminum alloy, Mater. Sci. Eng. A, 624(2015), p. 169. doi: 10.1016/j.msea.2014.11.057
      [15]
      Y. Li, H.X. Li, L. Katgerman, Q. Du, J.S. Zhang, and L.Z. Zhuang, Recent advances in hot tearing during casting of aluminium alloys, Prog. Mater. Sci., 117(2021), art. No. 100741. doi: 10.1016/j.pmatsci.2020.100741
      [16]
      X.Q. Zhang, H.B. Chen, L.M. Xu, J.J. Xu, X.K. Ren, and X.Q. Chen, Cracking mechanism and susceptibility of laser melting deposited Inconel 738 superalloy, Mater. Des., 183(2019), art. No. 108105. doi: 10.1016/j.matdes.2019.108105
      [17]
      X.Z. Zhou, Y.H. Zhang, Y. Zhang, H.D. Fu, and J.X. Xie, Effect of Ni content on solidification behavior and hot-tearing susceptibility of Co–Ni–Al–W-based superalloys, Metall. Mater. Trans. A, 53(2022), No. 9, p. 3465. doi: 10.1007/s11661-022-06762-7
      [18]
      Y.S. Li, Y.W. Dong, Z.H. Jiang, et al., Study on microsegregation and homogenization process of a novel nickel-based wrought superalloy, J. Mater. Res. Technol., 19(2022), p. 3366. doi: 10.1016/j.jmrt.2022.06.088
      [19]
      Z. Zhao and J.X. Dong, Effect of eutectic characteristics on hot tearing of cast superalloys, J. Mater. Eng. Perform., 28(2019), No. 8, p. 4707. doi: 10.1007/s11665-019-04230-9
      [20]
      X.X. Li, C.L. Jia, Z.H. Jiang, Y. Zhang, and S.M. Lv, Investigation of solidification behavior in a new high alloy Ni-based superalloy, JOM, 72(2020), No. 11, p. 4139. doi: 10.1007/s11837-020-04346-7
      [21]
      S. Kou, A criterion for cracking during solidification, Acta Mater., 88(2015), p. 366. doi: 10.1016/j.actamat.2015.01.034
      [22]
      J.J. Xu, X. Lin, P.F. Guo, et al., The initiation and propagation mechanism of the overlapping zone cracking during laser solid forming of IN-738LC superalloy, J. Alloys Compd., 749(2018), p. 859. doi: 10.1016/j.jallcom.2018.03.366
      [23]
      M.D. Rowe, Ranking the resistance of wrought superalloys to strain-age cracking, Welding J., 85(2006), No. 2, p. 27-s.
      [24]
      J.P. Oliveira, A.D. LaLonde, and J. Ma, Processing parameters in laser powder bed fusion metal additive manufacturing, Mater. Des., 193(2020), art. No. 108762. doi: 10.1016/j.matdes.2020.108762
      [25]
      E. Edin, F. Svahn, M. Neikter, and P. Åkerfeldt, Stress relief heat treatment and mechanical properties of laser powder bed fusion built 21-6-9 stainless steel, Mater. Sci. Eng. A, 868(2023), art. No. 144742. doi: 10.1016/j.msea.2023.144742
      [26]
      B. Diepold, N. Vorlaufer, S. Neumeier, T. Gartner, and M. Göken, Optimization of the heat treatment of additively manufactured Ni-base superalloy IN718, Int. J. Miner. Metall. Mater., 27(2020), No. 5, p. 640. doi: 10.1007/s12613-020-1991-6
      [27]
      Y.T. Ding, H. Wang, J.Y. Xu, Y. Hu, and D. Zhang, Evolution of microstructure and properties of SLM formed inconel 738 alloy during stress relief annealing, Rare Met. Mater. Eng., 49(2020), No. 12, p. 4311.
      [28]
      J.J. Zhu and W.H. Yuan, Effect of pretreatment process on microstructure and mechanical properties in Inconel 718 alloy, J. Alloys Compd., 939(2023), art. No. 168707. doi: 10.1016/j.jallcom.2023.168707
      [29]
      H. Wang, X. Zhang, G.B. Wang, et al., Selective laser melting of the hard-to-weld IN738LC superalloy: Efforts to mitigate defects and the resultant microstructural and mechanical properties, J. Alloys Compd., 807(2019), art. No. 151662. doi: 10.1016/j.jallcom.2019.151662
      [30]
      S. Carlsson and P.L. Larsson, On the determination of residual stress and strain fields by sharp indentation testing. Part I: Theoretical and numerical analysis, Acta Mater., 49(2001), No. 12, p. 2179. doi: 10.1016/S1359-6454(01)00122-7
      [31]
      C. Zhu, Z.H. Zhao, Q.F. Zhu, et al., Hot-top direct chill casting assisted by a twin-cooling field: Improving the ingot quality of a large-size 2024 Al alloy, J. Mater. Sci. Technol., 112(2022), p. 114. doi: 10.1016/j.jmst.2021.09.053
      [32]
      G.D. Zhao, G.L. Yang, F. Liu, X. Xin, and W.R. Sun, Transformation mechanism of (γ+γ′) and the effect of cooling rate on the final solidification of U720Li alloy, Acta Metall. Sin. Engl. Lett., 30(2017), No. 9, p. 887. doi: 10.1007/s40195-017-0566-7
      [33]
      X.X. Li, C.L. Jia, Y. Zhang, S.M. Lü, and Z.H. Jiang, Incipient melting phase and its dissolution kinetics for a new superalloy, Trans. Nonferrous Met. Soc. China, 30(2020), No. 8, p. 2107. doi: 10.1016/S1003-6326(20)65364-X
      [34]
      H.M. Tawancy, Precipitation characteristics of μ-phase in wrought nickel-base alloys and its effect on their properties, J. Mater. Sci., 31(1996), No. 15, p. 3929. doi: 10.1007/BF00352653
      [35]
      W. Sun, X.Z. Qin, J.T. Guo, L.H. Lou, and L.Z. Zhou, Microstructure stability and mechanical properties of a new low cost hot-corrosion resistant Ni–Fe–Cr based superalloy during long-term thermal exposure, Mater. Des., 69(2015), p. 70. doi: 10.1016/j.matdes.2014.12.030
      [36]
      A. Agh and A. Amini, Investigation of the stress rupture behavior of GTD-111 superalloy melted by VIM/VAR, Int. J. Miner. Metall. Mater., 25(2018), No. 9, p. 1035. doi: 10.1007/s12613-018-1654-z
      [37]
      R. Liu, X.T. Wang, P.P. Hu, C.B. Xiao, and J.S. He, Low cycle fatigue behavior of micro-grain casting K4169 superalloy at room temperature, Prog. Nat. Sci. Mater. Int., 32(2022), No. 6, p. 693. doi: 10.1016/j.pnsc.2022.10.009
      [38]
      H. Xu, Y.H. Zhang, H.D. Fu, F. Xue, X.Z. Zhou, and J.X. Xie, Effects of boron or carbon on solidification behavior of Co–Ni–Al–W-based superalloys, J. Alloys Compd., 891(2022), art. No. 161965. doi: 10.1016/j.jallcom.2021.161965
      [39]
      L. Gong, B. Chen, Z.H. Du, M.S. Zhang, R.C. Liu, and K. Liu, Investigation of solidification and segregation characteristics of cast Ni-base superalloy K417G, J. Mater. Sci. Technol., 34(2018), No. 3, p. 541. doi: 10.1016/j.jmst.2016.11.009
      [40]
      Y.L. Xu, Q.M. Jin, X.S. Xiao, et al., Strengthening mechanisms of carbon in modified nickel-based superalloy Nimonic 80A, Mater. Sci. Eng. A, 528(2011), No. 13-14, p. 4600. doi: 10.1016/j.msea.2011.02.072
      [41]
      X.L. Su, Q.Y. Xu, R.N. Wang, Z.L. Xu, S.Z. Liu, and B.C. Liu, Microstructural evolution and compositional homogenization of a low re-bearing Ni-based single crystal superalloy during through progression of heat treatment, Mater. Des., 141(2018), p. 296. doi: 10.1016/j.matdes.2017.12.020
      [42]
      S. Sui, H. Tan, J. Chen, et al., The influence of Laves phases on the room temperature tensile properties of Inconel 718 fabricated by powder feeding laser additive manufacturing, Acta Mater., 164(2019), p. 413. doi: 10.1016/j.actamat.2018.10.032
      [43]
      M.Q. Ding, P. Hu, Y. Ru, et al., Effects of rare-earth elements on the oxidation behavior of γ-Ni in Ni-based single crystal superalloys: A first-principles study from a perspective of surface adsorption, Appl. Surf. Sci., 547(2021), art. No. 149173. doi: 10.1016/j.apsusc.2021.149173
      [44]
      X. Song, L. Wang, Y. Liu, and H.P. Ma, Effects of temperature and rare earth content on oxidation resistance of Ni-based superalloy, Prog. Nat. Sci. Mater. Int., 21(2011), No. 3, p. 227. doi: 10.1016/S1002-0071(12)60035-5
      [45]
      H.M. Tawancy and N.M. Abbas, An analytical electron microscopy study of the role of La and Y during high-temperature oxidation of selected Ni-base alloys, Scripta Metall. Mater., 29(1993), No. 5, p. 689. doi: 10.1016/0956-716X(93)90420-W
      [46]
      W.Z. Zhou, Y.S. Tian, Q.B. Tan, et al., Effect of carbon content on the microstructure, tensile properties and cracking susceptibility of IN738 superalloy processed by laser powder bed fusion, Addit. Manuf., 58(2022), art. No. 103016.
      [47]
      N.N. Lu, Z.L. Lei, K. Hu, et al., Hot cracking behavior and mechanism of a third-generation Ni-based single-crystal superalloy during directed energy deposition, Addit. Manuf., 34(2020), art. No. 101228.
      [48]
      E. Chauvet, P. Kontis, E.A. Jägle, et al., Hot cracking mechanism affecting a non-weldable Ni-based superalloy produced by selective electron Beam Melting, Acta Mater., 142(2018), p. 82. doi: 10.1016/j.actamat.2017.09.047
      [49]
      T. Ungár, I. Dragomir, Révész, and A. Borbély, The contrast factors of dislocations in cubic crystals: The dislocation model of strain anisotropy in practice, J. Appl. Crystallogr., 32(1999), No. 5, p. 992. doi: 10.1107/S0021889899009334
      [50]
      B. Dubiel, P. Indyka, I. Kalemba-Rec, et al., The influence of high temperature annealing and creep on the microstructure and chemical element distribution in the γ, γ′ and TCP phases in single crystal Ni-base superalloy, J. Alloys Compd., 731(2018), p. 693. doi: 10.1016/j.jallcom.2017.10.076
      [51]
      R.W. Kozar, A. Suzuki, W.W. Milligan, J.J. Schirra, M.F. Savage, and T.M. Pollock, Strengthening mechanisms in polycrystalline multimodal nickel-base superalloys, Metall. Mater. Trans. A, 40(2009), No. 7, p. 1588. doi: 10.1007/s11661-009-9858-5
      [52]
      H.A. Roth, C.L. Davis, and R.C. Thomson, Modeling solid solution strengthening in nickel alloys, Metall. Mater. Trans. A, 28(1997), No. 6, p. 1329. doi: 10.1007/s11661-997-0268-2
      [53]
      J.S. Wang, M.D. Mulholland, G.B. Olson, and D.N. Seidman, Prediction of the yield strength of a secondary-hardening steel, Acta Mater., 61(2013), No. 13, p. 4939. doi: 10.1016/j.actamat.2013.04.052
      [54]
      T.Q. Liu, Z.X. Cao, H. Wang, G.L. Wu, J.J. Jin, and W.Q. Cao, A new 2.4 GPa extra-high strength steel with good ductility and high toughness designed by synergistic strengthening of nano-particles and high-density dislocations, Scripta Mater., 178(2020), p. 285. doi: 10.1016/j.scriptamat.2019.11.045
      [55]
      S.Y. Zhang, X. Lin, L.L. Wang, et al., Strengthening mechanisms in selective laser-melted Inconel718 superalloy, Mater. Sci. Eng. A, 812(2021), art. No. 141145. doi: 10.1016/j.msea.2021.141145

    Catalog


    • /

      返回文章
      返回