Cite this article as: |
Xiyuan Geng, Hongcan Chen, Jingjing Wang, Yu Zhang, Qun Luo, and Qian Li, Description of martensitic transformation kinetics in Fe–C–X (X = Ni, Cr, Mn, Si) system by a modified model, Int. J. Miner. Metall. Mater., 31(2024), No. 5, pp. 1026-1036. https://doi.org/10.1007/s12613-023-2780-9 |
罗群 E-mail: qunluo@shu.edu.cn
李谦 E-mail: cquliqian@cqu.edu.cn
[1] |
C. Yao, M. Wang, Y.J. Ni, et al., Effect of traveling-wave magnetic field on dendrite growth of high-strength steel slab: Industrial trials and numerical simulation, Int. J. Miner. Metall. Mater., 30(2023), No. 9, p. 1716. doi: 10.1007/s12613-023-2629-2
|
[2] |
W.L. Wang, L.K. Wang, and P.S. Lyu, Kinetics of austenite growth and bainite transformation during reheating and cooling treatments of high strength microalloyed steel produced by sub-rapid solidification, Int. J. Miner. Metall. Mater., 30(2023), No. 2, p. 354. doi: 10.1007/s12613-022-2548-7
|
[3] |
X.Y. Yuan, Y. Wu, X.J. Liu, H. Wang, S.H. Jiang, and Z.P. Lü, Revealing the role of local shear strain partition of transformable particles in a TRIP-reinforced bulk metallic glass composite via digital image correlation, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 807. doi: 10.1007/s12613-022-2460-1
|
[4] |
E. De Moor, J.G. Speer, D.K. Matlock, J.H. Kwak, and S.B. Lee, Quenching and partitioning of CMnSi steels containing elevated manganese levels, Steel Res. Int., 83(2012), No. 4, p. 322. doi: 10.1002/srin.201100318
|
[5] |
F. HajyAkbary, J. Sietsma, G. Miyamoto, T. Furuhara, and M.J. Santofimia, Interaction of carbon partitioning, carbide precipitation and bainite formation during the Q&P process in a low C steel, Acta Mater., 104(2016), p. 72. doi: 10.1016/j.actamat.2015.11.032
|
[6] |
J. Kähkönen, D.T. Pierce, J.G. Speer, et al., Quenched and partitioned CMnSi steels containing 0.3wt.% and 0.4wt.% carbon, JOM, 68(2016), No. 1, p. 210. doi: 10.1007/s11837-015-1620-4
|
[7] |
L. Wang, C.F. Dong, C. Man, Y.B. Hu, Q. Yu, and X.G. Li, Effect of microstructure on corrosion behavior of high strength martensite steel—A literature review, Int. J. Miner. Metall. Mater., 28(2021), No. 5, p. 754. doi: 10.1007/s12613-020-2242-6
|
[8] |
G. Miyamoto, J. Oh, K. Hono, T. Furuhara, and T. Maki, Effect of partitioning of Mn and Si on the growth kinetics of cementite in tempered Fe–0.6 mass% C martensite, Acta Mater., 55(2007), No. 15, p. 5027. doi: 10.1016/j.actamat.2007.05.023
|
[9] |
Y. Toji, H. Matsuda, M. Herbig, P.P. Choi, and D. Raabe, Atomic-scale analysis of carbon partitioning between martensite and austenite by atom probe tomography and correlative transmission electron microscopy, Acta Mater., 65(2014), p. 215. doi: 10.1016/j.actamat.2013.10.064
|
[10] |
P.F. Gao, F. Li, K. An, Z.Z. Zhao, X.H. Chu, and H. Cui, Microstructure and deformation mechanism of Si-strengthened intercritically annealed quenching and partitioning steels, Mater. Charact., 191(2022), art. No. 112145. doi: 10.1016/j.matchar.2022.112145
|
[11] |
D.T. Pierce, D.R. Coughlin, K.D. Clarke, et al., Microstructural evolution during quenching and partitioning of 0.2C–1.5Mn–1.3Si steels with Cr or Ni additions, Acta Mater., 151(2018), p. 454. doi: 10.1016/j.actamat.2018.03.007
|
[12] |
Q. Luo, H.C. Chen, W. Chen, C.C. Wang, W. Xu, and Q. Li, Thermodynamic prediction of martensitic transformation temperature in Fe–Ni–C system, Scripta Mater., 187(2020), p. 413. doi: 10.1016/j.scriptamat.2020.06.062
|
[13] |
Y. Li, L.Y. Wang, K.Y. Zhu, C.C. Wang and W. Xu, An integral transformation model for the combined calculation of key martensitic transformation temperatures and martensite fraction, Mater. Des., 219(2022), art. No. 110768. doi: 10.1016/j.matdes.2022.110768
|
[14] |
H.C. Chen, W. Xu, Q. Luo, et al., Thermodynamic prediction of martensitic transformation temperature in Fe–C–X (X=Ni, Mn, Si, Cr) systems with dilatational coefficient model, J. Mater. Sci. Technol., 112(2022), p. 291. doi: 10.1016/j.jmst.2021.09.060
|
[15] |
L.H. Liu and B. Guo, Dilatometric analysis and kinetics research of martensitic transformation under a temperature gradient and stress, Materials, 14(2021), No. 23, art. No. 7271. doi: 10.3390/ma14237271
|
[16] |
M.Y. Li, D. Yao, L. Yang, H.R. Wang, and Y.P. Guan, Kinetic analysis of austenite transformation for B1500HS high-strength steel during continuous heating, Int. J. Miner. Metall. Mater., 27(2020), No. 11, p. 1508. doi: 10.1007/s12613-020-1979-2
|
[17] |
S.M.C. van Bohemen, The nonlinear lattice expansion of iron alloys in the range 100–1600K, Scripta Mater., 69(2013), No. 4, p. 315. doi: 10.1016/j.scriptamat.2013.05.009
|
[18] |
H.S. Yang and H.K.D.H. Bhadeshia, Uncertainties in dilatometric determination of martensite start temperature, Mater. Sci. Technol., 23(2007), No. 5, p. 556. doi: 10.1179/174328407X176857
|
[19] |
D.P. Koistinen and R.E. Marburger, A general equation prescribing the extent of the austenite-martensite transformation in pure iron–carbon alloys and plain carbon steels, Acta Metall., 7(1959), No. 1, p. 59. doi: 10.1016/0001-6160(59)90170-1
|
[20] |
S.M.C. van Bohemen and J. Sietsma, Effect of composition on kinetics of athermal martensite formation in plain carbon steels, Mater. Sci. Technol., 25(2009), No. 8, p. 1009. doi: 10.1179/174328408X365838
|
[21] |
B. Skrotzki, The course of the volume fraction of martensite vs. temperature function M x(T), J. Phys. IV France, 1(1991), No. C4, p. 367.
|
[22] |
J.R.C. Guimarães and P.R. Rios, Modeling lath martensite transformation curve, Metall. Mater. Trans. A, 44(2013), No. 1, p. 2. doi: 10.1007/s11661-012-1490-0
|
[23] |
C.L. Magee, The nucleation of martensite, [in] H.I. Aaronson and V.F. Zackay, eds., Phase Transformations, ASM International, Materials Park, Ohio, 1970.
|
[24] |
H.Y. Yu, A new model for the volume fraction of martensitic transformations, Metall. Mater. Trans. A, 28(1997), No. 12, p. 2499. doi: 10.1007/s11661-997-0007-8
|
[25] |
H.Y. Fei, P. Hedström, L. Höglund, and A. Borgenstam, A thermodynamic-based model to predict the fraction of martensite in steels, Metall. Mater. Trans. A, 47(2016), No. 9, p. 4404. doi: 10.1007/s11661-016-3604-6
|
[26] |
J.R.C. Guimarães, P.R. Rios, and A.L.M. Alves, Power-law description of martensite transformation curves, Mater. Sci. Technol., 37(2021), No. 17, p. 1362. doi: 10.1080/02670836.2021.2010011
|
[27] |
B. Nenchev, Q. Tao, Z.H. Dong, et al., Evaluating data-driven algorithms for predicting mechanical properties with small datasets: A case study on gear steel hardenability, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 836. doi: 10.1007/s12613-022-2437-0
|
[28] |
J.C. Fisher, J.H. Hollomon, and D. Turnbull, Kinetics of the austenite→martensite transformation, JOM, 1(1949), No. 10, p. 691. doi: 10.1007/BF03398922
|
[29] |
Q.Z. Gao, C. Wang, F. Qu, Y.L. Wang, and Z.X. Qiao, Martensite transformation kinetics in 9Cr–1.7W–0.4Mo–Co ferritic steel, J. Alloys Compd., 610(2014), p. 322. doi: 10.1016/j.jallcom.2014.05.060
|
[30] |
K. Chou, General solution model and its new progress, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 577. doi: 10.1007/s12613-022-2411-x
|
[31] |
X.Y. Liu, F.Y. Sun, W. Wang, et al., Effect of chromium interlayer thickness on interfacial thermal conductance across copper/diamond interface, Int. J. Miner. Metall. Mater., 29(2022), No. 11, p. 2020. doi: 10.1007/s12613-021-2336-9
|
[32] |
M. Hong, K. Wang, Y.Z. Chen, and F. Liu, A thermo-kinetic model for martensitic transformation kinetics in low-alloy steels, J. Alloys Compd., 647(2015), p. 763. doi: 10.1016/j.jallcom.2015.05.266
|
[33] |
S.R. Pati and M. Cohen, Nucleation of the isothermal martensitic transformation, Acta Metall., 17(1969), No. 3, p. 189. doi: 10.1016/0001-6160(69)90058-3
|
[34] |
E.J. Pickering, J. Collins, A. Stark, L.D. Connor, A.A. Kiely, and H.J. Stone, In situ observations of continuous cooling transformations in low alloy steels, Mater. Charact., 165(2020), art. No. 110355. doi: 10.1016/j.matchar.2020.110355
|
[35] |
W. Chen, H.C. Chen, C.C. Wang, et al., Effect of dilatational strain energy of Fe–C–Ni system on martensitic transformation, Acta Metall. Sin., 58(2022), No. 2, p. 175.
|
[36] |
J.R.C. Guimarães and P.R. Rios, Microstructural path analysis of martensite dimensions in FeNiC and FeC alloys, Mater. Res., 18(2015), No. 3, p. 595. doi: 10.1590/1516-1439.000215
|
[37] |
P.R. Rios and J.R.C. Guimarães, Athermal martensite transformation curve, Mater. Res., 19(2016), No. 2, p. 490. doi: 10.1590/1980-5373-MR-2015-0690
|