留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 5
May  2024

图(8)  / 表(4)

数据统计

分享

计量
  • 文章访问数:  765
  • HTML全文浏览量:  134
  • PDF下载量:  42
  • 被引次数: 0
Xiyuan Geng, Hongcan Chen, Jingjing Wang, Yu Zhang, Qun Luo, and Qian Li, Description of martensitic transformation kinetics in Fe–C–X (X = Ni, Cr, Mn, Si) system by a modified model, Int. J. Miner. Metall. Mater., 31(2024), No. 5, pp. 1026-1036. https://doi.org/10.1007/s12613-023-2780-9
Cite this article as:
Xiyuan Geng, Hongcan Chen, Jingjing Wang, Yu Zhang, Qun Luo, and Qian Li, Description of martensitic transformation kinetics in Fe–C–X (X = Ni, Cr, Mn, Si) system by a modified model, Int. J. Miner. Metall. Mater., 31(2024), No. 5, pp. 1026-1036. https://doi.org/10.1007/s12613-023-2780-9
引用本文 PDF XML SpringerLink
研究论文

通过改进的动力学模型描述Fe–C–X(X=Ni, Cr, Mn, Si)体系的马氏体相变动力学过程


  • 通讯作者:

    罗群    E-mail: qunluo@shu.edu.cn

    李谦    E-mail: cquliqian@cqu.edu.cn

文章亮点

  • (1) 动力学模型中引入了随温度变化的相变驱动力与形核激活能,将马氏体相变的热力学与动力学联系起来。
  • (2) 优化的模型能够描述马氏体相变动力学曲线的S形特征,对形核过程描述更准确。
  • (3) 动力学模型在Fe–C–X(X = Ni, Cr, Mn, Si)体系中计算精度达9.5%。
  • 控制非热马氏体和残余奥氏体的含量对于提高高强度钢的机械性能是至关重要的,但如何准确描述冷却过程中的马氏体相变一直是一个难题。目前常用的半经验动力学模型对于马氏体相变开始阶段的描述存在较大误差,并且其中大部分模型未能描绘出马氏体相变动力学曲线的S形特征。为了更准确地描述马氏体相变过程,在Magee模型的基础上引入了随温度变化的马氏体形核激活能,从而可以计算形核率在相变过程中的变化。计算结果表明,与通过热膨胀法测得的Fe–C–X(X=Ni、Cr、Mn、Si)合金马氏体相变动力学曲线相比,用改进后的动力学模型计算动力学曲线的相对误差仅达到了9.5%,相较于Magee模型,这一误差减少了约三分之二。将形核激活能引入动力学模型对提高模型精度起到了至关重要的作用。
  • Research Article

    Description of martensitic transformation kinetics in Fe–C–X (X = Ni, Cr, Mn, Si) system by a modified model

    + Author Affiliations
    • Controlling the content of athermal martensite and retained austenite is important to improving the mechanical properties of high-strength steels, but a mechanism for the accurate description of martensitic transformation during the cooling process must be addressed. At present, frequently used semi-empirical kinetics models suffer from huge errors at the beginning of transformation, and most of them fail to exhibit the sigmoidal shape characteristic of transformation curves. To describe the martensitic transformation process accurately, based on the Magee model, we introduced the changes in the nucleation activation energy of martensite with temperature, which led to the varying nucleation rates of this model during martensitic transformation. According to the calculation results, the relative error of the modified model for the martensitic transformation kinetics curves of Fe–C–X (X = Ni, Cr, Mn, Si) alloys reached 9.5% compared with those measured via the thermal expansion method. The relative error was approximately reduced by two-thirds compared with that of the Magee model. The incorporation of nucleation activation energy into the kinetics model contributes to the improvement of its precision.
    • loading
    • [1]
      C. Yao, M. Wang, Y.J. Ni, et al., Effect of traveling-wave magnetic field on dendrite growth of high-strength steel slab: Industrial trials and numerical simulation, Int. J. Miner. Metall. Mater., 30(2023), No. 9, p. 1716. doi: 10.1007/s12613-023-2629-2
      [2]
      W.L. Wang, L.K. Wang, and P.S. Lyu, Kinetics of austenite growth and bainite transformation during reheating and cooling treatments of high strength microalloyed steel produced by sub-rapid solidification, Int. J. Miner. Metall. Mater., 30(2023), No. 2, p. 354. doi: 10.1007/s12613-022-2548-7
      [3]
      X.Y. Yuan, Y. Wu, X.J. Liu, H. Wang, S.H. Jiang, and Z.P. Lü, Revealing the role of local shear strain partition of transformable particles in a TRIP-reinforced bulk metallic glass composite via digital image correlation, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 807. doi: 10.1007/s12613-022-2460-1
      [4]
      E. De Moor, J.G. Speer, D.K. Matlock, J.H. Kwak, and S.B. Lee, Quenching and partitioning of CMnSi steels containing elevated manganese levels, Steel Res. Int., 83(2012), No. 4, p. 322. doi: 10.1002/srin.201100318
      [5]
      F. HajyAkbary, J. Sietsma, G. Miyamoto, T. Furuhara, and M.J. Santofimia, Interaction of carbon partitioning, carbide precipitation and bainite formation during the Q&P process in a low C steel, Acta Mater., 104(2016), p. 72. doi: 10.1016/j.actamat.2015.11.032
      [6]
      J. Kähkönen, D.T. Pierce, J.G. Speer, et al., Quenched and partitioned CMnSi steels containing 0.3wt.% and 0.4wt.% carbon, JOM, 68(2016), No. 1, p. 210. doi: 10.1007/s11837-015-1620-4
      [7]
      L. Wang, C.F. Dong, C. Man, Y.B. Hu, Q. Yu, and X.G. Li, Effect of microstructure on corrosion behavior of high strength martensite steel—A literature review, Int. J. Miner. Metall. Mater., 28(2021), No. 5, p. 754. doi: 10.1007/s12613-020-2242-6
      [8]
      G. Miyamoto, J. Oh, K. Hono, T. Furuhara, and T. Maki, Effect of partitioning of Mn and Si on the growth kinetics of cementite in tempered Fe–0.6 mass% C martensite, Acta Mater., 55(2007), No. 15, p. 5027. doi: 10.1016/j.actamat.2007.05.023
      [9]
      Y. Toji, H. Matsuda, M. Herbig, P.P. Choi, and D. Raabe, Atomic-scale analysis of carbon partitioning between martensite and austenite by atom probe tomography and correlative transmission electron microscopy, Acta Mater., 65(2014), p. 215. doi: 10.1016/j.actamat.2013.10.064
      [10]
      P.F. Gao, F. Li, K. An, Z.Z. Zhao, X.H. Chu, and H. Cui, Microstructure and deformation mechanism of Si-strengthened intercritically annealed quenching and partitioning steels, Mater. Charact., 191(2022), art. No. 112145. doi: 10.1016/j.matchar.2022.112145
      [11]
      D.T. Pierce, D.R. Coughlin, K.D. Clarke, et al., Microstructural evolution during quenching and partitioning of 0.2C–1.5Mn–1.3Si steels with Cr or Ni additions, Acta Mater., 151(2018), p. 454. doi: 10.1016/j.actamat.2018.03.007
      [12]
      Q. Luo, H.C. Chen, W. Chen, C.C. Wang, W. Xu, and Q. Li, Thermodynamic prediction of martensitic transformation temperature in Fe–Ni–C system, Scripta Mater., 187(2020), p. 413. doi: 10.1016/j.scriptamat.2020.06.062
      [13]
      Y. Li, L.Y. Wang, K.Y. Zhu, C.C. Wang and W. Xu, An integral transformation model for the combined calculation of key martensitic transformation temperatures and martensite fraction, Mater. Des., 219(2022), art. No. 110768. doi: 10.1016/j.matdes.2022.110768
      [14]
      H.C. Chen, W. Xu, Q. Luo, et al., Thermodynamic prediction of martensitic transformation temperature in Fe–C–X (X=Ni, Mn, Si, Cr) systems with dilatational coefficient model, J. Mater. Sci. Technol., 112(2022), p. 291. doi: 10.1016/j.jmst.2021.09.060
      [15]
      L.H. Liu and B. Guo, Dilatometric analysis and kinetics research of martensitic transformation under a temperature gradient and stress, Materials, 14(2021), No. 23, art. No. 7271. doi: 10.3390/ma14237271
      [16]
      M.Y. Li, D. Yao, L. Yang, H.R. Wang, and Y.P. Guan, Kinetic analysis of austenite transformation for B1500HS high-strength steel during continuous heating, Int. J. Miner. Metall. Mater., 27(2020), No. 11, p. 1508. doi: 10.1007/s12613-020-1979-2
      [17]
      S.M.C. van Bohemen, The nonlinear lattice expansion of iron alloys in the range 100–1600K, Scripta Mater., 69(2013), No. 4, p. 315. doi: 10.1016/j.scriptamat.2013.05.009
      [18]
      H.S. Yang and H.K.D.H. Bhadeshia, Uncertainties in dilatometric determination of martensite start temperature, Mater. Sci. Technol., 23(2007), No. 5, p. 556. doi: 10.1179/174328407X176857
      [19]
      D.P. Koistinen and R.E. Marburger, A general equation prescribing the extent of the austenite-martensite transformation in pure iron–carbon alloys and plain carbon steels, Acta Metall., 7(1959), No. 1, p. 59. doi: 10.1016/0001-6160(59)90170-1
      [20]
      S.M.C. van Bohemen and J. Sietsma, Effect of composition on kinetics of athermal martensite formation in plain carbon steels, Mater. Sci. Technol., 25(2009), No. 8, p. 1009. doi: 10.1179/174328408X365838
      [21]
      B. Skrotzki, The course of the volume fraction of martensite vs. temperature function M x(T), J. Phys. IV France, 1(1991), No. C4, p. 367.
      [22]
      J.R.C. Guimarães and P.R. Rios, Modeling lath martensite transformation curve, Metall. Mater. Trans. A, 44(2013), No. 1, p. 2. doi: 10.1007/s11661-012-1490-0
      [23]
      C.L. Magee, The nucleation of martensite, [in] H.I. Aaronson and V.F. Zackay, eds., Phase Transformations, ASM International, Materials Park, Ohio, 1970.
      [24]
      H.Y. Yu, A new model for the volume fraction of martensitic transformations, Metall. Mater. Trans. A, 28(1997), No. 12, p. 2499. doi: 10.1007/s11661-997-0007-8
      [25]
      H.Y. Fei, P. Hedström, L. Höglund, and A. Borgenstam, A thermodynamic-based model to predict the fraction of martensite in steels, Metall. Mater. Trans. A, 47(2016), No. 9, p. 4404. doi: 10.1007/s11661-016-3604-6
      [26]
      J.R.C. Guimarães, P.R. Rios, and A.L.M. Alves, Power-law description of martensite transformation curves, Mater. Sci. Technol., 37(2021), No. 17, p. 1362. doi: 10.1080/02670836.2021.2010011
      [27]
      B. Nenchev, Q. Tao, Z.H. Dong, et al., Evaluating data-driven algorithms for predicting mechanical properties with small datasets: A case study on gear steel hardenability, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 836. doi: 10.1007/s12613-022-2437-0
      [28]
      J.C. Fisher, J.H. Hollomon, and D. Turnbull, Kinetics of the austenite→martensite transformation, JOM, 1(1949), No. 10, p. 691. doi: 10.1007/BF03398922
      [29]
      Q.Z. Gao, C. Wang, F. Qu, Y.L. Wang, and Z.X. Qiao, Martensite transformation kinetics in 9Cr–1.7W–0.4Mo–Co ferritic steel, J. Alloys Compd., 610(2014), p. 322. doi: 10.1016/j.jallcom.2014.05.060
      [30]
      K. Chou, General solution model and its new progress, Int. J. Miner. Metall. Mater., 29(2022), No. 4, p. 577. doi: 10.1007/s12613-022-2411-x
      [31]
      X.Y. Liu, F.Y. Sun, W. Wang, et al., Effect of chromium interlayer thickness on interfacial thermal conductance across copper/diamond interface, Int. J. Miner. Metall. Mater., 29(2022), No. 11, p. 2020. doi: 10.1007/s12613-021-2336-9
      [32]
      M. Hong, K. Wang, Y.Z. Chen, and F. Liu, A thermo-kinetic model for martensitic transformation kinetics in low-alloy steels, J. Alloys Compd., 647(2015), p. 763. doi: 10.1016/j.jallcom.2015.05.266
      [33]
      S.R. Pati and M. Cohen, Nucleation of the isothermal martensitic transformation, Acta Metall., 17(1969), No. 3, p. 189. doi: 10.1016/0001-6160(69)90058-3
      [34]
      E.J. Pickering, J. Collins, A. Stark, L.D. Connor, A.A. Kiely, and H.J. Stone, In situ observations of continuous cooling transformations in low alloy steels, Mater. Charact., 165(2020), art. No. 110355. doi: 10.1016/j.matchar.2020.110355
      [35]
      W. Chen, H.C. Chen, C.C. Wang, et al., Effect of dilatational strain energy of Fe–C–Ni system on martensitic transformation, Acta Metall. Sin., 58(2022), No. 2, p. 175.
      [36]
      J.R.C. Guimarães and P.R. Rios, Microstructural path analysis of martensite dimensions in FeNiC and FeC alloys, Mater. Res., 18(2015), No. 3, p. 595. doi: 10.1590/1516-1439.000215
      [37]
      P.R. Rios and J.R.C. Guimarães, Athermal martensite transformation curve, Mater. Res., 19(2016), No. 2, p. 490. doi: 10.1590/1980-5373-MR-2015-0690

    Catalog


    • /

      返回文章
      返回