留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 31 Issue 6
Jun.  2024

图(10)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  1076
  • HTML全文浏览量:  149
  • PDF下载量:  67
  • 被引次数: 0
Xuelin Wang, Zhenjia Xie, Xiucheng Li, and Chengjia Shang, Recent progress in visualization and digitization of coherent transformation structures and application in high-strength steel, Int. J. Miner. Metall. Mater., 31(2024), No. 6, pp. 1298-1310. https://doi.org/10.1007/s12613-023-2781-8
Cite this article as:
Xuelin Wang, Zhenjia Xie, Xiucheng Li, and Chengjia Shang, Recent progress in visualization and digitization of coherent transformation structures and application in high-strength steel, Int. J. Miner. Metall. Mater., 31(2024), No. 6, pp. 1298-1310. https://doi.org/10.1007/s12613-023-2781-8
引用本文 PDF XML SpringerLink
特约综述

协变相变组织的可视化和数字化研究进展及其在高强度钢中的应用


  • 通讯作者:

    王学林    E-mail: xuelin2076@ustb.edu.cn

    尚成嘉    E-mail: cjshang@ustb.edu.cn

文章亮点

  • (1) 综述了高强钢协变相变组织晶体学结构可视化与数字化的研究方法及其在高强钢开发与焊接工程中的应用。
  • (2) 明确了合金成分和工艺参量对协办相变组织变体选择机制的影响机理。
  • (3) 提出了一套适用于高强钢开发及焊接过程组织与性能综合调控的技术路线。
  • 高强度钢主要由具有协变相变特征的贝氏体或马氏体等中低温相变组织构成。此类显微组织因具有高的位错密度和精细的晶体学结构单元,使得高强度、高韧性与高塑性更容易协调匹配。同时,由于其优异的焊接性能,此类高强度钢已广泛应用于管道、船舶和桥梁等主要工程建设中。然而,由于协变相变组织的复杂形态,使得采用传统方法(光学显微镜(OM)和扫描电子显微镜(SEM))对其有效结构单元进行可视化和数字化变得十分困难,较难实现显微组织与宏观力学性能和关键工艺参数间定量关系的建立。因此,本文综述了高强度钢显微组织结构可视化和数字化的最新研究进展,重点介绍了晶体学方法在高强度钢板开发和焊接工程中的应用。通过电子背散射衍射技术(EBSD)获得相变后显微组织的晶体学数据(欧拉角),并根据贝氏体或马氏体向奥氏体逆相变的理论展开晶体学数据计算处理,以确定连续冷却转变过程中高温母奥氏体的取向和其与子相贝氏体或马氏体的位向关系(OR)。进而,可以有效地完成基于实际位向关系的晶体学结构packet、block和变体的可视化和各类晶界的数字化,最终实现其与合金成分和关键工艺参数的定量关系建立,从而为高强度钢的开发提供逆向设计指导。
  • Invited Review

    Recent progress in visualization and digitization of coherent transformation structures and application in high-strength steel

    + Author Affiliations
    • High-strength steels are mainly composed of medium- or low-temperature microstructures, such as bainite or martensite, with coherent transformation characteristics. This type of microstructure has a high density of dislocations and fine crystallographic structural units, which ease the coordinated matching of high strength, toughness, and plasticity. Meanwhile, given its excellent welding performance, high-strength steel has been widely used in major engineering constructions, such as pipelines, ships, and bridges. However, visualization and digitization of the effective units of these coherent transformation structures using traditional methods (optical microscopy and scanning electron microscopy) is difficult due to their complex morphology. Moreover, the establishment of quantitative relationships with macroscopic mechanical properties and key process parameters presents additional difficulty. This article reviews the latest progress in microstructural visualization and digitization of high-strength steel, with a focus on the application of crystallographic methods in the development of high-strength steel plates and welding. We obtained the crystallographic data (Euler angle) of the transformed microstructures through electron back-scattering diffraction and combined them with the calculation of inverse transformation from bainite or martensite to austenite to determine the reconstruction of high-temperature parent austenite and orientation relationship (OR) during continuous cooling transformation. Furthermore, visualization of crystallographic packets, blocks, and variants based on actual OR and digitization of various grain boundaries can be effectively completed to establish quantitative relationships with alloy composition and key process parameters, thereby providing reverse design guidance for the development of high-strength steel.
    • loading
    • [1]
      Z.J. Xie, C.J. Shang, X.L. Wang, X.M. Wang, G. Han, and R.D.K. Misra, Recent progress in third-generation low alloy steels developed under M3 microstructure control, Int. J. Miner. Metall. Mater., 27(2020), No. 1, p. 1. doi: 10.1007/s12613-019-1939-x
      [2]
      H. Dong, X.J. Sun, W.Q. Cao, Z.D. Liu, M.Q. Wang, and Y.Q. Weng, On the performance improvement of steels through M3 structure control, [in] Y.Q. Weng, H. Dong, and Y. Gan, eds., Advanced Steels : The Recent Scenario in Steel Science and Technology, Springer-Verlag Berlin Heidelberg and Metallurgical Industry Press, Beijing, 2011, p. 35.
      [3]
      Y.S. Yu, B. Hu, M.L. Gao, et al., Determining role of heterogeneous microstructure in lowering yield ratio and enhancing impact toughness in high-strength low-alloy steel, Int. J. Miner. Metall. Mater., 28(2021), No. 5, p. 816. doi: 10.1007/s12613-020-2235-5
      [4]
      G.H. Gao, M. Liu, X.L. Gui, et al., Heterogenous structure and formation mechanism of white and brown etching layers in bainitic rail steel, Acta Mater., 250(2023), art. No. 118887. doi: 10.1016/j.actamat.2023.118887
      [5]
      X.J. Sun, S.F. Yuan, Z.J. Xie, L.L. Dong, C.J. Shang, and R.D.K. Misra, Microstructure-property relationship in a high strength-high toughness combination ultra-heavy gauge offshore plate steel: The significance of multiphase microstructure, Mater. Sci. Eng. A, 689(2017), p. 212. doi: 10.1016/j.msea.2017.02.058
      [6]
      Z.J. Xie, C.J. Shang, W.H. Zhou, and B.B. Wu, Effect of retained austenite on ductility and toughness of a low alloyed multiphase steel, Acta Metall. Sin., 52(2016), No. 2, p. 224.
      [7]
      P. Han, Z.P. Liu, Z.J. Xie, et al., Influence of band microstructure on carbide precipitation behavior and toughness of 1 GPa-grade ultra-heavy gauge low-alloy steel, Int. J. Miner. Metall. Mater., 30(2023), No. 7, p. 1329. doi: 10.1007/s12613-023-2597-6
      [8]
      S. Morito, H. Tanaka, R. Konishi, T. Furuhara, and T. Maki, The morphology and crystallography of lath martensite in Fe–C alloys, Acta Mater., 51(2003), No. 6, p. 1789. doi: 10.1016/S1359-6454(02)00577-3
      [9]
      H. Kitahara, R. Ueji, N. Tsuji, and Y. Minamino, Crystallographic features of lath martensite in low-carbon steel, Acta Mater., 54(2006), No. 5, p. 1279. doi: 10.1016/j.actamat.2005.11.001
      [10]
      N. Takayama, G. Miyamoto, and T. Furuhara, Effects of transformation temperature on variant pairing of bainitic ferrite in low carbon steel, Acta Mater., 60(2012), No. 5, p. 2387. doi: 10.1016/j.actamat.2011.12.018
      [11]
      Y. You, C.J. Shang, W.J. Nie, and S. Subramanian, Investigation on the microstructure and toughness of coarse grained heat affected zone in X-100 multi-phase pipeline steel with high Nb content, Mater. Sci. Eng. A, 558(2012), p. 692. doi: 10.1016/j.msea.2012.08.077
      [12]
      X.L. Wang, Z.Q. Wang, L.L. Dong, C.J. Shang, X.P. Ma, and S.V. Subramanian, New insights into the mechanism of cooling rate on the impact toughness of coarse grained heat affected zone from the aspect of variant selection, Mater. Sci. Eng. A, 704(2017), p. 448. doi: 10.1016/j.msea.2017.07.095
      [13]
      G. Miyamoto, N. Takayama, and T. Furuhara, Accurate measurement of the orientation relationship of lath martensite and bainite by electron backscatter diffraction analysis, Scripta Mater., 60(2009), No. 12, p. 1113. doi: 10.1016/j.scriptamat.2009.02.053
      [14]
      H. Kawata, K. Sakamoto, T. Moritani, S. Morito, T. Furuhara, and T. Maki, Crystallography of ausformed upper bainite structure in Fe–9Ni–C alloys, Mater. Sci. Eng. A, 438-440(2006), p. 140. doi: 10.1016/j.msea.2006.02.175
      [15]
      P.P. Suikkanen, C. Cayron, A.J. DeArdo, and L.P. Karjalainen, Crystallographic analysis of isothermally transformed bainite in 0.2C–2.0Mn–1.5Si–0.6Cr steel using EBSD, J. Mater. Sci. Technol., 29(2013), No. 4, p. 359. doi: 10.1016/j.jmst.2013.01.015
      [16]
      S. Morito, X. Huang, T. Furuhara, T. Maki, and N. Hansen, The morphology and crystallography of lath martensite in alloy steels, Acta Mater., 54(2006), No. 19, p. 5323. doi: 10.1016/j.actamat.2006.07.009
      [17]
      S. Morito, Y. Edamatsu, K. Ichinotani, et al., Quantitative analysis of three-dimensional morphology of martensite packets and blocks in iron-carbon-manganese steels, J. Alloys Compd., 577(2013), p. S587. doi: 10.1016/j.jallcom.2012.02.004
      [18]
      G. Miyamoto, N. Iwata, N. Takayama, and T. Furuhara, Variant selection of lath martensite and bainite transformation in low carbon steel by ausforming, J. Alloys Compd., 577(2013), p. S528. doi: 10.1016/j.jallcom.2011.12.111
      [19]
      A. Stormvinter, G. Miyamoto, T. Furuhara, P. Hedström, and A. Borgenstam, Effect of carbon content on variant pairing of martensite in Fe–C alloys, Acta Mater., 60(2012), No. 20, p. 7265. doi: 10.1016/j.actamat.2012.09.046
      [20]
      C. Cayron, B. Artaud, and L. Briottet, Reconstruction of parent grains from EBSD data, Mater. Charact., 57(2006), No. 4-5, p. 386. doi: 10.1016/j.matchar.2006.03.008
      [21]
      C. Cayron, ARPGE: A computer program to automatically reconstruct the parent grains from electron backscatter diffraction data, J. Appl. Crystallogr., 40(2007), p. 1183. doi: 10.1107/S0021889807048777
      [22]
      G. Miyamoto, N. Iwata, N. Takayama, and T. Furuhara, Mapping the parent austenite orientation reconstructed from the orientation of martensite by EBSD and its application to ausformed martensite, Acta Mater., 58(2010), No. 19, p. 6393. doi: 10.1016/j.actamat.2010.08.001
      [23]
      L. Germain, N. Gey, R. Mercier, P. Blaineau, and M. Humbert, An advanced approach to reconstructing parent orientation maps in the case of approximate orientation relations: Application to steels, Acta Mater., 60(2012), No. 11, p. 4551. doi: 10.1016/j.actamat.2012.04.034
      [24]
      M. Abbasi, T.W. Nelson, C.D. Sorensen, and L.Y. Wei, An approach to prior austenite reconstruction, Mater. Charact., 66(2012), p. 1. doi: 10.1016/j.matchar.2012.01.010
      [25]
      D.J. Sun, Z. Zhou, K. Zhang, et al., Novel reconstruction approaches of austenitic annealing twin boundaries and grain boundaries of ultrafine grained prior austenite, Mater. Des., 227(2023), art. No. 111692. doi: 10.1016/j.matdes.2023.111692
      [26]
      S. Kang, J.G. Speer, R.W. Regier, H. Nako, S.C. Kennett, and K.O. Findley, The analysis of bainitic ferrite microstructure in microalloyed plate steels through quantitative characterization of intervariant boundaries, Mater. Sci. Eng. A, 669(2016), p. 459. doi: 10.1016/j.msea.2016.05.111
      [27]
      C.J. Shang, X.C. Li, and X.L. Wang, Development of high performance steel for marine engineering II — Digital characterization of gene and microstructure for iron and steel materials, Angang Technol., (2018), No. 2, p. 1.
      [28]
      X.C. Li, J.X. Zhao, J.H. Cong, et al., Machine learning guided automatic recognition of crystal boundaries in bainitic/martensitic alloy and relationship between boundary types and ductile-to-brittle transition behavior, J. Mater. Sci. Technol., 84(2021), p. 49. doi: 10.1016/j.jmst.2020.12.024
      [29]
      A. Lambert-Perlade, A.F. Gourgues, and A. Pineau, Austenite to bainite phase transformation in the heat-affected zone of a high strength low alloy steel, Acta Mater., 52(2004), No. 8, p. 2337. doi: 10.1016/j.actamat.2004.01.025
      [30]
      X.L. Wang, Z.Q. Wang, X.P. Ma, et al., Analysis of impact toughness scatter in simulated coarse-grained HAZ of E550 grade offshore engineering steel from the aspect of crystallographic structure, Mater. Charact., 140(2018), p. 312. doi: 10.1016/j.matchar.2018.03.037
      [31]
      S. Morito, H. Yoshida, T. Maki, and X. Huang, Effect of block size on the strength of lath martensite in low carbon steels, Mater. Sci. Eng. A, 438-440(2006), p. 237. doi: 10.1016/j.msea.2005.12.048
      [32]
      L. Rancel, M. Gómez, S.F. Medina, and I. Gutierrez, Measurement of bainite packet size and its influence on cleavage fracture in a medium carbon bainitic steel, Mater. Sci. Eng. A, 530(2011), p. 21. doi: 10.1016/j.msea.2011.09.001
      [33]
      A. Shibata, T. Nagoshi, M. Sone, S. Morito, and Y. Higo, Evaluation of the block boundary and sub-block boundary strengths of ferrous lath martensite using a micro-bending test, Mater. Sci. Eng. A, 527(2010), No. 29-30, p. 7538. doi: 10.1016/j.msea.2010.08.026
      [34]
      C. Du, J.P.M. Hoefnagels, R. Vaes, and M.G.D. Geers, Block and sub-block boundary strengthening in lath martensite, Scr. Mater., 116(2016), p. 117. doi: 10.1016/j.scriptamat.2016.01.043
      [35]
      X.C. Li, J.X. Zhao, L.L. Dong, et al., The significance of coherent transformation on grain refinement and consequent enhancement in toughness, Materials, 13(2020), No. 22, art. No. 5095. doi: 10.3390/ma13225095
      [36]
      B.B. Wu, X.L. Wang, Z.Q. Wang, et al., New insights from crystallography into the effect of refining prior austenite grain size on transformation phenomenon and consequent mechanical properties of ultra-high strength low alloy steel, Mater. Sci. Eng. A, 745(2019), p. 126. doi: 10.1016/j.msea.2018.12.057
      [37]
      B.B. Wu, Z.Q. Wang, Y.S. Yu, X.L. Wang, C.J. Shang, and R.D.K. Misra, Thermodynamic basis of twin-related variant pair in high strength low alloy steel, Scripta Mater., 170(2019), p. 43. doi: 10.1016/j.scriptamat.2019.05.016
      [38]
      B.B. Wu, Z.Q. Wang, X.L. Wang, W.S. Xu, C.J. Shang, and R.D.K. Misra, Toughening of martensite matrix in high strength low alloy steel: Regulation of variant pairs, Mater. Sci. Eng. A, 759(2019), p. 430. doi: 10.1016/j.msea.2019.05.030
      [39]
      B.B. Wu, S. Huang, Z.Q. Wang, et al., Crystallography analysis of toughness in high strength ultra-heavy plate steel, Mater. Lett., 250(2019), p. 55. doi: 10.1016/j.matlet.2019.04.084
      [40]
      Y.S. Yu, Z.Q. Wang, B.B. Wu, et al., Tailoring variant pairing to enhance impact toughness in high-strength low-alloy steels via trace carbon addition, Acta Metall. Sin., 34(2021), No. 6, p. 755. doi: 10.1007/s40195-020-01186-x
      [41]
      S. Huang, Y.S. Yu, Z.Q. Wang, et al., Crystallographic insights into the role of nickel on hardenability of wear-resistant steels, Mater. Lett., 306(2022), art. No. 130961. doi: 10.1016/j.matlet.2021.130961
      [42]
      Z.C. Liu, X.L. Wang, Y.S. Yu, and C.J. Shang, Study on toughening mechanism of high strength steel and its relationship with substructure, J. Iron Steel Res., 32(2020), No. 12, p. 1093.
      [43]
      J.L. Wang, F.J. Guo, Z.Q. Wang, Z.J. Xie, C.J. Shang, and X.L. Wang, Influence of centerline segregation on the crystallographic features and mechanical properties of a high-strength low-alloy steel, Mater. Lett., 267(2020), art. No. 127512. doi: 10.1016/j.matlet.2020.127512
      [44]
      G. Miyamoto, N. Iwata, N. Takayama, and T. Furuhara, Quantitative analysis of variant selection in ausformed lath martensite, Acta Mater., 60(2012), No. 3, p. 1139. doi: 10.1016/j.actamat.2011.11.018
      [45]
      Z.C. Liu, J. Yang, H. Guo, X.L. Wang, and C.J. Shang, Crystallographic study on deformed bainite structure of ultra-high strength steel and its relationship with strength and ductile–brittle transition temperature, Mater. Lett., 326(2022), art. No. 132947. doi: 10.1016/j.matlet.2022.132947
      [46]
      N. Bernier, L. Bracke, L. Malet, and S. Godet, Crystallographic reconstruction study of the effects of finish rolling temperature on the variant selection during bainite transformation in C–Mn high-strength steels, Metall. Mater. Trans. A, 45(2014), No. 13, p. 5937. doi: 10.1007/s11661-014-2553-1
      [47]
      M.Y. Sun, X.L. Wang, Z.Q. Wang, et al., The critical impact of intercritical deformation on variant pairing of bainite/martensite in dual-phase steels, Mater. Sci. Eng. A, 771(2020), art. No. 138668. doi: 10.1016/j.msea.2019.138668
      [48]
      X.D. Li, X.P. Ma, S.V. Subramanian, C.J. Shang, and R.D.K. Misra, Influence of prior austenite grain size on martensite–austenite constituent and toughness in the heat affected zone of 700MPa high strength linepipe steel, Mater. Sci. Eng. A, 616(2014), p. 141. doi: 10.1016/j.msea.2014.07.100
      [49]
      C.L. Miao, Z.W. Liu, H. Guo, C.J. Shang, Y.H. Fu, and X.X. Wang, Effect of Nb content and heat input on coarse-grained welding heat affected zone of X80 pipeline steels, Trans. Mater. Heat Treat., 33(2012), No. 1, p. 99.
      [50]
      X.P. Ma, X.D. Li, B. Langelier, B. Gault, S. Subramanian, and L. Collins, Effects of carbon variation on microstructure evolution in weld heat-affected zone of Nb–Ti microalloyed steels, Metall. Mater. Trans. A, 49(2018), No. 10, p. 4824. doi: 10.1007/s11661-018-4751-8
      [51]
      X. Wan, B. Zhou, K.C. Nune, Y. Li, K. Wu, and G. Li, In-situ microscopy study of grain refinement in the simulated heat-affected zone of high-strength low-alloy steel by TiN particle, Sci. Technol. Weld. Joining, 22(2017), No. 4, p. 343. doi: 10.1080/13621718.2016.1242210
      [52]
      X.G. Zhang, Y.J. Ren, J. Zhang, et al., Effects of prior austenite grain size on reversion kinetics of different crystallographic austenite in a low carbon steel, Mater. Charact., 190(2022), art. No. 112025. doi: 10.1016/j.matchar.2022.112025
      [53]
      X.L. Wang, Z.Q. Wang, A.R. Huang, et al., Contribution of grain boundary misorientation to intragranular globular austenite reversion and resultant in grain refinement in a high-strength low-alloy steel, Mater. Charact., 169(2020), art. No. 110634. doi: 10.1016/j.matchar.2020.110634
      [54]
      X.G. Zhang, G. Miyamoto, Y. Toji, S. Nambu, T. Koseki, and T. Furuhara, Orientation of austenite reverted from martensite in Fe–2Mn–1.5Si–0.3C alloy, Acta Mater., 144(2018), p. 601. doi: 10.1016/j.actamat.2017.11.003
      [55]
      X.L. Wang, Z.J. Xie, Z.Q. Wang, Y.S. Yu, L.Q. Wu, and C.J. Shang, Crystallographic study on microstructure and impact toughness of coarse grained heat affected zone of ultra-high strength steel, Mater. Lett., 323(2022), art. No. 132552. doi: 10.1016/j.matlet.2022.132552
      [56]
      X.L. Wang, X.P. Ma, Z.Q. Wang, et al., Carbon microalloying effect of base material on variant selection in coarse grained heat affected zone of X80 pipeline steel, Mater. Charact., 149(2019), p. 26. doi: 10.1016/j.matchar.2019.01.005
      [57]
      Y. You, C.J. Shang, L. Chen, and S. Subramanian, Investigation on the crystallography of the transformation products of reverted austenite in intercritically reheated coarse grained heat affected zone, Mater. Des., 43(2013), p. 485. doi: 10.1016/j.matdes.2012.07.015
      [58]
      Y. You, C.J. Shang, and S. Subramanian, Effect of Ni addition on toughness and microstructure evolution in coarse grain heat affected zone, Met. Mater. Int., 20(2014), No. 4, p. 659. doi: 10.1007/s12540-014-4011-4
      [59]
      Z.Q. Wang, X.L. Wang, Y.R. Nan, et al., Effect of Ni content on the microstructure and mechanical properties of weld metal with both-side submerged arc welding technique, Mater. Charact., 138(2018), p. 67. doi: 10.1016/j.matchar.2018.01.039
      [60]
      F. Niessen, T. Nyyssönen, A.A. Gazder, and R. Hielscher, Parent grain reconstruction from partially or fully transformed microstructures in MTEX , J. Appl. Crystallogr., 55(2022), p. 180.
      [61]
      M. Asherloo, Z.H. Wu, J.E.C. Sabisch, I. Ghamarian, A.D. Rollett, and A. Mostafaei, Variant selection in laser powder bed fusion of non-spherical Ti–6Al–4V powder, J. Mater. Sci. Technol., 147(2023), p. 56. doi: 10.1016/j.jmst.2022.10.045
      [62]
      Y. Zhang, R.L. Xin, K. Wang, and Q. Liu, Variant selection of α precipitates formed at β triple junctions in titanium alloy, Mater. Charact., 189(2022), art. No. 111975. doi: 10.1016/j.matchar.2022.111975
      [63]
      C. Paramatmuni, Y. Guo, P.J. Withers, and F.P.E. Dunne, A three-dimensional mechanistic study of the drivers of classical twin nucleation and variant selection in Mg alloys: A mesoscale modelling and experimental study, Int. J. Plast., 143(2021), art. No. 103027. doi: 10.1016/j.ijplas.2021.103027
      [64]
      X.P. Ma, C.L. Miao, B. Langelier, and S. Subramanian, Suppression of strain-induced precipitation of NbC by epitaxial growth of NbC on pre-existing TiN in Nb–Ti microalloyed steel, Mater. Des., 132(2017), p. 244. doi: 10.1016/j.matdes.2017.07.006
      [65]
      S.V. Subramanian, X.P. Ma, W.J. Nie, and X.B. Zhang, Application of nano-scale precipitate engineering of TiN–NbC composite in 32mm K60-E2 grade plate rolling, [in] HSLA Steels 2015 , Microalloying 2015 & Offshore Engineering Steels : Conference Proceedings, Hangzhou, 2015, p. 211.
      [66]
      X.P. Ma, B. Langelier, B. Gault, and S. Subramanian, Effect of Nb addition to Ti-bearing super martensitic stainless steel on control of austenite grain size and strengthening, Metall. Mater. Trans. A, 48(2017), No. 5, p. 2460. doi: 10.1007/s11661-017-4036-7
      [67]
      A.D. Schino and P.E.D. Nunzio, Effect of Nb microalloying on the heat affected zone microstructure of girth welded joints, Mater. Lett., 186(2017), p. 86. doi: 10.1016/j.matlet.2016.09.092
      [68]
      C. Fossaert, G. Rees, T. Maurickx, and H.K.D.H. Bhadeshia, The effect of niobium on the hardenability of microalloyed austenite, Metall. Mater. Trans. A, 26(1995), No. 1, p. 21. doi: 10.1007/BF02669791
      [69]
      G.I. Rees, J. Perdrix, T. Maurickx, and H.K.D.H. Bhadeshia, The effect of niobium in solid solution on the transformation kinetics of bainite, Mater. Sci. Eng. A, 194(1995), No. 2, p. 179. doi: 10.1016/0921-5093(94)09673-2

    Catalog


    • /

      返回文章
      返回